Analyzing powers ( A y ) and spin-rotation-depolarization parameters ( D SS , D SL , D LS , D LL , D NN ) were determined for 500 MeV p + 2 H and p + 12 C inclusive quasielastic scattering at 10°, 15°, and 20° laboratory scattering angles. The p + 2 H data are consistent with the isospin-average of the proton-proton and proton-neutron scattering observables; the p + 12 C data are not. A relativistic plane wave impulse approximation calculation leads to better agreement with the p + 12 C spin-observables.
Inclusive quasielastic p deut measurements.
Inclusive quasielastic p c measurements.
A complete set of polarization-transfer observables has been measured for quasifree (p→,n→) reactions on H2, C12, and Ca40 at a bombarding energy of 495 MeV and a laboratory scattering angle of 18°. The data span an energy-loss range from 0 to 160 MeV, with a corresponding momentum transfer range of qc.m.=1.7–1.9 fm−1. The laboratory observables are used to construct partial cross sections proportional to the nonspin response and three orthogonal spin responses. These results are compared to the transverse spin response measured in deep inelastic electron scattering and to nuclear responses based on the random phase approximation. The polarization observables for all three targets are remarkably similar and reveal no evidence for an enhancement of the spin-longitudinal nuclear response relative to the spin-transverse response. These results suggest the need for substantial modifications to the standard form assumed for the residual particle-hole interaction.
No description provided.
No description provided.
No description provided.
None
No description provided.
We employ data taken by the JADE and OPAL experiments for an integrated QCD study in hadronic e+e- annihilations at c.m.s. energies ranging from 35 GeV through 189 GeV. The study is based on jet-multiplicity related observables. The observables are obtained to high jet resolution scales with the JADE, Durham, Cambridge and cone jet finders, and compared with the predictions of various QCD and Monte Carlo models. The strong coupling strength, alpha_s, is determined at each energy by fits of O(alpha_s^2) calculations, as well as matched O(alpha_s^2) and NLLA predictions, to the data. Matching schemes are compared, and the dependence of the results on the choice of the renormalization scale is investigated. The combination of the results using matched predictions gives alpha_s(MZ)=0.1187+{0.0034}-{0.0019}. The strong coupling is also obtained, at lower precision, from O(alpha_s^2) fits of the c.m.s. energy evolution of some of the observables. A qualitative comparison is made between the data and a recent MLLA prediction for mean jet multiplicities.
Overall result for ALPHAS at the Z0 mass from the combination of the ln R-matching results from the observables evolved using a three-loop running expression. The errors shown are total errors and contain all the statistics and systematics.
Weighted mean for ALPHAS at the Z0 mass determined from the energy evolutions of the mean values of the 2-jet cross sections obtained with the JADE and DURHAMschemes and the 3-jet fraction for the JADE, DURHAM and CAMBRIDGE schemes evaluted at a fixed YCUT.. The errors shown are total errors and contain all the statistics and systematics.
Combined results for ALPHA_S from fits of matched predicitions. The first systematic (DSYS) error is the experimental systematic, the second DSYS error isthe hadronization systematic and the third is the QCD scale error. The values of ALPHAS evolved to the Z0 mass using a three-loop evolution are also given.
The energy spectra of deuterons recoiling from a deuterium gas target bombarded by transversely polarized 796-MeV protons have been measured to obtain the differential cross sections, dσdt, and analyzing powers, Ay(t), for p→-d elastic scattering over a range of laboratory angles from 4.53° to 13.02°, corresponding to a range of four-momentum transfer squared, |t|, from 0.013 to 0.108 GeV2/c2. Employing several sets of nucleon-nucleon, N-N, amplitudes obtained from N-N phase shift analyses, comparisons are made between the experimental data and the predictions of a multiple scattering theory. In this region of four-momentum transfer, Ay is shown to depend almost entirely on the spin-independent and spin-orbit N-N amplitudes. NUCLEAR REACTIONS d(p→, p)d, E=796 MeV; measured dσdt(θ) and Ay(θ); comparison with multiple-scattering theory using free N-N amplitudes, −t=0.013−0.108 GeV2/c2, Δt=1.88×10−3 GeV2/c2.
