A hot and dense state of nuclear matter, known as the quark-gluon plasma, is created in collisions of ultrarelativistic heavy nuclei. Highly energetic quarks and gluons, collectively referred to as partons, lose energy as they travel through this matter, leading to suppressed production of particles with large transverse momenta ($p_\mathrm{T}$). Conversely, high-$p_\mathrm{T}$ particle suppression has not been seen in proton-lead collisions, raising questions regarding the minimum system size required to observe parton energy loss. Oxygen-oxygen (OO) collisions examine a region of effective system size that lies between these two extreme cases. The CMS detector at the CERN LHC has been used to quantify charged-particle production in inclusive OO collisions for the first time via measurements of the nuclear modification factor ($R_\mathrm{AA}$). The $R_\mathrm{AA}$ is derived by comparing particle production to expectations based on proton-proton (pp) data and has a value of unity in the absence of nuclear effects. The data for OO and pp collisions at a nucleon-nucleon center-of-mass energy $\sqrt{s_\mathrm{NN}}$ = 5.36 TeV correspond to integrated luminosities of 6.1 nb$^{-1}$ and 1.02 pb$^{-1}$, respectively. The $R_\mathrm{AA}$ is below unity with a minimum of 0.69 $\pm$ 0.04 around $p_\mathrm{T}$ = 6 GeV. The data exhibit better agreement with theoretical models incorporating parton energy loss as compared to baseline models without energy loss.
Inclusive charged particle spectra for pp collisions at 5.36 TeV for $3 < p_{T} (GeV) <103.6$. The errors represent statistical, systematics and normalization uncertainties.
Inclusive charged particle spectra for OO collisions at 5.36 TeV for $3 < p_{T} (GeV) <103.6$. The errors represent statistical, systematics and normalization uncertainties.
Inclusive charged particle R_{AA} for 5.36 TeV OO collisions for $3 < p_{T} (GeV) <103.6$. The errors represent statistical, systematics and normalization uncertainties.
The production cross sections of B$^0_\mathrm{s}$ and B$^+$ mesons are reported in proton-proton (pp) collisions recorded by the CMS experiment at the CERN LHC with a center-of-mass energy of 5.02 TeV. The data sample corresponds to an integrated luminosity of 302 pb$^{-1}$. The cross sections are based on measurements of the B$^0_\mathrm{s}$$\to$ J/$ψ(μ^+μ^-)ϕ$(1020) (K$^+$K$^-$) and B$^+$$\to$ J/$ψ(μ^+μ^-)$K$^+$ decay channels. Results are presented in the transverse momentum ($p_\mathrm{T}$) range 7-50 GeV/$c$ and the rapidity interval $\lvert y \rvert$$\lt$ 2.4 for the B mesons. The measured $p_\mathrm{T}$-differential cross sections of B$^+$ and B$^0_\mathrm{s}$ in pp collisions are well described by fixed-order plus next-to-leading logarithm perturbative quantum chromodynamics calculations. Using previous PbPb collision measurements at the same nucleon-nucleon center-of-mass energy, the nuclear modification factors, $R_\mathrm{AA}$, of the B mesons are determined. For $p_\mathrm{T}$$\lt$ 10 GeV/$c$, both mesons are found to be suppressed in PbPb collisions (with $R_\mathrm{AA}$ values significantly below unity), with less suppression observed for the B$^0_\mathrm{s}$ mesons. In this $p_\mathrm{T}$ range, the $R_\mathrm{AA}$ values for the B$^+$ mesons are consistent with those for inclusive charged hadrons and D$^0$ mesons. Below 10 GeV/$c$, both B$^+$ and B$^0_\mathrm{s}$ are found to be less suppressed than either inclusive charged hadrons or D$^0$ mesons, with the B$^0_\mathrm{s}$$R_\mathrm{AA}$ value consistent with unity. The $R_\mathrm{AA}$ values found for the B$^+$ and B$^0_\mathrm{s}$ are compared to theoretical calculations, providing constraints on the mechanism of bottom quark energy loss and hadronization in the quark-gluon plasma, the hot and dense matter created in ultrarelativistic heavy ion collisions.
