Date

Search for single production of vector-like quarks decaying into $W(\ellν)b$ in $pp$ collisions at $\sqrt{s} = 13$ TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Aakvaag, Erlend ; Abbott, Braden Keim ; et al.
JHEP 12 (2025) 012, 2025.
Inspire Record 2936806 DOI 10.17182/hepdata.161563

A search for single production of a vector-like quark $Q$, which could be either a singlet $T$, with charge $\tfrac23$, or a $Y$ from a $(T,B,Y)$ triplet, with charge $-\tfrac43$, is performed using data from proton-proton collisions at a centre-of-mass energy of 13 TeV. The data correspond to the full integrated luminosity of 140 fb$^{-1}$ recorded with the ATLAS detector during Run 2 of the Large Hadron Collider. The analysis targets $Q \to Wb$ decays where the $W$ boson decays leptonically. The data are found to be consistent with the expected Standard Model background, so upper limits are set on the cross-section times branching ratio, and on the coupling of the $Q$ to the Standard Model sector for these two benchmark models. Effects of interference with the Standard Model background are taken into account. For the singlet $T$, the 95% confidence level limit on the coupling strength $κ$ ranges between 0.22 and 0.52 for masses from 1150 to 2300 GeV. For the $(T,B,Y)$ triplet, the limits on $κ$ vary from 0.14 to 0.46 for masses from 1150 to 2600 GeV.

19 data tables

Distributions of the VLQ-candidate mass, m<sub>VLQ</sub>, in the (a&ndash;c) SRs, (d&ndash;f) W+jets CRs and (g&ndash;i) tt&#772; CRs after the fit to the background-only hypothesis. The columns correspond from left to right to the low-, middle-, and high-p<sub>T</sub><sup>W</sup> bins in each region. Other includes remaining backgrounds from top quarks or that contain two W/Z bosons. The last bin includes overflow. Note: the 'Data' values in the table are normalized by the width of the bin to correspond to the number of events per 100 GeV

Distributions of the VLQ-candidate mass, m<sub>VLQ</sub>, in the (a&ndash;c) SRs, (d&ndash;f) W+jets CRs and (g&ndash;i) tt&#772; CRs after the fit to the background-only hypothesis. The columns correspond from left to right to the low-, middle-, and high-p<sub>T</sub><sup>W</sup> bins in each region. Other includes remaining backgrounds from top quarks or that contain two W/Z bosons. The last bin includes overflow. Note: the 'Data' values in the table are normalized by the width of the bin to correspond to the number of events per 100 GeV

Distributions of the VLQ-candidate mass, m<sub>VLQ</sub>, in the (a&ndash;c) SRs, (d&ndash;f) W+jets CRs and (g&ndash;i) tt&#772; CRs after the fit to the background-only hypothesis. The columns correspond from left to right to the low-, middle-, and high-p<sub>T</sub><sup>W</sup> bins in each region. Other includes remaining backgrounds from top quarks or that contain two W/Z bosons. The last bin includes overflow. Note: the 'Data' values in the table are normalized by the width of the bin to correspond to the number of events per 100 GeV

More…

Measurement of inclusive jet cross section and substructure in $p$+$p$ collisions at $\sqrt{s_{_{NN}}}=200$ GeV

The PHENIX collaboration Abdulameer, N.J. ; Acharya, U. ; Aidala, C. ; et al.
Phys.Rev.D 111 (2025) 112008, 2025.
Inspire Record 2820229 DOI 10.17182/hepdata.158374

The jet cross-section and jet-substructure observables in $p$$+$$p$ collisions at $\sqrt{s}=200$ GeV were measured by the PHENIX Collaboration at the Relativistic Heavy Ion Collider (RHIC). Jets are reconstructed from charged-particle tracks and electromagnetic-calorimeter clusters using the anti-$k_{t}$ algorithm with a jet radius $R=0.3$ for jets with transverse momentum within $8.0<p_T<40.0$ GeV/$c$ and pseudorapidity $|η|<0.15$. Measurements include the jet cross section, as well as distributions of SoftDrop-groomed momentum fraction ($z_g$), charged-particle transverse momentum with respect to jet axis ($j_T$), and radial distributions of charged particles within jets ($r$). Also meaureed was the distribution of $ξ=-ln(z)$, where $z$ is the fraction of the jet momentum carried by the charged particle. The measurements are compared to theoretical next-to and next-to-next-to-leading-order calculatios, PYTHIA event generator, and to other existing experimental results. Indicated from these meaurements is a lower particle multiplicity in jets at RHIC energies when compared to models. Also noted are implications for future jet measurements with sPHENIX at RHIC as well as at the future Electron-Ion Collider.

