Diffractive dissociation of quasi-real photons at a photon-proton centre of mass energy of W 200 GeV is studied with the ZEUS detector at HERA. The process under consideration is gamma p -> X N, where X is the diffractively dissociated photon system of mass M_X and N is either a proton or a nucleonic system with mass M_N < 2GeV. The cross section for this process in the interval 3 < M_X < 24 GeV relative to the total photoproduction cross section was measured to be sigma~partial_D / sigma_tot = 6.2 +- 0.2(stat) +- 1.4(syst)%. After extrapolating this result to the mass interval of m_phi~2 < M_X~2 < 0.05 W~2 and correcting it for proton dissociation, the fraction of the total cross section attributed to single diffractive photon dissociation, gamma p -> X p, is found to be sigma_SD / sigma_tot = 13.3 +- 0.5(stat) +- 3.6(syst)%. The mass spectrum of the dissociated photon system in the interval 8 < M_X < 24 GeV can be described by the triple pomeron (PPP) diagram with an effective pomeron intercept of alpha_P(0) = 1.12 +- 0.04(stat) +- 0.08(syst). The cross section for photon dissociation in the range 3 < M_X < 8 GeV is significantly higher than that expected from the triple pomeron amplitude describing the region 8 < M_X < 24 GeV. Assuming that this discrepancy is due to a pomeron-pomeron-reggeon (PPR) term, its contribution to the diffractive cross section in the interval 3 < M_X < 24 GeV is estimated to be f_PPR = 26 +- 3(stat) +- 12(syst)%.
Fraction of the total photoproduction cross section attributed to the photon dissociation.
The fraction of the total photoproduction cross section due to single dif fractive photon dissociation, in the mass range M_phi**2 < M_DD < X >**2 < 0.05 *W**2.
Identification of the diffractive processes was performed on the basis of the shape of reconstructed hadronic mass spectrum. No rapidity-gap was required.
The reaction gamma p -> J/Psi p has been studied in ep interactions using the ZEUS detector at HERA. The cross section for elastic J/Psi photoproduction has been measured as a function of the photon-proton centre of mass energy W in the range 40 < W < 140 GeV at a median photon virtuality Q^2 of 5*10^{-5} GeV^2. The photoproduction cross section, sigma_{gamma p -> J/Psi p}, is observed to rise steeply with W. A fit to the data presented in this paper to determine the parameter $\delta$ in the form sigma_{gamma p -> J/Psi p} \propto W^{\delta} yields the value \delta = 0.92 \pm 0.14 \pm 0.10. The differential cross section dsigma/d|t| is presented over the range |t| < 1.0 GeV^2 where t is the square of the four-momentum exchanged at the proton vertex. d\sigma/d|t| falls exponentially with a slope parameter of 4.6 \pm 0.4 (+0.4-0.6) GeV^{-2}. The measured decay angular distributions are consistent with s-channel helicity conservation.
Data from the electron channel. Second systematic error is that attributed to the uncertainty in the modelof proton dissociation used for background subtraction.
Data from the muon channel. Second systematic error is that attributed to the uncertainty in the modelof proton dissociation used for background subtraction.
Data from the electron channel. Second systematic error is that attributed to the uncertainty in the modelof proton dissociation used for background subtraction.
An inclusive measurement of the average multiplicity of b b pairs from gluons, g b b , in hadronic Z 0 events collected by the DELPHI experiment at LEP, is presented. A counting technique, based on jet b -tagging in 4-jet events, has been used. Looking for secondary bottom production in events with production of any primary flavour, by requiring two b -tagged jets in well defined topological configurations, gave g b b = (0.21 ± 0.11 ( stat ) ± 0.09 ( syst ))% . This result was checked with a different method designed to select events with four b quarks in the final state. Agreement within the errors was found.
No description provided.
Inclusive photoproduction of $\dspm$ in ep collisions at HERA has been measured with the ZEUS detector for photon-proton centre of mass energies in the range \linebreak \wrang and photon virtuality Q~2 < 4 \g2. The cross section $\sigma_{ep \to \ds X} $ integrated over the kinematic region \ptrangand \etarang is {\xsecs}. Differential cross sections as functions of $p_{\perp}~{\ds}$, $\eta~{\ds}$ and W are given. The data are compared with two next-to-leading order perturbative QCD predictions. For a calculation using a massive charm scheme the predicted cross sections are smaller than the measured ones. A recent calculation using a massless charm scheme is in agreement with the data.