The B+ meson $p_{\rm{T}}$-dependent production cross section in pp collisions. The measurment was carried out inside a fiducial region respecting ($p_{\rm{T}}$<10 & 1.5<|y|<2.4) and ($p_{\rm{T}}$>10 & |y|<2.4). The luminosity is 302.3 pb^{-1}.
The Bs meson $p_{\rm{T}}$-dependent production cross section in pp collisions. The measurment was carried out inside a fiducial region respecting (pT<10 & 1.5<|y|<2.4) and ($p_{\rm{T}}$>10 & |y|<2.4). The luminosity is 302.3 pb^{-1}.
The B+ meson $p_{\rm{T}}$-dependent RAA in PpPp. The measurment was carried out inside a fiducial region respecting ($p_{\rm{T}}$<10 & 1.5<|y|<2.4) and ($p_{\rm{T}}$>10 & |y|<2.4).
The ATLAS detector at the Large Hadron Collider has been used to measure jet substructure modification and suppression in Pb+Pb collisions at a nucleon-nucleon center-of-mass energy $\sqrt{s_{_\mathrm{NN}}}=5.02~\mathrm{TeV}$ in comparison with $pp$ collisions at $\sqrt{s}=5.02~\mathrm{TeV}$. The Pb+Pb data, collected in 2018, have an integrated luminosity of $1.72~\mathrm{nb^{-1}}$, while the $pp$ data, collected in 2017, have an integrated luminosity of $260~\mathrm{pb}^{-1}$. Jets used in this analysis are clustered using the anti-$k_{t}$ algorithm with a radius parameter $R=0.4$. The jet constituents, defined by both tracking and calorimeter information, are used to determine the angular scale $r_\mathrm{g}$ of the first hard splitting inside the jet by reclustering them using the Cambridge-Aachen algorithm and employing the soft-drop grooming technique. The nuclear modification factor, $R_\mathrm{AA}$, used to characterize jet suppression in Pb+Pb collisions, is presented differentially in $r_\mathrm{g}$, jet transverse momentum, and in intervals of collision centrality. The $R_\mathrm{AA}$ value is observed to depend significantly on jet $r_\mathrm{g}$. Jets produced with the largest measured $r_\mathrm{g}$ are found to be twice as suppressed as those with the smallest $r_\mathrm{g}$ in central Pb+Pb collisions. The $R_\mathrm{AA}$ values do not exhibit a strong variation with jet $p_\mathrm{T}$ in any of the $r_\mathrm{g}$ intervals. The $r_\mathrm{g}$ and $p_\mathrm{T}$ dependence of jet $R_\mathrm{AA}$ is qualitatively consistent with a picture of jet quenching arising from coherence and provides the most direct evidence in support of this approach.
Summary of jet double differential cross section in pp collisions at 5.02 TeV as a function of pT in bins of rg. Uncertainties are statistical and systematic, respectively.
Summary of jet double differential cross section in pp collisions at 5.02 TeV as a function of rg in bins of pT. Uncertainties are statistical and systematic, respectively.
Summary of per-event jet yields in Pb+Pb collisions at 5.02 TeV as a function of pT in bins of rg for 50-80% centrality interval, normalized by the respective centrality interval's <TAA>. Uncertainties are statistical and systematic, respectively.