8 data tables

The jet differential cross section as a function of jet $p_T$. Statistical uncertainties are typically smaller than the data points while systematic uncertainties are shown with boxes. An overall normalization systematic of 7% is not included in the point-by-point systematic uncertainties.

Distribution of the SoftDrop groomed momentum fraction $z_g$ for different jet $p_T$ bins. Standard SoftDrop parameters were used ($z_{cut}<0.1$ and $\beta=0$).

$\xi$ distributions for different jet $p_T$ bins.

More…

Observation of $t\bar{t}\gamma\gamma$ production at $\sqrt{s}=$13 TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Aakvaag, Erlend ; Abbott, Braden Keim ; et al.
CERN-EP-2025-125, 2025.
Inspire Record 2930296 DOI 10.17182/hepdata.159299

This paper presents the first observation of top-quark pair production in association with two photons ($t\bar{t}\gamma\gamma$). The measurement is performed in the single-lepton decay channel using proton-proton collision data collected by the ATLAS detector at the Large Hadron Collider. The data correspond to an integrated luminosity of 140 fb$^{-1}$ recorded during Run 2 at a centre-of-mass energy of 13 TeV. The $t\bar{t}\gamma\gamma$ production cross section, measured in a fiducial phase space based on particle-level kinematic criteria for the lepton, photons, and jets, is found to be $2.42^{+0.58}_{-0.53}\, \text{fb}$, corresponding to an observed significance of 5.2 standard deviations. Additionally, the ratio of the production cross section of $t\bar{t}\gamma\gamma$ to top-quark pair production in association with one photon is determined, yielding $(3.30^{+0.70}_{-0.65})\times 10^{-3}$.

3 data tables

Measured $t\bar{t}\gamma\gamma$ production fiducial inclusive cross-section in single-lepton decay channel.

Measured ratio of production cross sections of $t\bar{t}\gamma\gamma$ to $t\bar{t}\gamma$ in single-lepton decay channel.

Summary of the relative impact of all the systematic uncertainties, in percentage, on the $t\bar{t}\gamma\gamma$ fiducial inclusive cross section and $R_{t\bar{t}\gamma\gamma/t\bar{t}\gamma}$ grouped into different categories. The category ‘Jet’ corresponds to the effect of JES, jet resolution and JVT uncertainties, ‘Photon’ and ‘Leptons’ include all experimental uncertainties related to photons and leptons (including trigger uncertainties), respectively.


Measurements of $W^+W^-$ production cross-sections in $pp$ collisions at $\sqrt{s}=13$ TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Braden Keim ; Abeling, Kira ; et al.
JHEP 08 (2025) 142, 2025.
Inspire Record 2923238 DOI 10.17182/hepdata.156818

Measurements of $W^+W^-\rightarrow e^\pm νμ^\mp ν$ production cross-sections are presented, providing a test of the predictions of perturbative quantum chromodynamics and the electroweak theory. The measurements are based on data from $pp$ collisions at $\sqrt{s}=13$ TeV recorded by the ATLAS detector at the Large Hadron Collider in 2015-2018, corresponding to an integrated luminosity of 140 fb$^{-1}$. The number of events due to top-quark pair production, the largest background, is reduced by rejecting events containing jets with $b$-hadron decays. An improved methodology for estimating the remaining top-quark background enables a precise measurement of $W^+W^-$ cross-sections with no additional requirements on jets. The fiducial $W^+W^-$ cross-section is determined in a maximum-likelihood fit with an uncertainty of 3.1%. The measurement is extrapolated to the full phase space, resulting in a total $W^+W^-$ cross-section of $127\pm4$ pb. Differential cross-sections are measured as a function of twelve observables that comprehensively describe the kinematics of $W^+W^-$ events. The measurements are compared with state-of-the-art theory calculations and excellent agreement with predictions is observed. A charge asymmetry in the lepton rapidity is observed as a function of the dilepton invariant mass, in agreement with the Standard Model expectation. A CP-odd observable is measured to be consistent with no CP violation. Limits on Standard Model effective field theory Wilson coefficients in the Warsaw basis are obtained from the differential cross-sections.

