This paper presents a search for pair production of higgsinos, the supersymmetric partners of the Higgs bosons, in scenarios with gauge-mediated supersymmetry breaking. Each higgsino is assumed to decay into a Higgs boson and a nearly massless gravitino. The search targets events where each Higgs boson decays into $b\bar{b}$, leading to a reconstructed final state with at least three energetic $b$-jets and This paper presents a search for pair production of higgsinos, the supersymmetric partners of the Higgs bosons, in scenarios with gauge-mediated supersymmetry breaking. Each higgsino is assumed to decay into a Higgs boson and a nearly massless gravitino. The search targets events where each Higgs boson decays into $b\bar{b}$, leading to a reconstructed final state with at least three energetic $b$-jets and missing transverse momentum. Two complementary analysis channels are used, with each channel specifically targeting either low or high values of the higgsino mass. The low-mass (high-mass) channel exploits 126 (139) fb$^{-1}$ of $\sqrt{s}=13$ TeV data collected by the ATLAS detector during Run 2 of the Large Hadron Collider. No significant excess above the Standard Model prediction is found. At 95% confidence level, masses between 130 GeV and 940 GeV are excluded for higgsinos decaying exclusively into Higgs bosons and gravitinos. Exclusion limits as a function of the higgsino decay branching ratio to a Higgs boson are also reported.
Post-fit SR yields of the high-mass channel. The upper panel shows the observed number of events, as well the post-fit background predictions in each region. The bottom panel shows the ratio of the observed data and the total background prediction. The shaded areas correspond to the total statistical and systematic uncertainties obtained after the fit and described in Section 6.
Post-fit SR yields of the high-mass channel. The upper panel shows the observed number of events, as well the post-fit background predictions in each region. The bottom panel shows the ratio of the observed data and the total background prediction. The shaded areas correspond to the total statistical and systematic uncertainties obtained after the fit and described in Section 6.
Post-fit SR yields of the high-mass channel. The upper panel shows the observed number of events, as well the post-fit background predictions in each region. The bottom panel shows the ratio of the observed data and the total background prediction. The shaded areas correspond to the total statistical and systematic uncertainties obtained after the fit and described in Section 6.
Higgsinos with masses near the electroweak scale can solve the hierarchy problem and provide a dark matter candidate, while detecting them at the LHC remains challenging if their mass splitting is $\mathcal{O}(1 \text{GeV})$. This Letter presents a novel search for nearly mass-degenerate Higgsinos in events with an energetic jet, missing transverse momentum, and a low-momentum track with a significant transverse impact parameter using 140 fb$^{-1}$ of proton-proton collision data at $\sqrt{s}=13$ TeV collected by the ATLAS experiment. For the first time since LEP, a range of mass splittings between the lightest charged and neutral Higgsinos from $0.3$ GeV to $0.9$ GeV is excluded at 95$\%$ confidence level, with a maximum reach of approximately $170$ GeV in the Higgsino mass.
Number of expected and observed data events in the SR (top), and the model-independent upper limits obtained from their consistency (bottom). The symbol $\tau_{\ell}$ ($\tau_{h}$) refers to fully-leptonic (hadron-involved) tau decays. The Others category includes contributions from minor background processes including $t\bar{t}$, single-top and diboson. The individual uncertainties can be correlated and do not necessarily sum up in quadrature to the total uncertainty. The bottom section shows the observed 95% CL upper limits on the visible cross-section ($\langle\epsilon\sigma\rangle_{\mathrm{obs}}^{95}$), on the number of generic signal events ($S_{\mathrm{obs}}^{95}$) as well as the expected limit ($S_{\mathrm{exp}}^{95}$) given the expected number (and $\pm 1\sigma$ deviations from the expectation) of background events.
Number of expected and observed data events in the SR (top), and the model-independent upper limits obtained from their consistency (bottom). The symbol $\tau_{\ell}$ ($\tau_{h}$) refers to fully-leptonic (hadron-involved) tau decays. The Others category includes contributions from minor background processes including $t\bar{t}$, single-top and diboson. The individual uncertainties can be correlated and do not necessarily sum up in quadrature to the total uncertainty. The bottom section shows the observed 95% CL upper limits on the visible cross-section ($\langle\epsilon\sigma\rangle_{\mathrm{obs}}^{95}$), on the number of generic signal events ($S_{\mathrm{obs}}^{95}$) as well as the expected limit ($S_{\mathrm{exp}}^{95}$) given the expected number (and $\pm 1\sigma$ deviations from the expectation) of background events.