The production of the $\psi(2S)$ charmonium state was measured with ALICE in Pb-Pb collisions at $\sqrt{s_{\rm NN}}=5.02$ TeV, in the dimuon decay channel. A significant signal was observed for the first time at LHC energies down to zero transverse momentum, at forward rapidity ($2.5<y<4$). The measurement of the ratio of the inclusive production cross sections of the $\psi(2S)$ and J/$\psi$ resonances is reported as a function of the centrality of the collisions and of transverse momentum, in the region $p_{\rm T}<12$ GeV/$c$. The results are compared with the corresponding measurements in pp collisions, by forming the double ratio $[\sigma^{\psi(2S)}/\sigma^{J/\psi}]_{\rm{Pb-Pb}}/[\sigma^{\psi(2S)}/\sigma^{J/\psi}]_{\rm{pp}}$. It is found that in Pb-Pb collisions the $\psi(2S)$ is suppressed by a factor of $\sim 2$ with respect to the J/$\psi$. The $\psi(2S)$ nuclear modification factor $R_{\rm AA}$ was also obtained as a function of both centrality and $p_{\rm T}$. The results show that the $\psi(2S)$ resonance yield is strongly suppressed in Pb-Pb collisions, by a factor up to $\sim 3$ with respect to pp. Comparisons of cross section ratios with previous SPS findings by the NA50 experiment and of $R_{\rm AA}$ with higher-$p_{\rm T}$ results at LHC energy are also reported. These results and the corresponding comparisons with calculations of transport and statistical models address questions on the presence and properties of charmonium states in the quark-gluon plasma formed in nuclear collisions at the LHC.
Ratio of the $\psi$(2S) over J/$\psi$ cross sections, not corrected for the branching ratio, shown as a function of centrality
Double ratio of the $\psi$(2S) over J/$\psi$ cross sections in Pb--Pb and pp collisions shown as a function of centrality
Nuclear modification factor of the $\psi$(2S) shown as a function of centrality
Heavy-flavour hadron production provides information about the transport properties and microscopic structure of the quark-gluon plasma created in ultra-relativistic heavy-ion collisions. A measurement of the muons from semileptonic decays of charm and bottom hadrons produced in Pb+Pb and $pp$ collisions at a nucleon-nucleon centre-of-mass energy of 5.02 TeV with the ATLAS detector at the Large Hadron Collider is presented. The Pb+Pb data were collected in 2015 and 2018 with sampled integrated luminosities of $208~\mathrm{\mu b}^{-1}$ and $38~\mathrm{\mu b^{-1}}$, respectively, and $pp$ data with a sampled integrated luminosity of $1.17~\mathrm{pb}^{-1}$ were collected in 2017. Muons from heavy-flavour semileptonic decays are separated from the light-flavour hadronic background using the momentum imbalance between the inner detector and muon spectrometer measurements, and muons originating from charm and bottom decays are further separated via the muon track's transverse impact parameter. Differential yields in Pb+Pb collisions and differential cross sections in $pp$ collisions for such muons are measured as a function of muon transverse momentum from 4 GeV to 30 GeV in the absolute pseudorapidity interval $|\eta| < 2$. Nuclear modification factors for charm and bottom muons are presented as a function of muon transverse momentum in intervals of Pb+Pb collision centrality. The measured nuclear modification factors quantify a significant suppression of the yields of muons from decays of charm and bottom hadrons, with stronger effects for muons from charm hadron decays.
Summary of charm muon double differential cross section in pp collisions at 5.02 TeV as a function of pT. Uncertainties are statistical and systematic, respectively.
Summary of charm muon per-event invariant yields in Pb+Pb collisions at 5.02 TeV as a function of pT for five different centrality intervals. Uncertainties are statistical and systematic, respectively.
Summary of bottom muon per-event invariant yields in Pb+Pb collisions at 5.02 TeV as a function of pT for five different centrality intervals. Uncertainties are statistical and systematic, respectively.
