The reaction $\gamma p \rightarrow \omega p$ $(\omega \rightarrow \pi~+\pi~-\pi~0$ and $\pi~0\rightarrow\gamma\gamma)$ has been studied in $ep$ interactions using the \mbox{ZEUS} detector at photon-proton centre-of-mass energies between $70$ and $90\uni{GeV}$ and $|t| < 0.6\uni{GeV}~2$, where $t$ is the squared four momentum transferred at the proton vertex. The elastic \ome photoproduction cross section has been measured to be $\sigma_{\gamma p\rightarrow \omega p} = 1.21\pm 0.12\pm 0.23 \mu\mbox{b}$. The differential cross section $d\sigma_{\gamma p\rightarrow \omega p} /d|t|$ has an exponential shape $\mbox{e}~{-b |t|}$ with a slope $b = 10.0\pm 1.2\pm 1.3\uni{GeV}~{-2}$. The angular distributions of the decay pions are consistent with {\it s}-channel helicity conservation. When compared to low energy data, the features of $\omega$ photoproduction as measured at HERA energies are in agreement with those of a soft diffractive process. Previous measurements of the $\rho~0$ and $\phi$ photoproduction cross sections at HERA show a similar behaviour.
Total Elastic Cross Section.
No description provided.
SLOPE OF DSIG/DT distribution.
The differential cross section $d\sigma/dt$ for elastic $\rho~0$ photoproduction, $\gamma p \rightarrow \rho~0 p (\rho~0 \rightarrow \pi~+ \pi~-)$, has been measured in $ep$ interactions at HERA. The squared four-momentum exchanged at the proton vertex, $t$, has been determined directly by measuring the momentum of the scattered proton using the ZEUS Leading Proton Spectrometer (LPS), a large scale system of silicon micro-strip detectors operating close to the HERA proton beam. The LPS allows the measurement of the momentum of high energy protons scattered at small angles with accuracies of 0.4% for the longitudinal momentum and 5 MeV for the transverse momentum. Photoproduction of $\rho~0$ mesons has been investigated in the interval $0.073< |t| <0.40 GeV~2$, for photon virtualities $Q~2<1 GeV~2$ and photon-proton centre-of-mass energies $W$ between 50 and 100 GeV. In the measured range, the $t$ distribution exhibits an exponential shape with a slope parameter $b = 9.8 \pm 0.8 (stat.) \pm 1.1 (syst.) GeV~{-2}$. The use of the LPS eliminates the contamination from events with diffractive dissociation of the proton into low mass states.
SLOPE OF THE DSIG/DT distribution.
Total cross section integrated over t region.
Additional cross section, SIG, not given in the paper.
The energy loss spectrum of 150 GeV muons has been measured with a prototype of the ATLAS hadron calorimeter in the H8 beam of the CERN SPS. The differential probability dP/dv per radiation length of a fractional energy loss v = ΔEμ/Eμ has been measured in the range v = 0.01 ÷ 0.95; it is compared with the theoretical predictions for energy losses due to bremsstrahlung and production of electron—positron pairs or of energetic knock-on electrons. The integrated probability \(\int_{0.01}^{0.95}({\rm d}P/{\rm d}v){\rm d}v\) is (1.610 ± 0.015stat ± 0.105syst) · 10−3 in agreement with the theoretical predictions 1.556 · 10−3 and 1.619 · 10−3. Agreement with theory is also found in two intervals of v where production of electron-positron pairs and knock-on electrons dominates. In the region of bremsstrahlung dominance (v = 0.12 ÷ 0.95) the measured integrated probability (1.160 ± 0.040stat ± 0.075syst) · 10−4 is in agreement with the theoretical value of 1.185 · 10−4, obtained using the Petrukhin and Shestakov description of the bremsstrahlung process. The same result is about 3.6 standard deviations (defined as the quadratic sum of statistical and systematic errors) lower than the theoretical prediction of 1.472 · 10−4, obtained using Tsai’s description of bremsstrahlung.
Measured differential probability values DPROB/DNU for fractional energy loss. Only statistical errors are given.
Integrated probability (DELTA(PROB)) per radiation length.
Event shape and charged particle inclusive distributions are measured using 750000 decays of the Z to hadrons from the DELPHI detector at LEP. These precise data allow a decisive confrontation with models of the hadronization process. Improved tunings of the JETSET, ARIADNE and HERWIG parton shower models and the JETSET matrix element model are obtained by fitting the models to these DELPHI data as well as to identified particle distributions from all LEP experiments. The description of the data distributions by the models is critically reviewed with special importance attributed to identified particles.
Transverse momentum PTIN w.r.t. the Thrust axis. For the first table Thrust axis definition is from seen charged particles corrected to final state particles. For the second table Thrust axis definition is from seen charged plus neutral particles corrected to final state charged plus neutral particles.
Transverse momentum PTOUT w.r.t. the Thrust axis. For the first table Thrust axis definition is from seen charged particles corrected to final state particles. For the second table Thrust axis definition is from seen charged plus neutral particles corrected to final state charged plus neutral particles.
Transverse momentum PTIN w.r.t. the Sphericity axis. For the first table Sphericity axis definition is from seen charged particles corrected to final state particles. For the second table Sphericity axis definition is from seen charged plus neutral particles corrected to final state charged plus neutral particles.