Expected (dashed black line) and observed (solid red line) 95% CL exclusion limits on the higgsino simplified model being considered. These are shown with $\pm 1\sigma_{\mathrm{exp}}$ (yellow band) from experimental systematic and statistical uncertainties, and with $\pm 1\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (red dotted lines) from signal cross-section uncertainties, respectively. The limits set by the latest ATLAS searches using the soft lepton and disappearing track signatures are illustrated by the blue and green regions, respectively, while the limit imposed by the LEP experiments is shown in gray. The dot-dashed gray line indicates the predicted mass-splitting for the pure higgsino scenario.
A new data set for the helicity-dependent differential cross section of the single-meson photoproduction reaction $\gamma p \to p \pi^{0}$ was obtained for the photon energy interval 150-400 MeV. The experiment was performed at the A2 tagged photon facility of the Mainz Microtron MAMI using a circularly polarized photon beam and a longitudinally polarized proton target. The reaction products were detected with the large acceptance Crystal Ball/TAPS calorimeter covering 97% of the full solid angle. These new results, obtained with a fine energy and polar angle binning, greatly increase both the existing quantity and quality of the data available for this observable. A moment analysis, based on a finite expansion in Legendre polynomials, was applied to these data by using a bootstrap-based fitting method to correctly account for their systematic uncertainties. From the resulting decomposition of the differential cross sections, the $E2/M1$ ratio for the $N\to \Delta(1232)$ transition was determined to be $[-2.38 \pm 0.16{\hbox{ (stat.+sys.)}} \pm 0.10 {\hbox{ (model)}}] \%$. Combining this value with previous results also allowed us to evaluate the most precise available estimate of the $E2/M1$ ratio to be used for all further reference and model comparisons.
Total heliicity-dependent cross section $\Delta \sigma$ as a function of photon beam energy.
Exitation as function as function of photon beam energyat cms $\Theta_\pi^0= 5 deg$
Exitation as function as function of photon beam energy at cms $\Theta_\pi^0= 15 deg$
This Letter presents the first study of Higgs boson production in association with a vector boson (V = W or Z) in the fully hadronic $qqbb$ final state using data recorded by the ATLAS detector at the LHC in proton-proton collisions at $\sqrt{s}=13$ TeV and corresponding to an integrated luminosity of 137 fb$^{-1}$. The vector bosons and Higgs bosons are each reconstructed as large-radius jets and tagged using jet substructure techniques. Dedicated tagging algorithms exploiting $b$-tagging properties are used to identify jets consistent with Higgs bosons decaying into $b\bar{b}$. Dominant backgrounds from multijet production are determined directly from the data, and a likelihood fit to the jet mass distribution of Higgs boson candidates is used to extract the number of signal events. The VH production cross section is measured inclusively and differentially in several ranges of Higgs boson transverse momentum: 250-450, 450-650, and greater than 650 GeV. The inclusive signal yield relative to the standard model expectation is observed to be $\mu = 1.4 ^{+1.0}_{-0.9}$ and the corresponding cross section is $3.1 \pm 1.3\, (stat.)\: ^{+1.8}_{-1.4}\, (syst.$) pb.
Higgs candidate jet mass distributions in the signal region for $p_{T,J}^H$ in [250,450) GeV obtained after the inclusive fit with a single Z+jets normalization factor and a single signal strength.
Higgs candidate jet mass distributions in the signal region for $p_{T,J}^H$ in [450,650) GeV obtained after the inclusive fit with a single Z+jets normalization factor and a single signal strength.
Higgs candidate jet mass distributions in the signal region for $p_{T,J}^H \geq 650$ GeV obtained after the inclusive fit with a single Z+jets normalization factor and a single signal strength.
Measurements of the substructure of top-quark jets are presented, using 140 fb$^{-1}$ of 13 TeV $pp$ collision data recorded with the ATLAS detector at the LHC. Top-quark jets reconstructed with the anti-$k_{t}$ algorithm with a radius parameter $R=1.0$ are selected in top-quark pair ($t\bar{t}$) events where one top quark decays semileptonically and the other hadronically, or where both top quarks decay hadronically. The top-quark jets are required to have transverse momentum $p_\mathrm{T} > 350$ GeV, yielding large samples of data events with jet $p_\mathrm{T}$ values between 350 and 600 GeV. One- and two-dimensional differential cross-sections for eight substructure variables, defined using only the charged components of the jets, are measured in a particle-level phase space by correcting for the smearing and acceptance effects induced by the detector. The differential cross-sections are compared with the predictions of several Monte Carlo simulations in which top-quark pair-production quantum chromodynamic matrix-element calculations at next-to-leading-order precision in the strong coupling constant $\alpha_\mathrm{S}$ are passed to leading-order parton shower and hadronization generators. The Monte Carlo predictions for measures of the broadness, and also the two-body structure, of the top-quark jets are found to be in good agreement with the measurements, while variables sensitive to the three-body structure of the top-quark jets exhibit some tension with the measured distributions.
