We present improved measurements of the differential production rates of stable charged particles in hadronic Z0 decays, and of charged pions, kaons and protons identified over a wide momentum range using the SLD Cherenkov Ring Imaging Detector. In addition to flavor-inclusive Z0 decays, measurements are made for Z0 decays into light (u, d, s), c and b primary flavors, selected using the upgraded Vertex Detector. Large differences between the flavors are observed that are qualitatively consistent with expectations based upon previously measured production and decay properties of heavy hadrons. These results are used to test the predictions of QCD in the Modified Leading Logarithm Approximation, with the ansatz of Local Parton-Hadron Duality, and the predictions of three models of the hadronization process. The light-flavor results provide improved tests of these predictions, as they do not include the contribution of heavy-hadron production and decay; the heavy-flavor results provide complementary model tests. In addition we have compared hadron and antihadron production in light quark (as opposed to antiquark) jets. Differences are observed at high momentum for all three charged hadron species, providing direct probes of leading particle effects, and stringent constraints on models.
Production rates of all stable charged particles. The statistical and systematic errors are shown separately for the momentum distribution. They are combined in quadrature for the other two distributions. The first DSYS error is due tothe uncertainty in the track finding efficiency and the second DSYS error is th e rest of the systematic error.
The charged pion fraction and differential production rate per hadronic Z0 decay.
The charged kaon fraction and differential production rate per hadronic Z0 decay.
We present a measurement of the b-quark inclusive fragmentation function in Z0 decays using a novel kinematic B-hadron energy reconstruction technique. The measurement was performed using 350,000 hadronic Z0 events recorded in the SLD experiment at SLAC between 1997 and 1998. We compared the sacled B-hadron energy distribution with models of b-quark fragmentation and with several ad hoc functional forms. A number of models and functions are excluded by the data. The average scaled energy of weakly-decaying B hadrons was measured to be
DATA FROM THE ERRATUM (PR D66,079905,2002). Measurement of the fragmentation function of weakly decaying B-hadrons in Z0 decays. First systematic (DSYS) error is the systematic error, the second is the estimated error due to the model dependence of the unfolding procedure.
DATA FROM ORIGINAL PAPER, SUPERSEDED BY ERRATUM (SEE ABOVE TABLE). Measurement of the fragmentation function of weakly decaying B-hadrons in Z0 decays. First systematic (DSYS) error is the systematic error, the second is the estimated error due to the model dependence of the unfolding procedure.
We have developed a new technique for inclusive reconstruction of the energy of B hadrons. The excellent efficiency and resolution of this technique allow us to make the most precise determination of the b-quark fragmentation function, using e+e- -> Z0 decays recorded in the SLD experiment at SLAC. We compared our measurement with the predictions of a number of fragmentation models. We excluded several of these models and measured the average scaled energy of weakly-decaying B hadrons to be
Unfolded distribution of weakly decaying scaled B-hadron enery with statistical errors only.
We have measured the differential production cross sections as a function of scaled momentum x_p=2p/E_cm of the identified hadron species pi+, K+, K0, K*0, phi, p, Lambda0, and of the corresponding antihadron species in inclusive hadronic Z0 decays, as well as separately for Z0 decays into light (u, d, s), c and b flavors. Clear flavor dependences are observed, consistent with expectations based upon previously measured production and decay properties of heavy hadrons. These results were used to test the QCD predictions of Gribov and Lipatov, the predictions of QCD in the Modified Leading Logarithm Approximation with the ansatz of Local Parton-Hadron Duality, and the predictions of three fragmentation models. Ratios of production of different hadron species were also measured as a function of x_p and were used to study the suppression of strange meson, strange and non-strange baryon, and vector meson production in the jet fragmentation process. The light-flavor results provide improved tests of the above predictions, as they remove the contribution of heavy hadron production and decay from that of the rest of the fragmentation process. In addition we have compared hadron and antihadron production as a function of x_p in light quark (as opposed to antiquark) jets. Differences are observed at high x_p, providing direct evidence that higher-momentum hadrons are more likely to contain a primary quark or antiquark. The differences for pseudoscalar and vector kaons provide new measurements of strangeness suppression for high-x_p fragmentation products.
Charged pion fraction and differential cross section per hadron Z0 decay. The last line in the table is the integral over the full X range of the measurement.. There is an additional 1.7 PCT normalization error (included in the integral).
Charged kaon fraction and differential cross section per hadron Z0 decay. The last line in the table is the integral over the full X range of the measurement.. There is an additional 1.7 PCT normalization error (included in the integral).
Proton fraction and differential cross section per hadron Z0 decay. The last line in the table is the integral over the full X range of the measurement.. There is an additional 1.7 PCT normalization error (included in the integral).
Previously published and as yet unpublished QCD results obtained with the ALEPH detector at LEP1 are presented. The unprecedented statistics allows detailed studies of both perturbative and non-perturbative aspects of strong interactions to be carried out using hadronic Z and tau decays. The studies presented include precise determinations of the strong coupling constant, tests of its flavour independence, tests of the SU(3) gauge structure of QCD, study of coherence effects, and measurements of single-particle inclusive distributions and two-particle correlations for many identified baryons and mesons.
Charged particle sphericity distribution.
Charged particle aplanarity distribution.
Charged particle Thrust distribution.
Quark and gluon jets with the same energy, 24 GeV, are compared in symmetric three-jet configurations from hadronic Z decays observed by the ALEPH detector. Jets are defined using the Durham algorithm. Gluon jets are identified using an anti-tag on b jets, based on a track impact parameter method. The comparison of gluon and mixed flavour quark jets shows that gluon jets have a softer fragmentation function, a larger angular width and a higher particle multiplicity, Evidence is presented which shows that the corresponding differences between gluon and b jets are significantly smaller. In a statistically limited comparison the multiplicity in c jets was found to be comparable with that observed for the jets of mixed quark flavour.
B-jets are identified with the lepton-tag analysis.
The same kinematics as in the table 1.
We present the general properties of multihadron final states produced by e+e− annihilation at center-of-mass energies from 52 to 57 GeV in the AMY detector at the KEK collider TRISTAN. Global shape, inclusive charged-particle, and particle-flow distributions are presented. Our measurements are compared with QCD+fragmentation models that use either leading-logarithmic parton-shower evolution or QCD matrix elements at the parton level, and either string or cluster fragmentation for hadronization.
Rapidity distribution with respect to the Thrust axis.
Charged particle X distribution.
Charged particle PL distribution.
The multiplicities per event of π ± and K ± are measured separately for e + e - annihilation into c c , b b , and light quark pairs at E cm=29 GeV. The K ± multiplicity is higher for heavy quark events than for light quark events. The π ± multiplicity and the π ± scaled differential cross section at low x = E beam/ E beam are found to be higher for b b events than for other events.
Numerical values requested from authors. Data given separately for (b bbar), (c cbar) and light quark jets.
Measured multiplicities for (b bbar) jets.
Measured multiplicities for (c cbar) jets.