We present measurements of the structure function \Ft\ in $e~+p$ scattering at HERA in the range $3.5\;\Gevsq < \qsd < 5000\;\Gevsq$. A new reconstruction method has allowed a significant improvement in the resolution of the kinematic variables and an extension of the kinematic region covered by the experiment. At $ \qsd < 35 \;\Gevsq$ the range in $x$ now spans $6.3\cdot 10~{-5} < x < 0.08$ providing overlap with measurements from fixed target experiments. At values of $Q~2$ above 1000 GeV$~2$ the $x$ range extends to 0.5. Systematic errors below 5\perc\ have been achieved for most of the kinematic region. The structure function rises as \x\ decreases; the rise becomes more pronounced as \qsd\ increases. The behaviour of the structure function data is well described by next-to-leading order perturbative QCD as implemented in the DGLAP evolution equations.
No description provided.
No description provided.
No description provided.
Deep inelastic charged--current reactions have been studied in $e~+p$ and $e~-p$ collisions at a center of mass energy of about $300\,\gev$ in the kinematic region $Q~2\greater200\,\gev~2$ and $x\greater0.006$ using the ZEUS detector at HERA. The integrated cross sections for $Q~2\greater200\,\gev~2$ are found to be $\sigep=30.3\,{}~{+5.5}_{\mns4.2}\,{}~{+1.6}_{\mns2.6}\,{\rm pb}$ and $\sigem=54.7\,{}~{+15.9}_{\mns\chax 9.8}\,{}~{+2.8}_{\mns3.4}\,{\rm pb}$. Differential cross sections have been measured as functions of the variables $x$, $y$ and $Q~2$. From the measured differential cross sections $d\sigma/dQ~2$, the $W$ boson mass is determined to be $M_W=79\,{}~{+8} _{-7}{}~{+4}_{-4}\,\gev$. Measured jet rates and transverse energy profiles agree with model predictions. A search for charged--current interactions with a large rapidity gap yielded one candidate event, corresponding to a cross section of $\sigep(Q~2\greater200\,\gev~2;\eta_{\rm max}<2.5)=0.8\,{}_{-0.7}~ {+1.8}\,\pm0.1\,{\rm pb}$.
No description provided.
No description provided.
No description provided.
The inclusive production of the neutral vector mesons K*0(892) and ϕ(1020), and of the tensor meson ${⤪ K}_{2}^{⇒t 0}(1430)$, in hadronic decays of the Z has been measured by the DELPHI detector at LEP. The average production rates per hadronic Z decay have been determined to be 0.77 ± 0.08 K*0(892), 0.104 ± 0.008 ϕ(1020) and ${⤪ K}_{2}^{⇒t 0}(1430)$. The ratio of the tensor-to-vector meson production yields, $«ngle {⤪ K}_{2}^{⇒t 0}(1430)»ngle$, is smaller than the 〈f2(1270)〉/〈ρ0(770)〉 and $«ngle f_{2}^{⌕ime}(1525)»ngle$ ratios measured by DELPHI. The production rates and differential cross sections are compared with the predictions of JETSET 7.4 tuned to the DELPHI data and of HERWIG 5.8. The K*0(892) and ϕ(1020) data are compatible with model predictions, but a large disagreement is observed for the ${⤪ K}_{2}^{⇒t 0}(1430)$.
SIG in (1/SIG) is the total hadronic cross section. The statistical and systematic errors are combined quadratically.
SIG in (1/SIG) is the total hadronic cross section. The erros are statistical ones. The cross sections SIG(C=A), SIG(C=B), and SIG(C=C) obtained with A) both kaons identified, B) at least one kaon identified, and C) without requiring kaon identification.
SIG in (1/SIG) is the total hadronic cross section. The statistical and systematic erros are combined quadratically. For 0.05<X<0.2 the resulting cross s ection was taken by averaging the results with both identified kaons and with at least one identified kaon, for 0.2<X<1 the results obtained without particle id entification.
The highest-energy measurement of ΔσL(pp) and the first ever measurement of ΔσL(p¯p), the differences between proton-proton and antiproton-proton total cross sections for pure longitudinal spin states, are described. Data were taken using 200-GeV/c polarized beams incident on a polarized-proton target. The results are measured to be ΔσL(pp)=−42±48(stat)±53(syst) μb and ΔσL(p¯p)=−256±124(stat)±109(syst) μb. Many tests of systematic effects were investigated and are described, and a comparison to theoretical predictions is also given. Measurements of parity nonconservation at 200 GeV/c in proton scattering and the first ever of antiproton scattering have also been derived from these data. The values are consistent with zero at the 10−5 level.
No description provided.
No description provided.
The analyzing power AN in inclusive π− and π+ production has been measured with a 200 GeV/c transversely polarized antiproton beam over a wide xF range (0.2≤xF≤0.9) and at moderate pT (0.2≤pT≤1.5GeV/c). The asymmetry AN increases with increasing xF from zero to large positive values for π−'s, and decreases from zero to large negative values for π+'s. A threshold for the onset of the asymmetry is observed about pT∼0.5GeV/c, below which AN is essentially zero and above which AN increases (decreases) with pT for π−'s ( π+'s) in the covered pT range.
No description provided.
No description provided.
No description provided.
Jet photoproduction, where the two highest transverse energy (ET<sup loc="post">jet</sup>) jets have ET<sup loc="post">jet</sup> above 6 GeV and a jet-jet invariant mass above 23 GeV, has been studied with the ZEUS detector at the HERA ep collider. Resolved and direct photoproduction samples have been separated. The cross section as a function of the angle between the jet-jet axis and the beam direction in the dijet rest frame has been measured for the two samples. The measured angular distributions differ markedly from each other. They agree with the predictions of QCD calculations, where the different angular distributions reflect the different spins of the quark and gluon exchanged in the hard subprocess.
Direct processes, XOBS >= 0.75.
Resolved processes, XOBS <= 0.75.