Data from the (Kpi)pi channel.
Data from the (Kpipipi)pi channel.
Data from the (Kpi)pi channel.
No description provided.
No description provided.
No description provided.
Inclusive cross sections for Ξ- hyperon production in high-energy Σ-, π- and neutron induced interactions were measured by the experiment WA89 at CERN. Secondary Σ- and π- beams with average momenta of 345 GeV/c and a neutron beam of 260 GeV/c were produced by primary protons of 450 GeV/c from the CERN SPS. The influence of the target mass on the Ξ- cross section is explored by comparing reactions on copper and carbon nuclei. Both single and double differential cross sections are presented as a function of the transverse momentum and the Feynman variable xF. A strong leading effect for Σ- produced by Σ- is observed.
No description provided.
No description provided.
No description provided.
In 1996 LEP ran at a centre-of-mass energy of 161 GeV, just above the threshold of W-pair production. DELPHI accumulated data corresponding to an integrated luminosity of 9.93 pb −1 , and observed 29 events that are considered as candidates for W-pair production. From these, a cross-section for the doubly resonant e + e − → WW process of 3.67 −0.85 +0.97 ± 0.19 pb has been measured. Within the Standard Model, this cross-section corresponds to a mass of the W-boson of 80.40 ± 0.44 (stat.) ± 0.09 (syst.) ± 0.03 (LEP) GeV/ c 2 . Alternatively, if m W is held fixed at its current value determined by other experiments, the observed cross-section is used to obtain limits on trilinear WWV (V ≡ γ, Z) couplings.
No description provided.
The hadronic fragmentation functions of the various quark flavours and of gluons are measured in a study of the inclusive hadron production from Z 0 decays with the DELPHI detector and are compared with the fragmentation functions measured elsewhere at energies between 14 GeV and 91 GeV. A large scaling violation is observed, which is used to extract the strong coupling constant from a fit using a numerical integration of the second order DGLAP evolution equations. The result is α s ( M Z ) = 0.124 −0.007 +0.006 (exp) ± 0.009(theory) where the first error represents the experimental uncertainty and the second error is due to the factorization and renormalization scale dependence.
SIG(Q=BQ, Q=CQ, Q=UDS) corresponds to BQ, CQ, and U,D,S quarks fragmentation into charged hadron.
alpha_s was evaluated from the scaling violation of the fragmentation func tions. The data from other experiments are used for the fitting procedure.
A sample of about 1.4 million hadronic Z decays, selected among the data recorded by the DELPHI detector at LEP during 1994, was used to measure for the first time the momentum spectra of K + , K 0 , p , Λ and their antiparticles in gluon and quark jets. As observed for inclusive charged particles, the production spectra of identified particles were found to be softer in gluon jets than in quark jets, with a higher total multiplicity.
Y events.
Mercedes events.
In a sample of 3.02 million hadronic Z 0 decays collected by the DELPHI detector, 270 J ψ → ℓ + ℓ − candidates have been selected. A search for fully reconstructed B c ± mesons has yielded one B c ± → J ψ π ± candidate, no B c ± → J ψ ℓ ± ν ℓ candidates, and one B c ± → J ψ , π + π − π ± candidate, consistent with expected background in each channel. The following 90% confidence level upper limits are determined: Br(Z 0 → B c ± X) × Br(B c ± → J ψ π ± ) < (1.05 to 0.84) × 10 −4 and Br(Z 0 → B c ± X) × Br(B c ± → J ψ ℓ ± ν ℓ ) < (5.8 to 5.0) × 10 −5 , where the ranges quoted correspond to the range of predicted B c ± lifetimes from 0.4 to 1.4 ps, and Br(Z 0 → B c ± X) × Br(B c ± → J ψ π + π − π ± ) < 1.75 × 10 −4 , constant over the range of predicted B c ± lifetimes.
B/C life-time equals (0.4 to 1.4) ps.