Measurements of the yield and nuclear modification factor, $R_\mathrm{ AA}$, for inclusive jet production are performed using 0.49 nb$^{-1}$ of Pb+Pb data at $\sqrt{s_\mathrm{NN}} = 5.02$ TeV and 25 pb$^{-1}$ of $pp$ data at $\sqrt{s}=5.02$ TeV with the ATLAS detector at the LHC. Jets are reconstructed with the anti-$k_t$ algorithm with radius parameter $R=0.4$ and are measured over the transverse momentum range of 40-1000 GeV in six rapidity intervals covering $|y|<2.8$. The magnitude of $R_\mathrm{ AA}$ increases with increasing jet transverse momentum, reaching a value of approximately 0.6 at 1 TeV in the most central collisions. The magnitude of $R_\mathrm{ AA}$ also increases towards peripheral collisions. The value of $R_\mathrm{ AA}$ is independent of rapidity at low jet transverse momenta, but it is observed to decrease with increasing rapidity at high transverse momenta.
The ⟨TAA⟩ and ⟨Npart⟩ values and their uncertainties in each centrality bin.
No description provided.
No description provided.
A measurement of $J/\psi$ and $\psi(2\mathrm{S})$ production is presented. It is based on a data sample from Pb+Pb collisions at $\sqrt{s_{\mathrm{NN}}}$ = 5.02 TeV and $pp$ collisions at $\sqrt{s}$ = 5.02 TeV recorded by the ATLAS detector at the LHC in 2015, corresponding to an integrated luminosity of $0.42\mathrm{nb}^{-1}$ and $25\mathrm{pb}^{-1}$ in Pb+Pb and $pp$, respectively. The measurements of per-event yields, nuclear modification factors, and non-prompt fractions are performed in the dimuon decay channel for $9 < p_{T}^{\mu\mu} < 40$ GeV in dimuon transverse momentum, and $-2.0 < y_{\mu\mu} < 2.0$ in rapidity. Strong suppression is found in Pb+Pb collisions for both prompt and non-prompt $J/\psi$, as well as for prompt and non-prompt $\psi(2\mathrm{S})$, increasing with event centrality. The suppression of prompt $\psi(2\mathrm{S})$ is observed to be stronger than that of $J/\psi$, while the suppression of non-prompt $\psi(2\mathrm{S})$ is equal to that of the non-prompt $J/\psi$ within uncertainties, consistent with the expectation that both arise from \textit{b}-quarks propagating through the medium. Despite prompt and non-prompt $J/\psi$ arising from different mechanisms, the dependence of their nuclear modification factors on centrality is found to be quite similar.
Per-event-yield of prompt jpsi production in 5.02 TeV PbPb collision data as a function of pT for three different centrality slices in the rapidity range |y| < 2.
Per-event-yield of non-prompt jpsi production in 5.02 TeV PbPb collision data as a function of pT for three different centrality slices in the rapidity range |y| < 2.
Non-prompt fraction of jpsi production in 5.02 TeV PbPb collision data as a function of pT for three different centrality slices in the rapidity range |y| < 2.
We present a measurement of the inclusive production of Upsilon mesons in U+U collisions at 193 GeV at mid-rapidity (|y| < 1). Previous studies in central Au+Au collisions at 200 GeV show a suppression of Upsilon(1S+2S+3S) production relative to expectations from the Upsilon yield in p+p collisions scaled by the number of binary nucleon-nucleon collisions (Ncoll), with an indication that the Upsilon(1S) state is also suppressed. The present measurement extends the number of participant nucleons in the collision (Npart) by 20% compared to Au+Au collisions, and allows us to study a system with higher energy density. We observe a suppression in both the Upsilon(1S+2S+3S) and Upsilon(1S) yields in central U+U data, which consolidates and extends the previously observed suppression trend in Au+Au collisions.
(Color online) $\Upsilon$(1S+2S+3S) (a) and $\Upsilon$(1S) (b) $R_{AA}$ vs. $N_{part}$ in $\sqrt{s_{NN}}$ = 193 GeV U+U collisions (solid circles), compared to 200 GeV RHIC Au+Au (solid squares [13] and hollow crosses [32]), and 2.76 TeV LHC Pb+Pb data (solid diamonds [33]). A 95% lower confidence bound is indicated for the 30-60% centrality U+U data (see text). Each point is plotted at the center of its bin. Centrality integrated (0-60%) U+U and Au+Au data are also shown as open circles and squares, respectively.