Absolute differential cross-section as a function of RC large-R jet $\tau_{32}$ at particle level in the $\ell$+jets channel. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Covariance matrix of the Absolute differential cross-section as function of RC large-R jet $\tau_{32}$ at particle level in the $\ell$+jets channel, accounting for the statistical uncertainty.
Relative differential cross-section as a function of RC large-R jet $\tau_{32}$ at particle level in the $\ell$+jets channel. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
A combination of searches for a new resonance decaying into a Higgs boson pair is presented, using up to 139 fb$^{-1}$ of $pp$ collision data at $\sqrt{s}=13$ TeV recorded with the ATLAS detector at the LHC. The combination includes searches performed in three decay channels: $b\bar{b}b\bar{b}$, $b\bar{b}\tau^+\tau^-$ and $b\bar{b}\gamma\gamma$. No excess above the expected Standard Model background is observed and upper limits are set at the 95% confidence level on the production cross section of Higgs boson pairs originating from the decay of a narrow scalar resonance with mass in the range 251 GeV-5 TeV. The observed (expected) limits are in the range 0.96-600 fb (1.2-390 fb). The limits are interpreted in the Type-I Two-Higgs-Doublet Model and the Minimimal Supersymmetric Standard Model, and constrain parameter space not previously excluded by other searches.
Local p-value as a function of the resonance mass $m_{X}$. Some table entries are empty because resonance masses from 251 GeV to 5 TeV are considered, whereas some channels only use masses in a certain, more restricted, range.
Observed significance as a function of the resonance $m_{X}$. Some table entries are empty because resonance masses from 251 GeV to 5 TeV are considered, whereas some channels only use masses in a certain, more restricted, range.
Observed and expected upper limits at the 95% CL on the resonant Higgs boson pair production cross section as a function of the resonance mass $m_{X}$. Some table entries are empty because resonance masses from 251 GeV to 5 TeV are considered, whereas some channels only use masses in a certain, more restricted, range.
This paper presents a study of $Z \to ll\gamma~$decays with the ATLAS detector at the Large Hadron Collider. The analysis uses a proton-proton data sample corresponding to an integrated luminosity of 20.2 fb$^{-1}$ collected at a centre-of-mass energy $\sqrt{s}$ = 8 TeV. Integrated fiducial cross-sections together with normalised differential fiducial cross-sections, sensitive to the kinematics of final-state QED radiation, are obtained. The results are found to be in agreement with state-of-the-art predictions for final-state QED radiation. First measurements of $Z \to ll\gamma\gamma$ decays are also reported.
Unfolded $M(l^{+}\gamma)$ distribution for $Z \to ee\gamma$ process with dressed leptons and bkg subtraction. $M_{ll}>20$ GeV. Nexp.un f. = 63717.4 $\pm$ 252.4, NPowHeg truth =338714.
Unfolded $M(l^{-}\gamma)$ distribution for $Z \to ee\gamma$ process with dressed leptons and bkg subtraction. $M_{ll}>20$ GeV. Nexp.un f. = 63855.8 $\pm$ 252.7 , NPowHeg truth =338708.
Unfolded $M(l^{+}\gamma)$ distribution for $Z \to \mu\mu\gamma$ process with dressed leptons and bkg subtraction. $M_{ll}>20$ GeV. Nexp.un f. = 64809.8 $\pm$ 254.6, NPowHeg truth =634285.
Measurements of the differential production cross-sections of prompt and non-prompt $J/\psi$ and $\psi(2$S$)$ mesons with transverse momenta between 8 and 360 GeV and rapidity in the range $|y|<2$ are reported. Furthermore, measurements of the non-prompt fractions of $J/\psi$ and $\psi(2$S$)$, and the prompt and non-prompt $\psi(2$S$)$-to-$J/\psi$ production ratios, are presented. The analysis is performed using 140 fb$^{-1}$ of $\sqrt{s}=13$ TeV $pp$ collision data recorded by the ATLAS detector at the LHC during the years 2015-2018.
