The Brookhaven Alternating Gradient Synchrotron polarized proton beam incident on a beryllium target was used for inclusive Λ production at beam momenta of 13.3 and 18.5 GeV/c. The beam polarization was transverse to the beam direction with magnitude 0.63 at 13.3 GeV/c and 0.40 at 18.5 GeV/c. The Λ polarization was measured and found to be in agreement with results from earlier experiments which used unpolarized proton beams. Analyzing power AN and spin transfer DNN of the Λ’s were both measured and compared with a hyperon-polarization model in which the polarization arises from a Thomas-precession effect. There is good agreement with its predictions: AN=0 and DNN=0. In particular, our measurement of 〈DNN〉=-0.009±0.015 supports the idea that the valence quarks carry all of the hadron spin, since this assumption is implicit in the model’s use of SU(6) wave functions to form final-state hadrons from beam fragments and sea quarks. The presence of substantial KS samples at both beam momenta and Λ¯’s at 18.5 GeV/c prompted a measurement of their analyzing powers, which yielded AN(KS)=-0.094±0.012 at 13.3 GeV/c beam momentum and -0.076±0.015 at 18.5 GeV/c, and AN(Λ¯)=0.03±0.10.
No description provided.
No description provided.
No description provided.
The pp total cross section difference between pure transverse spin states was measured in the laboratory momentum range 1–3 GeV/ c . Significant differences were found and these differences show striking energy dependence. This structure is in disagreement with the predictions of simple exchange models.
No description provided.
REVISED DATA (J. D. LESIKAR, PRIV COMM, 19 JUN 1981). NOW CORRECTED FOR COULOMB-NUCLEAR INTERFERENCE. IN ADDITION, THE LOWEST MOMENTUM DATA POINT IS NOW KNOWN TO BE IN ERROR.