Measurements of jet substructure are key to probing the energy frontier at colliders, and many of them use track-based observables which take advantage of the angular precision of tracking detectors. Theoretical calculations of track-based observables require `track functions', which characterize the transverse momentum fraction $r_q$ carried by charged hadrons from a fragmenting quark or gluon. This letter presents a direct measurement of $r_q$ distributions in dijet events from the 140 fb$^{-1}$ of proton--proton collisions at $\sqrt{s}=13$ TeV recorded with the ATLAS detector. The data are corrected for detector effects using machine-learning methods. The scale evolution of the moments of the $r_q$ distribution is sensitive to non-linear renormalization group evolution equations of QCD, and is compared with analytic predictions. When incorporated into future theoretical calculations, these results will enable a precision program of theory-data comparison for track-based jet substructure observables.
$r_{q}$, Gluon jets, $240\text{GeV} \leq p_T < 300~\text{GeV}$, Gluon $\eta$, Fig 5
$r_{q}$, Gluon jets, $300~\text{GeV} \leq p_T < 400~\text{GeV}$, Gluon $\eta$, Fig 5
$r_{q}$, Gluon jets, $400~\text{GeV} \leq p_T < 500~\text{GeV}$, Gluon $\eta$, Fig 5
The mass of the top quark is measured using top-antitop-quark pair events with high transverse momentum top quarks. The dataset, collected with the ATLAS detector in proton--proton collisions at $\sqrt{s}=13$ TeV delivered by the Large Hadron Collider, corresponds to an integrated luminosity of 140 fb$^{-1}$. The analysis targets events in the lepton-plus-jets decay channel, with an electron or muon from a semi-leptonically decaying top quark and a hadronically decaying top quark that is sufficiently energetic to be reconstructed as a single large-radius jet. The mean of the invariant mass of the reconstructed large-radius jet provides the sensitivity to the top quark mass and is simultaneously fitted with two additional observables to reduce the impact of the systematic uncertainties. The top quark mass is measured to be $m_t = 172.95 \pm 0.53$ GeV, which is the most precise ATLAS measurement from a single channel.
$Z$ boson events at the Large Hadron Collider can be selected with high purity and are sensitive to a diverse range of QCD phenomena. As a result, these events are often used to probe the nature of the strong force, improve Monte Carlo event generators, and search for deviations from Standard Model predictions. All previous measurements of $Z$ boson production characterize the event properties using a small number of observables and present the results as differential cross sections in predetermined bins. In this analysis, a machine learning method called OmniFold is used to produce a simultaneous measurement of twenty-four $Z$+jets observables using $139$ fb$^{-1}$ of proton-proton collisions at $\sqrt{s}=13$ TeV collected with the ATLAS detector. Unlike any previous fiducial differential cross-section measurement, this result is presented unbinned as a dataset of particle-level events, allowing for flexible re-use in a variety of contexts and for new observables to be constructed from the twenty-four measured observables.
Differential cross-section in bins of dimuon $p_\text{T}$. The actual measurement is unbinned and available with examples at <a href="https://gitlab.cern.ch/atlas-physics/public/sm-z-jets-omnifold-2024">gitlab.cern.ch/atlas-physics/public/sm-z-jets-omnifold-2024</a>
Differential cross-section in bins of dimuon rapidity. The actual measurement is unbinned and available with examples at <a href="https://gitlab.cern.ch/atlas-physics/public/sm-z-jets-omnifold-2024">gitlab.cern.ch/atlas-physics/public/sm-z-jets-omnifold-2024</a>
Differential cross-section in bins of leading muon $p_\mathrm{T]$. The actual measurement is unbinned and available with examples at <a href="https://gitlab.cern.ch/atlas-physics/public/sm-z-jets-omnifold-2024">gitlab.cern.ch/atlas-physics/public/sm-z-jets-omnifold-2024</a>
The analyzing power,$A_{oono}$, and the polarization transfer observables$K_{onno}$,$K_{os''so}$
Position 'A' (see text for explanation).