X ERROR D(-T) = 0.0019 GEV**2.
500 MeV p→+p elastic and quasielastic, and p→+n quasielastic, analyzing powers (Ay) and spin-rotation-depolarization parameters (DSS, DSL, DLS, DLL, DNN) were determined for center-of-momentum angular ranges 6.8°–55.4° (elastic) and 22.4°–55.4° (quasielastic); liquid hydrogen and deuterium targets were used. The p→+p elastic and quasielastic results are in good agreement; both the p→+p and p→+n parameters are well described by current phase shift solutions.
The elastic P P analysing power at 500 MeV incident proton energy. There is an additional overall normalization uncertainty of 1 PCT.
The spin depolarization and spin rotation parameters in 500 MeV P P elastic interactions. Additional normalization uncertainty of 1 PCT (2 PCT for DLL and DLS).
The elastic P P analysing power at 500 MeV incident proton energy. There is an additional overall normalization uncertainty of 1 PCT.
The asymmetry ANN for pp elastic scattering has been measured at 800 and 650 MeV in the region of Coulomb-nuclear interference. The data have been analyzed to extract the real part of a spin-spin scattering amplitude. Results are compared with the predictions of forward dispersion relations. They disagree significantly at 650 MeV.
No description provided.
No description provided.
The absolute cross sections for the production of 11 C by 1.59 GeV and 4.19 GeV α-particles incident on natural carbon have been measured to be 46.4 ± 1.3 mb and 42.5 ± 1.1 mb respectively. These results, together with data reported at other energies, indicate that the C(α, X) 11 C cross section becomes approximately constant at a value of about 43 mb for energies above 3 GeV (750 MeV/n). A similar energy dependence is exhibited by the C(p, X) 11 C reaction whose cross section has been measured previously over an extensive energy range. The C(α, X) 11 C cross sections are found to be in good agreement with predictions of a semi-empirical model developed to describe nuclear fragmentation.
ALL SYSTEMATICAL ERRORS WERE INCLUDED INTO TABULATED ERRORS.
We report on a measurement of the ratio of the differential cross sections for W and Z boson production as a function of transverse momentum in proton-antiproton collisions at sqrt(s) = 1.8 TeV. This measurement uses data recorded by the D0 detector at the Fermilab Tevatron in 1994-1995. It represents the first investigation of a proposal that ratios between W and Z observables can be calculated reliably using perturbative QCD, even when the individual observables are not. Using the ratio of differential cross sections reduces both experimental and theoretical uncertainties, and can therefore provide smaller overall uncertainties in the measured mass and width of the W boson than current methods used at hadron colliders.
The measured W and Z0 cross sections used to compute the ratio.
The measured ratios of W+-/Z0 cross sections, corrected for the branching ratios BR(W-->e-nue)=0.1073+-0.0025 and BR(Z0-->E+E-)=0.033632+-0.000059 (PDG 2000). The error given is the total error, but note that the 4.3pct error in the luminosity cancels completely in the ratio.
The strong coupling alpha_s(M_Z^2) has been measured using hadronic decays of Z^0 bosons collected by the SLD experiment at SLAC. The data were compared with QCD predictions both at fixed order, O(alpha_s^2), and including resummed analytic formulae based on the next-to-leading logarithm approximation. In this comprehensive analysis we studied event shapes, jet rates, particle correlations, and angular energy flow, and checked the consistency between alpha_s(M_Z^2) values extracted from these different measures. Combining all results we obtain alpha_s(M_Z^2) = 0.1200 \pm 0.0025(exp.) \pm 0.0078(theor.), where the dominant uncertainty is from uncalculated higher order contributions.
Final average value of alpha_s. The second (DSYS) error is from the uncertainty on the theoretical part of the calculation.
TAU is 1-THRUST.
RHO is the normalized heavy jet mass MH**2/EVIS**2.