(Color online) $\Upsilon$(1S+2S+3S) (a) and $\Upsilon$(1S) (b) $R_{AA}$ vs. $N_{part}$ in $\sqrt{s_{NN}}$ = 193 GeV U+U collisions (solid circles), compared to 200 GeV RHIC Au+Au (solid squares [13] and hollow crosses [32]), and 2.76 TeV LHC Pb+Pb data (solid diamonds [33]). A 95% lower confidence bound is indicated for the 30-60% centrality U+U data (see text). Each point is plotted at the center of its bin. Centrality integrated (0-60%) U+U and Au+Au data are also shown as open circles and squares, respectively.
(Color online) $\Upsilon$(1S+2S+3S) (a) and $\Upsilon$(1S) (b) $R_{AA}$ vs. $N_{part}$ in $\sqrt{s_{NN}}$ = 193 GeV U+U collisions (solid circles), compared to different models [36–38], described in the text. The 95% lower confidence bound is indicated for the 30-60% centrality U+U data (see text). Each point is plotted at the center of its bin. Centrality integrated (0-60%) U+U and Au+Au data are also shown as open circles and squares, respectively.
The inclusive $J/\psi$ transverse momentum ($p_{T}$) spectra and nuclear modification factors are reported at midrapidity ($|y|<1.0$) in Au+Au collisions at $\sqrt{s_{NN}}=$ 39, 62.4 and 200 GeV taken by the STAR experiment. A suppression of $J/\psi$ production, with respect to {\color{black}the production in $p+p$ scaled by the number of binary nucleon-nucleon collisions}, is observed in central Au+Au collisions at these three energies. No significant energy dependence of nuclear modification factors is found within uncertainties. The measured nuclear modification factors can be described by model calculations that take into account both suppression of direct $J/\psi$ production due to the color screening effect and $J/\psi$ regeneration from recombination of uncorrelated charm-anticharm quark pairs.
J/psi invariant yields in Au+Au collisions = 39 GeV as a function of pT for different centralities.
J/psi invariant yields in Au+Au collisions = 62.4 GeV as a function of pT for different centralities.
J/psi invariant yields in Au+Au collisions = 200 GeV as a function of pT for different centralities.
The PHENIX Collaboration at the Relativistic Heavy Ion Collider has measured open heavy-flavor production in minimum bias Au$+$Au collisions at $\sqrt{s_{_{NN}}}=200$ GeV via the yields of electrons from semileptonic decays of charm and bottom hadrons. Previous heavy-flavor electron measurements indicated substantial modification in the momentum distribution of the parent heavy quarks due to the quark-gluon plasma created in these collisions. For the first time, using the PHENIX silicon vertex detector to measure precision displaced tracking, the relative contributions from charm and bottom hadrons to these electrons as a function of transverse momentum are measured in Au$+$Au collisions. We compare the fraction of electrons from bottom hadrons to previously published results extracted from electron-hadron correlations in $p$$+$$p$ collisions at $\sqrt{s_{_{NN}}}=200$ GeV and find the fractions to be similar within the large uncertainties on both measurements for $p_T>4$ GeV/$c$. We use the bottom electron fractions in Au$+$Au and $p$$+$$p$ along with the previously measured heavy flavor electron $R_{AA}$ to calculate the $R_{AA}$ for electrons from charm and bottom hadron decays separately. We find that electrons from bottom hadron decays are less suppressed than those from charm for the region $3<p_T<4$ GeV/$c$.
Bottom and charm hadron invariant yields as a function of $p_{T}$.
Bottom hadron fraction with respect to heavy flavor electron as a function of $p_{T}$.
Bottom and charm hadron $R_{AA}$ as a function of $p_{T}$.