Elliptic flow of non-photonic electrons in Au+Au collisions at $\sqrt{s_{\rm NN}} = $ 200, 62.4 and 39 GeV

The STAR collaboration Adamczyk, L. ; Adkins, J.K. ; Agakishiev, G. ; et al.
Phys.Rev.C 95 (2017) 034907, 2017.
Inspire Record 1298024 DOI 10.17182/hepdata.77016

We present measurements of elliptic flow ($v_2$) of electrons from the decays of heavy-flavor hadrons ($e_{HF}$) by the STAR experiment. For Au+Au collisions at $\sqrt{s_{\rm NN}} = $ 200 GeV we report $v_2$, for transverse momentum ($p_T$) between 0.2 and 7 GeV/c using three methods: the event plane method ($v_{2}${EP}), two-particle correlations ($v_2${2}), and four-particle correlations ($v_2${4}). For Au+Au collisions at $\sqrt{s_{\rm NN}}$ = 62.4 and 39 GeV we report $v_2${2} for $p_T< 2$ GeV/c. $v_2${2} and $v_2${4} are non-zero at low and intermediate $p_T$ at 200 GeV, and $v_2${2} is consistent with zero at low $p_T$ at other energies. The $v_2${2} at the two lower beam energies is systematically lower than at $\sqrt{s_{\rm NN}} = $ 200 GeV for $p_T < 1$ GeV/c. This difference may suggest that charm quarks interact less strongly with the surrounding nuclear matter at those two lower energies compared to $\sqrt{s_{\rm NN}} = 200$ GeV.

18 data tables

Signal-to-background (S/B) ratio as a function of transverse momentum, Au+Au 200 GeV, 0-60% central events with minimum bias trigger

Signal-to-background (S/B) ratio as a function of transverse momentum, Au+Au 200 GeV, 0-60% central events with with High Tower (high pT) trigger

Signal-to-background (S/B) ratio as a function of transverse momentum, Au+Au 39 GeV, 0-60% central events with minimum bias trigger

More…

Partonic flow and Phi-meson production in Au + Au collisions at s(NN)**(1/2) = 200-GeV.

The STAR collaboration Abelev, B.I. ; Aggarwal, M.M. ; Ahammed, Z. ; et al.
Phys.Rev.Lett. 99 (2007) 112301, 2007.
Inspire Record 746872 DOI 10.17182/hepdata.98969

We present first measurements of the $\phi$-meson elliptic flow ($v_{2}(p_{T})$) and high statistics $p_{T}$ distributions for different centralities from $\sqrt{s_{NN}}$ = 200 GeV Au+Au collisions at RHIC. In minimum bias collisions the $v_{2}$ of the $\phi$ meson is consistent with the trend observed for mesons. The ratio of the yields of the $\Omega$ to those of the $\phi$ as a function of transverse momentum is consistent with a model based on the recombination of thermal $s$ quarks up to $p_{T}\sim 4$ GeV/$c$, but disagrees at higher momenta. The nuclear modification factor ($R_{CP}$) of $\phi$ follows the trend observed in the $K^{0}_{S}$ mesons rather than in $\Lambda$ baryons, supporting baryon-meson scaling. Since $\phi$-mesons are made via coalescence of seemingly thermalized $s$ quarks in central Au+Au collisions, the observations imply hot and dense matter with partonic collectivity has been formed at RHIC.

5 data tables

The elliptic flow, $v_{2}$($p_{T}$), for the $\phi$-meson as a function of centrality. The vertical error bars represent the statistical errors while the shaded bands represent the systematic uncertainties. For clarity, data points are shifted slightly.

(color online) Transverse momentum distributions of $\phi$-mesons from Au+Au collisions at $\sqrt{s_{NN}}$ = 200 GeV. For clarity, distributions for different centralities are scaled by factors of ten. Dashed lines represent the exponential fits to the distributions and the dotted lines are Levy function fits. Error bars represent statistical errors only.

(color online) The $N(\Omega)/N(\phi)$ ratio vs. $p_{T}$ for three centrality bins in $\sqrt{s_{NN}}$ = 200 GeV Au+Au collisions. The solid and dashed lines represent recombination model predictions for central collisions [21] for total and thermal contributions, respectively.

More…