We have studied the inclusive production of the hadrons π ± , K ± , p, p , Λ, Λ , ρ and ⋉ in the central region at the ISR s = 53 GeV , in both pp and p p collisions. Differences are observed only for K ± , p, and p production. We then study also correlations between low- p T pp and p p pairs in the two types of collisions, separating the contribution from baryon pair production and from the incident particles (stopping protons). We observe a positive correlation between two stopping protons; between the production of two pairs, and between a stopping proton and a pair production, there are negative correlations.
No description provided.
The Split Field Magnet facility at the CERN ISR has been used to measure inclusive resonance production in inelastic p-p collisions at a c.m. energy of 53 GeV. The mass spectrum of pairs of oppositely charged hadrons shows a strong correlation, which can be explained as a consequence of dominant vector meson production, accounting for more than 60% of all pions and kaons produced.
No description provided.
No description provided.
The production of neutrons carrying at least 20% of the proton beam energy ($\xl > 0.2$) in $e^+p$ collisions has been studied with the ZEUS detector at HERA for a wide range of $Q^2$, the photon virtuality, from photoproduction to deep inelastic scattering. The neutron-tagged cross section, $e p\to e' X n$, is measured relative to the inclusive cross section, $e p\to e' X$, thereby reducing the systematic uncertainties. For $\xl >$ 0.3, the rate of neutrons in photoproduction is about half of that measured in hadroproduction, which constitutes a clear breaking of factorisation. There is about a 20% rise in the neutron rate between photoproduction and deep inelastic scattering, which may be attributed to absorptive rescattering in the $\gamma p$ system. For $0.64 < \xl < 0.82$, the rate of neutrons is almost independent of the Bjorken scaling variable $x$ and $Q^2$. However, at lower and higher $\xl$ values, there is a clear but weak dependence on these variables, thus demonstrating the breaking of limiting fragmentation. The neutron-tagged structure function, ${{F}^{\rm\tiny LN(3)}_2}(x,Q^2,\xl)$, rises at low values of $x$ in a way similar to that of the inclusive \ff of the proton. The total $\gamma \pi$ cross section and the structure function of the pion, $F^{\pi}_2(x_\pi,Q^2)$ where $x_\pi = x/(1-\xl)$, have been determined using a one-pion-exchange model, up to uncertainties in the normalisation due to the poorly understood pion flux. At fixed $Q^2$, $F^{\pi}_2$ has approximately the same $x$ dependence as $F_2$ of the proton.
The XL bins, their acceptance and the acceptance uncertainty. The RH columnshows the contribution from the energy-scale uncertainty - this is completely c orrelated between the bins.
The slope of the PT**2 distribution from the 1995 DIS data. The uncertainties shown in this table were communicated to us by the authors, and supercede those given in the paper.
The normalized cross section (1/SIG)DSIG/dXL for leading neutrons with THETA < 0.8 mrad with statistical errors only.. For the lowest Q**2 data, the normalization uncertainty is +-5 PCT, and with XL > 0.52 there is a further normalization uncertainty of +-4 PCT.. For the intermediate Q**2 and DIS data the normalization uncertainty is +-4 PCT.
Using annihilation in a calorimeter as a trigger on antiprotons, we have measured the relative production cross sections of p , Λ and Ξ at y∼0 in the transverse momentum range 1 to 2 GeV/ c in pp collisions at √ s =63 GeV. We investigate correlations between the antibaryons and associated produced particles, and find evidence for local baryon number conservation.
No description provided.
The beauty production cross section for deep inelastic scattering events with at least one hard jet in the Breit frame together with a muon has been measured, for photon virtualities Q^2 > 2 GeV^2, with the ZEUS detector at HERA using integrated luminosity of 72 pb^-1. The total visible cross section is sigma_b-bbar (ep -> e jet mu X) = 40.9 +- 5.7 (stat.) +6.0 -4.4 (syst.) pb. The next-to-leading order QCD prediction lies about 2.5 standard deviations below the data. The differential cross sections are in general consistent with the NLO QCD predictions: however at low values of Q^2, Bjorken x, and muon transverse momentum, and high values of jet transverse energy and muon pseudorapidity, the prediction is about two standard deviations below the data.
Total visible cross section in the specified kinematic region.
Differential cross section w.r.t. Q**2.
Differential cross section w.r.t. log10(x).
