Charged particle production has been measured in Deep Inelastic Scattering (DIS) events using the ZEUS detector over a large range of $Q~2$ from 10 to $1280 {\rm\ GeV}~2$. The evolution with $Q$ of the charged multiplicity and scaled momentum has been investigated in the current fragmentation region of the Breit frame. The data are used to study QCD \linebreak coherence effects in DIS and are compared with corresponding \eedata in order to test the universality of quark fragmentation.
This paper presents measurements of \k\ and \lam\ production in neutral current, deep inelastic scattering of 26.7 GeV electrons and 820 GeV protons in the kinematic range $ 10 < Q~{2} < 640 $ GeV$~2$, $0.0003 < x < 0.01$, and $y > 0.04$. Average multiplicities for \k\ and \lam\ production are determined for transverse momenta \ \ptr\ $> 0.5 $ GeV and pseudorapidities $\left| \eta \right| < 1.3$. The multiplicities favour a stronger strange to light quark suppression in the fragmentation chain than found in $e~+ e~-$ experiments. The production properties of \k's in events with and without a large rapidity gap with respect to the proton direction are compared. The ratio of neutral \k's to charged particles per event in the measured kinematic range is, within the present statistics, the same in both samples.
We report a measurement of the production of antideuterons d in e + e − annihilation at centre-of-mass energies around 10 GeV using the ARGUS detector at the DORIS II storage ring. We observe an enhancement of d production in direct hadronic ϒ (1S) and ϒ (2S) resonance decays. From 21 events width a d candidate the inclusive cross section 1 σ dir had · d σ d p and the production rate of antideuterons are determined. A production rate of (6.0±2.0±0.6) × 10 -5 d per direct hadronic ϒ decay and a 90% CL upper limit of 1.7 × 10 −5 d per e + e − →q q continuum event are obtained. These results are related to antiproton production through a simple model.
We report on the first observation of Δ(1232) ++ and Δ(1232)++¯ baryons in e + e − annihilation at energies around 10 GeV, using the ARGUS detector at DORIS II. The sum of the rates of Δ ++ and Δ++¯ per hadronic event in the continuum is measured to be 0.040±0.008±0.006, and the rate in direct ϒ(1S) decays is 0.124±0.016±0.015. The momentum spectrum of Δ ++ baryons in direct ϒ(1S) decays has been measured.
The reaction γγ → 2 π + 2 π − π 0 has been studied using the the ARGUS detector at the e + e − storage ring DORIS II at DESY. The production of the vector-meson pair ωϱ 0 is observed for the first time. The cross section for γγ → ωϱ 0 and the topological cross section for γγ → 2 π + 2 π − π 0 are given. The angular distribution in ωϱ 0 events do not indicate any specific dominant spin-parity; they are consistent with isotropic production and decay of the ω and ϱ 0 mesons over the available W γγ range.
Using the ARGUS detector at the DORIS II e + e − storage ring we have measured direct photons from the decay ???(1 S )→ γgg . The ratio R γ = Γ (???(1S)→ γgg )/ Γ (???(1S)→ ggg )=(3.00±0.13±0.18)% has been determined, from which we deduce values of the strong coupling constant α s =0.225±0.011±0.019 and the QCD scale parameter Λ MS =115±17±28 MeV defined in the modified minimal-subtraction scheme. The shape of the measured spectrum clearly rules out the predictions of the lowest order QCD calculations.
The final state K + K − π + π − has been studied in γγ interactions using the ARGUS detector at the e + e − storage ring DORIS II at DESY. Production of the vector meson pair K ∗0 (892) K ∗0 (892) is observed for the first time. The cross section for K + K − π + π − , K ∗0 K − π + +c.c. and K ∗0 K ∗0 are all found to be of the order of a few nb. In the W γγ range accessible, a mean upper limit of 0.5 nb at 95% CL is derived for φϱ 0 production.
Using the ARGUS detector at the DORIS II storage ring at DESY, we have observed a charmed meson of mass (2455±3±5) MeV/c2, decaying to D + π − . The natural width of this state is determined to be (15 +13+5 −10−10 ) MeV c 2 . The fragmentation function is hard, as expected for a leading charmed particle from nonresonant e + e − annihilation. Analysis of the decay angular distribution supports the hypothesis that the observed state is an L =1 excited charmed meson with spin-parity 2 + .
The reaction γγ → ϱ + ϱ − → π + π − π 0 π 0 has been studied with the ARGUS detector at the e + e − storage ring DORIS II at DESY. Near threshold, the cross section for this reaction is about four times smaller than for the reaction γγ → ϱ 0 ϱ 0 .
We report the first observation of an orbitally excited baryon, the Λ(1520), in quark and gluon fragmentation. The production rate is found to be (1.15±0.21±0.16)×10 −2 and (0.80±0.17 −0.13 +0.10 )×10 −2 Λ (1520) hyperons per event in direct ϒ decays and in the continuum, respectively. In contrast to the observed situation for ground state baryons, the production of the Λ(1520) in direct ϒ decays shows little or no enhancement with respect to continuum production.