Summary of results for cross-section of prompt $J/\psi$ decaying to a muon pair for 13 TeV data in fb/GeV. Uncertainties are statistical and systematic, respectively.
Summary of results for cross-section of non-prompt $J/\psi$ decaying to a muon pair for 13 TeV data in fb/GeV. Uncertainties are statistical and systematic, respectively.
Summary of results for cross-section of prompt $\psi(2S)$ decaying to a muon pair for 13 TeV data in fb/GeV. Uncertainties are statistical and systematic, respectively.
This paper presents for the first time a precise measurement of the production properties of the Z boson in the full phase space of the decay leptons. This is in contrast to the many previous precise unfolded measurements performed in the fiducial phase space of the decay leptons. The measurement is obtained from proton-proton collision data collected by the ATLAS experiment in 2012 at $\sqrt s$ = 8 TeV at the LHC and corresponding to an integrated luminosity of 20.2 fb$^{-1}$. The results, based on a total of 15.3 million Z-boson decays to electron and muon pairs, extend and improve a previous measurement of the full set of angular coefficients describing Z-boson decay. The double-differential cross-section distributions in Z-boson transverse momentum p$_T$ and rapidity y are measured in the pole region, defined as 80 $<$ m $<$ 100 GeV, over the range $|y| <$ 3.6. The total uncertainty of the normalised cross-section measurements in the peak region of the p$_T$ distribution is dominated by statistical uncertainties over the full range and increases as a function of rapidity from 0.5-1.0% for $|y| <$ 2.0 to 2-7% at higher rapidities. The results for the rapidity-dependent transverse momentum distributions are compared to state-of-the-art QCD predictions, which combine in the best cases approximate N$^4$LL resummation with N$^3$LO fixed-order perturbative calculations. The differential rapidity distributions integrated over p$_T$ are even more precise, with accuracies from 0.2-0.3% for $|y| <$ 2.0 to 0.4-0.9% at higher rapidities, and are compared to fixed-order QCD predictions using the most recent parton distribution functions. The agreement between data and predictions is quite good in most cases.
Measured $p_T$ cross sections in full-lepton phase space for |y| < 0.4.
Measured $p_T$ cross sections in full-lepton phase space for 0.4 < |y| < 0.8.
Measured $p_T$ cross sections in full-lepton phase space for 0.8 < |y| < 1.2.
The measurement of hard scatterings in proton-nucleus collisions has resulted in a greater understanding of both the proton and nuclear structure. ATLAS measured the centrality dependence of the dijet yield using 165 nb$^{-1}$ of $p$+Pb data collected at $\sqrt{s_{_\text{NN}}}$ = 8.16 TeV in 2016. The event centrality, which reflects the $p$+Pb impact parameter, is characterized by the total transverse energy registered in the Pb-going side of the forward calorimeter. The central-to-peripheral ratio of the scaled dijet yields, $R_\mathrm{CP}$, is evaluated, and the results are presented as a function of variables that reflect the kinematics of the initial hard parton scattering process. The $R_\mathrm{CP}$ shows a scaling with the Bjorken-$x$ of the parton originating from the proton, $x_p$, while no such trend is observed as a function of $x_\mathrm{Pb}$. This analysis provides unique input to understanding the role of small proton spatial configurations in $p$+Pb collisions by covering parton momentum fractions from the valence region down to $x_p \sim 10^{-3}$ and $x_\mathrm{Pb}\sim 4\cdot10^{-4}$.
$R_\text{CP}$ plotted as a function of approximated $x_p$ for $-3.0 < y_b < -2.0$ and $0.0 < y^* < 1.0$, constructed using $\langle y_{\text{b}} \rangle$ and $\langle y^{*} \rangle$. The proton-going direction is defined by $y_{\text{b}} > 0$.
$R_\text{CP}$ plotted as a function of approximated $x_p$ for $-2.0 < y_b < -1.0$ and $0.0 < y^* < 1.0$, constructed using $\langle y_{\text{b}} \rangle$ and $\langle y^{*} \rangle$. The proton-going direction is defined by $y_{\text{b}} > 0$.
$R_\text{CP}$ plotted as a function of approximated $x_p$ for $-2.0 < y_b < -1.0$ and $1.0 < y^* < 2.0$, constructed using $\langle y_{\text{b}} \rangle$ and $\langle y^{*} \rangle$. The proton-going direction is defined by $y_{\text{b}} > 0$.