Position 'A' (see text for explanation).
Position 'A' (see text for explanation).
We employ data taken by the JADE and OPAL experiments for an integrated QCD study in hadronic e+e- annihilations at c.m.s. energies ranging from 35 GeV through 189 GeV. The study is based on jet-multiplicity related observables. The observables are obtained to high jet resolution scales with the JADE, Durham, Cambridge and cone jet finders, and compared with the predictions of various QCD and Monte Carlo models. The strong coupling strength, alpha_s, is determined at each energy by fits of O(alpha_s^2) calculations, as well as matched O(alpha_s^2) and NLLA predictions, to the data. Matching schemes are compared, and the dependence of the results on the choice of the renormalization scale is investigated. The combination of the results using matched predictions gives alpha_s(MZ)=0.1187+{0.0034}-{0.0019}. The strong coupling is also obtained, at lower precision, from O(alpha_s^2) fits of the c.m.s. energy evolution of some of the observables. A qualitative comparison is made between the data and a recent MLLA prediction for mean jet multiplicities.
Overall result for ALPHAS at the Z0 mass from the combination of the ln R-matching results from the observables evolved using a three-loop running expression. The errors shown are total errors and contain all the statistics and systematics.
Weighted mean for ALPHAS at the Z0 mass determined from the energy evolutions of the mean values of the 2-jet cross sections obtained with the JADE and DURHAMschemes and the 3-jet fraction for the JADE, DURHAM and CAMBRIDGE schemes evaluted at a fixed YCUT.. The errors shown are total errors and contain all the statistics and systematics.
Combined results for ALPHA_S from fits of matched predicitions. The first systematic (DSYS) error is the experimental systematic, the second DSYS error isthe hadronization systematic and the third is the QCD scale error. The values of ALPHAS evolved to the Z0 mass using a three-loop evolution are also given.
We have measured the absolute cross section σ(θ) and complete sets of spin observables A00ij in He3(p,p) elastic scattering at energies of 200 and 500 MeV. The observables depend on linear combinations of six complex scattering amplitudes for the p−3He system and provide a severe test of current reaction models. The in-scattering plane observables (A00mm, A00ll, A00lm, and A00ml) are all in quantitative disagreement with fully microscopic nonrelativistic optical model calculations and nonrelativistic distorted wave Born approximation calculations.
A00N0 is analyzing power.
A00N0 is analyzing power.
A00NN is spin correlation parameter.
This Letter presents a differential cross-section measurement of Lund subjet multiplicities, suitable for testing current and future parton shower Monte Carlo algorithms. This measurement is made in dijet events in 140 fb$^{-1}$ of $\sqrt{s}=13$ TeV proton-proton collision data collected with the ATLAS detector at CERN's Large Hadron Collider. The data are unfolded to account for acceptance and detector-related effects, and are then compared with several Monte Carlo models and to recent resummed analytical calculations. The experimental precision achieved in the measurement allows tests of higher-order effects in QCD predictions. Most predictions fail to accurately describe the measured data, particularly at large values of jet transverse momentum accessible at the Large Hadron Collider, indicating the measurement's utility as an input to future parton shower developments and other studies probing fundamental properties of QCD and the production of hadronic final states up to the TeV-scale.
