The reactions γ p→K + K − π 0 (p) and γ p→ K s 0 K ± π ± (p) have been measured using tagged photons in the energy range 20 to 70 GeV. No resonance structure is observed in either of the K K π invariant mass distributions, which range from threshold up to ∼ 3 GeV. The photoproduction cross sections for φπ 0 and K ∗ (892)K are presented and are compared with theoretical predictions. No evidence has been found for the photoproduction of φ′ (1680).
No description provided.
No description provided.
NO EVIDENCE FOR RESONANT STRUCTURE AT PHIPRIME(1680).
Results on photoproduction of π + π − π 0 in the photon energy range 20–70 GeV are presented. For the ω meson, the production cross-section is found to be 1010±15 (statistical)±290 (systematic) nb and is constant over the incident photon energy range. Spin-density matrix elements are evaluated for ω meson production. The φ meson is observed with a total photoproduction cross section (corrected for branching ratio to π + π − π 0 ) of 610±35±170 nb. A third resonance, at 1.67 GeV, is seen in the mass spectrum and its interpretation is discussed. The production of a broad π + π − π 0 continuum, mainly via ϱπ, and peaking at 1.2 GeV, contributes with a cross section of about 2.5 ωb. The spin-parity content is analysed by the moments of the π + π − π 0 decay angular distribution in the helicity frame and by maximum likelihood fits to the π + π − π 0 Dalitz plot. It is found that production of J P = 1 − states accounts for less than half of the total mass spectrum above 900 MeV. There is a broad enhancement in the 1 + wave around 1.15 GeV indicating photoproduction of the H(1190) meson.
No description provided.
EXPONENTIAL FITS TO D(SIG)/DT IN OMEGA MASS REGION.
EXPONENTIAL FITS TO D(SIG)/DT OVER FULL ENERGY FOR THREE MASS REGIONS CORRESPONDING TO OMEGA, PHI AND OMEGA*.
A ϱπ enhancement with mass 1.67 ± 0.02GeV and width 0.16 ± 0.02GeV is observed in the channel γp→pπ + π − π 0 . Assuming an incoherent background, the cross section × branching ratio is 100 ± 20 nb. A spin-parity analysis favours J P = 1 − . The enhancement is most simply interpreted as a radial recurrence of the ω meson.
No description provided.
Measurements of the reaction γ p → p ωπ + π − are reported for photon energies 25–50 GeV. Particular attention is paid to ωπ + π − masses < 2 GeV. A search is made for ω′ or φ′ partners of the ϱ′(1600). Evidence is presented against the existence of narrow states and against the production of a broad state by an s -channel helicity conserving mechanism.
No description provided.
We report on an experiment in which the SLAC 40-in. hybrid facility was exposed to an 8.8-GeV/c antiproton beam. Using external detectors we have identified a large fraction of nonannihilation events and thus obtained a clean sample of annihilation data. Using proton interactions taken in the same detector at the same energy we have made a detailed study of (p¯p−pp) differences and explored their relationship to p¯p annihilations.
No description provided.
No description provided.
No description provided.
We have measured differential cross sections for both π+p and π−p elastic scattering at incident-pion kinetic energies of 30, 50, 70, and 90 MeV in the center-of-mass angular range between 50° and 150°. The experiment detected pions scattered from a liquid-hydrogen target with multiwire proportional chambers and scintillation-counter range telescopes. The relative accuracy of each angular distribution is better than 5%, while the absolute cross sections have uncertainties of 4% to 25%. Our results for the absolute cross section for π+p scattering at 30 and 90 MeV are inconsistent with previous measurements. Our π−p measurements comprise the first extensive set of precision differential cross sections below 90 MeV.
No description provided.
No description provided.
No description provided.
Results are presented from an experiment at the SLAC 40″ hybrid facility (SHF) using an 8.8 GeV/ c antiproton beam. Using external detectors and an on-line trigger, a sample of events enriched in p p annihilations was obtained. pp interactions taken under the same conditions enabled the annihilations to be identified. Cross sections and distributions for the inclusive production of K s 0 and K ∗± (890), and cross sections for exclusive channels with a pair of strange particles are presented.
No description provided.
No description provided.
No description provided.
We have studied the reactionspp→ppπ+π-,K+p→K+pπ+π−π, π+p→ π+,pπ+π− and π−p →π+π− at 147 GeV/c using the 30-inch Fermilab hybrid system. All four reactions were detected with the same apparatus and analyzed in the same way. The energy dependence of the channel cross section was found to beAp−0.6+B for thepp reaction andAp−1+B for the other three. About 90% of the cross section at 147 GeV/c can be accounted for by either beam or target diffraction. Some of the remaining cross section may come from double Pomeron exchange reactions which we tried to isolate. We have tested the hypothesis of a factorizable Pomeron and our data indicates a violation of this hypothesis. We show that the 3π mass enhancement in the mass region 1.2–1.4 GeV is diffractively produced in the π± beam reactions. Fourprong, four-constraint and six-prong, four-constraint cross sections are reported.
No description provided.
No description provided.
CROSS SECTIONS FOR DIFFRACTION DISSOCIATION OF BEAM. FEYNMAN X OF OUTGOING PROTON <-0.96.
Data are presented on the inclusive production of π±, K±, p, and p¯ for π+, K+, and protons incident on nuclear targets at 100 GeV. The results cover the kinematic range 30≤P≤88 GeV/c for Pt=0.3 and 0.5 GeV/c. The observed A dependence of the invariant cross sections exhibits remarkable simplicity, which does not naturally follow from current models of particle production. The results show that the hypothesis of limiting fragmentation can be extended to include collisions with nuclei.
No description provided.
Measurements are presented of the inclusive charged-particle cross sections s dσdx for e+e− annihilation at center-of-mass energies of 5.2, 6.5, and 29.0 GeV. Significant scale breaking is observed in these cross sections.
CROSS SECTION S*D(SIG)/DX FOR CHARGED PARTICLES AT SQRT(S) = 5.2, 6.5 AND 29.0 GEV. NUMERICAL VALUES OF DATA TAKEN FROM THESIS OF J.F. PATRICK LBL-14585.