The global topologies of inclusive three-- and four--jet events produced in $\pp$ interactions are described. The three-- and four--jet events are selected from data recorded by the D\O\ detector at the Tevatron Collider operating at a center--of--mass energy of $\sqrt{s} = 1800$ GeV. The measured, normalized distributions of various topological variables are compared with parton--level predictions of tree--level QCD calculations. The parton--level QCD calculations are found to be in good agreement with the data. The studies also show that the topological distributions of the different subprocesses involving different numbers of quarks are very similar and reproduce the measured distributions well. The parton shower Monte Carlo generators provide a less satisfactory description of the topologies of the three-- and four--jet events.
The estimated systematic uncertainty is 6 PCT.
The estimated systematic uncertainty is 6 PCT.
The estimated systematic uncertainty is 6 PCT.
Results of the total cross section differenceΔσL in anp transmission experiment at 1.19, 2.49 and 3.65 GeV incident neutron beam kinetic energies are presented. Measurements were performed at the Synchrophasotron of the Laboratory of High Energies of the Joint Institute for Nuclear Research in Dubna. Results were obtained with a polarized beam of free quasi-monochromatic neutrons passing through the new Dubna frozen spin proton target. The beam and target polarizations were oriented longitudinally. The present results were obtained at the highest energies of free polarized neutrons that can be reached at present. They extend the energy range of existing results from PSI, LAMPF and Saclay measured between 0.066 and 1.10 GeV. The new results are compared withΔσL(pn) data determined as a difference betweenΔσL(pd) andΔσL(pp) ANL-ZGS measurements. The values ofΔσL for the isospin stateI=0 were deduced using knownpp data.
Errors contain statistical and systematic errors added in quadrature. Axis error includes +- 0.05/0.05 contribution (An additional error due to the extrapolation towards zero solid angle).
No description provided.
None
No description provided.
No description provided.
No description provided.
Inclusive production of ϕ,K*0, and\(\overline {K*^0 } \) mesons has been measured in γp, π±p andK± p collisions at beam energies of 65 GeV<Eγ<175 GeV andEπ/K =80 and 140 GeV. Cross sections have been determined over the range 0<xF<1.0 and 0<PT<1.8 GeV/c. Emphasis is put on the comparison of cross sections for different projectiles as a function ofxF so as to study the effects of common quarks between the beam particle and the detected ϕ,K*0 or\(\overline {K*^0 } \). The data are compared with a parton fusion model. Many features of the data are well explained. In detail the strange quark appears to carry a large fraction of the kaon momentum and the contribution of the valence quarks from the proton is small.
Statistical errors only.
Statistical errors only.
Statistical errors only.. An entry 0.00 indicates a statistical error of < 0.005.
Inclusive production ofK0 andK* (892)0 mesons inK+A-interactions (A=Be, Cu, Pb) at the energy 11.2 GeV has been investigated to study hadronisation of the leading\(\bar s\)-quark; the results are presented. Double differential cross sections d2σ/dxfdpt2 were measured in the region of incident particle fragmentation (0.4≦xf≦1,pt≦0.5 GeV/c). The experimental data obtained were analysed on the basis of the Lund model FRITIOF and a quark-gluon model that takes into account colour screening and hadron formation length effects. The experimental data confirm the picture of hadronisation of the leading\(\bar s\)-quark developed in the latter model.
No description provided.
No description provided.
No description provided.
The inclusiveKn, ¶,and\(\bar \Lambda\) production has been studied in a\(\bar pp\) experiment performed in the Mirabelle bubble chamber at an incident beam momentum of 32.1 GeV/c. Total, topological and differential cross sections are presented and compared with those obtained at other energies. The invariant structure functions have been parametrised in the fragmentation region by a power law and are consistent with the expectations based on quark counting rules.
No description provided.
No description provided.
No description provided.
Central collisions of 800-GeV protons with the heavy components of nuclear emulsion, Ag107 and Br80, have been investigated to determine the characteristics of small-impact-parameter collisions and, by comparison with the analysis of inclusive proton-emulsion inelastic interactions and inelastic proton-nucleon collisions, to study the dependence of the interaction process on the mean number of intranuclear collisions 〈ν〉. The data are also compared with the results obtained in proton-emulsion collisions, both central and inclusive, at 200 GeV. The variations in the secondary-particle multiplicities and the normalized pseudorapidity density correlate with 〈ν〉 and demonstrate that proton-nucleus interactions, both central and inclusive, can be described adequately by the incoherent superposition of proton-nucleon collisions.
NUCLEUS IS AVERAGE NUCLEUS OF EMULSION.
NUCLEUS IS AVERAGE NUCLEUS OF EMULSION.
NUCLEUS IS AVERAGE NUCLEUS OF EMULSION.
The interaction of 800-GeV protons in nuclear emulsion has been investigated. The multiplicities and angular distributions of charged particles emitted by both the projectile and the target nucleus have been measured for 1718 inelastic events and are compared with the data obtained in proton-emulsion collisions at 67, 200, and 400 GeV. The target excitation is found to be independent of energy while the production of secondary particles continues to increase with incident proton energy.
No description provided.
No description provided.
No description provided.
Correlations among the produced particles in interactions of 800-GeV protons with nuclei in photographic emulsion provide evidence for nonindependent production of the secondary particles. Assuming particle production in clusters, the analysis implies an average multiplicity of about 3 charged particles per cluster.
No description provided.
No description provided.
IN THIS TABLE ETARAP(P=3)=ETARAP(P=4).
None
AVERAGE OVER ALL TARGETS.
No description provided.
No description provided.