$N_{Lund}, k_t \geq 0.5~\text{GeV}$, All $p_T$ bins, Central $\eta$
$N_{Lund}, k_t \geq 0.5~\text{GeV}$, All $p_T$ bins, Forward $\eta$
$N_{Lund}, k_t \geq 0.5~\text{GeV}$, $300~\text{GeV} \leq p_T < 500~\text{GeV}$, Inclusive $\eta$
Inclusive cross-sections for top-quark pair production in association with charm quarks are measured with proton-proton collision data at a center-of-mass energy of 13 TeV corresponding to an integrated luminosity of 140 fb$^{-1}$, collected with the ATLAS experiment at the LHC between 2015 and 2018. The measurements are performed by requiring one or two charged leptons (electrons and muons), two $b$-tagged jets, and at least one additional jet in the final state. A custom flavor-tagging algorithm is employed for the simultaneous identification of $b$-jets and $c$-jets. In a fiducial phase space that replicates the acceptance of the ATLAS detector, the cross-sections for $t\bar{t}+ {\geq} 2c$ and $t\bar{t}+1c$ production are measured to be $1.28^{+0.27}_{-0.24}\;\text{pb}$ and $6.4^{+1.0}_{-0.9}\;\text{pb}$, respectively. The measurements are primarily limited by uncertainties in the modeling of inclusive $t\bar{t}$ and $t\bar{t}+b\bar{b}$ production, in the calibration of the flavor-tagging algorithm, and by data statistics. Cross-section predictions from various $t\bar{t}$ simulations are largely consistent with the measured cross-section values, though all underpredict the observed values by 0.5 to 2.0 standard deviations. In a phase-space volume without requirements on the $t\bar{t}$ decay products and the jet multiplicity, the cross-section ratios of $t\bar{t}+ {\geq} 2c$ and $t\bar{t}+1c$ to total $t\bar{t}+\text{jets}$ production are determined to be $(1.23 \pm 0.25) \%$ and $(8.8 \pm 1.3) \%$.
Measured cross-section values in the fiducial phase space and inclusive volume for the various $t\bar{t}+jets$ categories.
Post-fit agreement between data and MC prediction for $SR_{\mathrm{loose}}^{1\ell5j}$ signal region, which uses the invariant mass of the two geometrically closest c-tagged jets, $m_{\mathit{cc}}^{\mathrm{min}\Delta R}$, as an observable. The hatched uncertainty bands include all uncertainties and their correlations. The last bins contain overflow events. "Other Top" includes single-top-quark production and associated production of $t\bar{t}$ and single top quarks with bosons. "Non-Top" includes W+jets, Z+jets, and diboson processes.
Post-fit agreement between data and MC prediction for the $SR_{\mathrm{tight}}^{1\ell5j}$ signal region, which uses the invariant mass of the two geometrically closest jets tagged with c@11%, $m_{\mathit{cc}}^{\mathrm{min}\Delta R}$, as an observable. The hatched uncertainty bands include all uncertainties and their correlations. The last bins contain overflow events. "Other Top" includes single-top-quark production and associated production of $t\bar{t}$ and single top quarks with bosons. "Non-Top" includes W+jets, Z+jets, and diboson processes.
A measurement of off-shell Higgs boson production in the $H^*\to ZZ\to 4\ell$ decay channel is presented. The measurement uses 140 fb$^{-1}$ of proton-proton collisions at $\sqrt{s}=13$ TeV collected by the ATLAS detector at the Large Hadron Collider and supersedes the previous result in this decay channel using the same dataset. The data analysis is performed using a neural simulation-based inference method, which builds per-event likelihood ratios using neural networks. The observed (expected) off-shell Higgs boson production signal strength in the $ZZ\to 4\ell$ decay channel at 68% CL is $0.87^{+0.75}_{-0.54}$ ($1.00^{+1.04}_{-0.95}$). The evidence for off-shell Higgs boson production using the $ZZ\to 4\ell$ decay channel has an observed (expected) significance of $2.5\sigma$ ($1.3\sigma$). The expected result represents a significant improvement relative to that of the previous analysis of the same dataset, which obtained an expected significance of $0.5\sigma$. When combined with the most recent ATLAS measurement in the $ZZ\to 2\ell 2\nu$ decay channel, the evidence for off-shell Higgs boson production has an observed (expected) significance of $3.7\sigma$ ($2.4\sigma$). The off-shell measurements are combined with the measurement of on-shell Higgs boson production to obtain constraints on the Higgs boson total width. The observed (expected) value of the Higgs boson width at 68% CL is $4.3^{+2.7}_{-1.9}$ ($4.1^{+3.5}_{-3.4}$) MeV.