This paper presents measurements of \k\ and \lam\ production in neutral current, deep inelastic scattering of 26.7 GeV electrons and 820 GeV protons in the kinematic range $ 10 < Q~{2} < 640 $ GeV$~2$, $0.0003 < x < 0.01$, and $y > 0.04$. Average multiplicities for \k\ and \lam\ production are determined for transverse momenta \ \ptr\ $> 0.5 $ GeV and pseudorapidities $\left| \eta \right| < 1.3$. The multiplicities favour a stronger strange to light quark suppression in the fragmentation chain than found in $e~+ e~-$ experiments. The production properties of \k's in events with and without a large rapidity gap with respect to the proton direction are compared. The ratio of neutral \k's to charged particles per event in the measured kinematic range is, within the present statistics, the same in both samples.
No description provided.
No description provided.
No description provided.
Diffractive production of D*+-(2010) mesons in deep inelastic scattering has been measured with the ZEUS detector at HERA using an integrated luminosity of 44.3 pb-1. Diffractive charm production is identified by the presence of a large rapidity gap in the final state of events in which a D*+-(2010) meson is reconstructed in the decay channel D*+ -> (D0 -> K-pi+) pi+ (+ charge conjugate). Differential cross sections when compared with theoretical predictions indicate the importance of gluons in such diffractive interactions.
Measurment of total diffractive cross section and ratio to inclusive DIS cross section.
Ratio of diffractive to inclusive D*+- production w.r.t. Q**2.
Ratio of diffractive to inclusive D*+- production w.r.t. W.
We report the first observation of charmed mesons with the ZEUS detector at HERA using the decay channel ${\rm D}~{*+}\rightarrow (\Do \rightarrow {\rm K}~-\pi~+)\pi~+$ (+ c.c.). Clear signals in the mass difference $\Delta M$=$M$(D$~*$)--$M$(D$~0)$ as well as in the $M(K\pi)$ distribution at the D$~0$ mass are found. The $ep$ cross section for inclusive \DSpm\ production with $Q~2<4\GeV~2$ in the $\gamma p$ centre-of-mass energy range $115 < W < 275$ \GeV\ has been determined to be $(32 \pm 7~{+4}_{-7} )$ nb in the kinematic region \mbox{\{$p_T(\DS)\geq $ 1.7 \,\GeV, $|\eta(\DS)| < 1.5 $\}}. Ex\-tra\-po\-la\-ting outside this region, assuming a mass of the charm quark of 1.5 \GeV, we estimate the $ep$ charm cross section to be $\sigma(e p \rightarrow c \bar{c}X ) = (0.45 \pm 0.11~{+0.37}_{-0.22}) \, \mu {\rm b} $ at \mbox{$\sqrt{s} = 296$}\GeV\ and $\langle W \rangle = 198$ \GeV. The average $\gamma p$ charm cross section \mbox{$\sigma(\gamma p \rightarrow c \bar{c}X )$} is found to be \mbox{$(6.3 \pm 2.2~{+6.3}_{-3.0}) \, \mu {\rm b} $} at $\langle W \rangle = 163$ \GeV\ and \mbox{$(16.9 \pm 5.2~{+13.9}_{-8.5}) \, \mu {\rm b} $} at $\langle W \rangle = 243$ \GeV. The increase of the total charm photoproduction cross section by one order of magnitude with respect to low energy data experiments is well described by QCD NLO calculations using singular gluon distributions in the proton.
No description provided.
Assumes probability of charmed quark pair fragmenting to D* is (55.2 +- 4.2) pct and mass of CQ is 1.5 GeV.
The exclusive production of $\rho~0$ mesons in deep inelastic electron-proton scattering has been studied using the ZEUS detector. Cross sections have been measured in the range $7 < Q~2 < 25$ GeV$~2$ for $\gamma~*p$ centre of mass (c.m.) energies from 40 to 130 GeV. The $\gamma~*p \rightarrow \rho~0 p$ cross section exhibits a $Q~{-(4.2 \pm 0.8 ~{+1.4}_{-0.5})}$ dependence and both longitudinally and transversely polarised $\rho~0$'s are observed. The $\gamma~*p \rightarrow \rho~0 p$ cross section rises strongly with increasing c.m. energy, when compared with NMC data at lower energy, which cannot be explained by production through soft pomeron exchange. The data are compared with perturbative QCD calculations where the rise in the cross section reflects the increase in the gluon density at low $x$. the gluon density at low $x$.
No description provided.
We have measured the production of prompt positrons in pp collisions at √ s = 63 GeV and y = 0 in the p T interval 0.12< p T <1.0 GeV/c. The results indicate that the production of positrons at low p T (<0.4 GeV/ c ) is proportional to the square of the mean multiplicity in the central region | y | < 1. Such a quadratic dependence is not expected from final-state sources such as hadronic bremsstrahlung or hadronic decays, but is natural in models where low mass electron pairs are produced by interactions of constituents created during the collision.
No description provided.
No description provided.
No description provided.