Values of the test statistic $t_{\mu_{\mathrm{off-shell}}}$ assuming a single parameter of interest $\mu_{\mathrm{off-shell}}$ obtained with an Asimov dataset and with data in the $H^*\rightarrow ZZ\rightarrow 4\ell$ decay channel. The values from the histogram-based analysis (Phys. Lett. B 846 (2023) 138223) are added for comparison. The 68% and 95% confidence intervals obtained from the Neyman construction are also added.
Values of the test statistic $t_{\mu_{\mathrm{off-shell}}}$ assuming a single parameter of interest $\mu_{\mathrm{off-shell}}$ obtained with an Asimov dataset and with data in the $H^*\rightarrow ZZ\rightarrow 4\ell$ decay channel. The values with all nuisance parameters fixed at their best-fit values (stat-only) are added for comparison. The 68% and 95% confidence intervals obtained from the Neyman construction are also added.
Values of the test statistic $t_{\mu_{\mathrm{off-shell}}}$ assuming a single parameter of interest $\mu_{\mathrm{off-shell}}$ obtained with an Asimov dataset and with data when combining the $H^*\rightarrow ZZ\rightarrow 4\ell$ and $H^*\rightarrow ZZ\rightarrow 2\ell 2\nu$ decay channels. The values with all nuisance parameters fixed at their best-fit values (stat-only) are added for comparison. The 68% and 95% confidence intervals obtained from the Neyman construction are also added.
A combination of searches for singly and doubly charged Higgs bosons, $H^{\pm}$ and $H^{\pm\pm}$, produced via vector-boson fusion is performed using 140 fb$^{-1}$ of proton-proton collisions at a centre-of-mass energy of 13 TeV, collected with the ATLAS detector during Run 2 of the Large Hadron Collider. Searches targeting decays to massive vector bosons in leptonic final states (electrons or muons) are considered. New constraints are reported on the production cross-section times branching fraction for charged Higgs boson masses between 200 GeV and 3000 GeV. The results are interpreted in the context of the Georgi-Machacek model for which the most stringent constraints to date are set for the masses considered in the combination.
Post-fit $m_{\mathrm{WZ}}$ distribution in the signal region for the SM background-only hypothesis. Data are shown as black markers with vertical error bars representing the statistical uncertainty. Filled histograms show contributions of various SM processes, with the hatched band representing the total uncertainty. The line shows the prediction of the GM model for $\sin \theta_{\mathrm{H}} = 0.17$ and $m_{\mathrm{H_5}} = 375$ GeV, where the $\sin \theta_{\mathrm{H}}$ value corresponds to the expected $95\%$ CL limit for that $H_5$ mass.
Post-fit $m_{\mathrm{WZ}}$ distribution in the signal region for the SM background-only hypothesis. Data are shown as black markers with vertical error bars representing the statistical uncertainty. Filled histograms show contributions of various SM processes, with the hatched band representing the total uncertainty. The line shows the prediction of the GM model for $\sin \theta_{\mathrm{H}} = 0.17$ and $m_{\mathrm{H_5}} = 375$ GeV, where the $\sin \theta_{\mathrm{H}}$ value corresponds to the expected $95\%$ CL limit for that $H_5$ mass.
Post-fit $m_{\mathrm{T}}$ distribution in the signal region for the SM background-only hypothesis. Data are shown as black markers with vertical error bars representing the statistical uncertainty. Filled histograms show contributions of various SM processes, with the hatched band representing the total uncertainty. The line shows the prediction of the GM model for $\sin \theta_{\mathrm{H}} = 0.17$ and $m_{\mathrm{H_5}} = 375$ GeV, where the $\sin \theta_{\mathrm{H}}$ value corresponds to the expected $95\%$ CL limit for that $H_5$ mass.