63 data tables

Measured fiducial cross-section compared with theoretical predictions from MiNNLO+Pythia8, Geneva+Pythia8, Sherpa2.2.12, and MATRIX2.1. The predictions are based on the NNPDF3.0 (red squares) and NNPDF3.1 luxQED (blue dots) PDF sets. The nNNLO predictions include photon-induced contributions (always using NNPDF3.1 luxQED) and NLO QCD corrections to the gluon-gluon initial state. The $q\bar{q}\rightarrow WW$ predictions from MiNNLO, Geneva, and Sherpa2.2.12 are combined with a Sherpa2.2.2 prediction of gluon-induced production, scaled by an inclusive NLO K-factor of 1.7. Inner (outer) error bars on the theory predictions correspond to PDF (the combination of scale and PDF) uncertainties. The MATRIX nNNLO QCD $\otimes$ NLO EW prediction using NNPDF3.1 luxQED, the best available prediction of the integrated fiducial cross-section, is in good agreement with the measurement.

Fiducial differential cross-sections as a function of $p_{\mathrm{T}}^{\mathrm{lead.\,lep.}}$. The measured cross-section values are shown as points with error bars giving the statistical uncertainty and solid bands indicating the size of the total uncertainty. The right-hand-side axis indicates the integrated cross-section of the rightmost bin. The results are compared to fixed-order nNNLO QCD + NLO EW predictions of Matrix 2.1, with the NNLO + PS predictions from Powheg MiNNLO + Pythia8 and Geneva + Pythia8, as well as Sherpa2.2.12 NLO + PS predictions. The last three predictions are combined with Sherpa 2.2.2 for the $gg$ initial state and Sherpa 2.2.12 for electroweak $WWjj$ production. These contributions are modelled at LO but a NLO QCD $k$-factor of 1.7 is applied for gluon induced production. Theoretical predictions are indicated as markers with vertical lines denoting PDF, scale and parton shower uncertainties. Markers are staggered for better visibility.

Correlation matrix of the statistical uncertainties in the measured fiducial cross section for the observable $p_{\mathrm{T}}^{\mathrm{lead.\,lep.}}$.

More…

Search for lepton flavor-violating decay modes $B^0 \to K^{\ast 0}\tau^\pm\ell^\mp$ ($\ell = e,\mu$) with hadronic B-tagging at Belle and Belle II

The Belle-II & Belle collaborations Adachi, I. ; Ahn, Y. ; Aihara, H. ; et al.
Belle II preprint: 2025-014, 2025.
Inspire Record 2920672 DOI 10.17182/hepdata.159492

We present the results of a search for the charged-lepton-flavor violating decays $B^0 \rightarrow K^{*0}\tau^\pm \ell^{\mp}$, where $\ell^{\mp}$ is either an electron or a muon. The results are based on 365 fb$^{-1}$ and 711 fb$^{-1}$ datasets collected with the Belle II and Belle detectors, respectively. We use an exclusive hadronic $B$-tagging technique, and search for a signal decay in the system recoiling against a fully reconstructed $B$ meson. We find no evidence for $B^0 \rightarrow K^{*0}\tau^\pm \ell^{\mp}$ decays and set upper limits on the branching fractions in the range of $(2.9-6.4)\times10^{-5}$ at 90% confidence level.

72 data tables

$M_{\tau}$ distribution in signal region, (OS$e$, Belle)

$M_{\tau}$ distribution in signal region, (OS$e$, Belle II)

$M_{\tau}$ distribution in signal region, (OS$\mu$, Belle)

More…

Measurement of the Total Compton Scattering Cross Section between 6.5 and 11 GeV

The GlueX collaboration Afzal, F. ; Akondi, C.S. ; Albrecht, M. ; et al.
Phys.Lett.B 870 (2025) 139914, 2025.
Inspire Record 2920657 DOI 10.17182/hepdata.165514

The total cross section for Compton scattering off atomic electrons, $γ+e\rightarrowγ'+e'$, was measured using photons with energies between 6.5 and 11.1 GeV incident on a $^9$Be target as part of the PrimEx-eta experiment in Hall D at Jefferson Lab. This is the first measurement of this fundamental QED process within this energy range. The total uncertainties of the cross section, combining the statistical and systematic components in quadrature, averaged to 3.4% across all energy bins. This not only demonstrates the capability of this experimental setup to perform precision cross-section measurements at forward angles but also allows us to compare with state-of-the-art QED calculations.

1 data table

$\gamma +e^- \rightarrow \gamma + e^-$ total cross section in bins of photon beam energy. The first uncertainties are statistical, and the second are systematic.


Search for new physics in final states with semi-visible jets or anomalous signatures using the ATLAS detector

The ATLAS collaboration Aad, Georges ; Aakvaag, Erlend ; Abbott, Braden Keim ; et al.
Phys.Rev.D 112 (2025) 012021, 2025.
Inspire Record 2918816 DOI 10.17182/hepdata.159761

A search is presented for hadronic signatures of beyond the Standard Model (BSM) physics, with an emphasis on signatures of a strongly-coupled hidden dark sector accessed via resonant production of a $Z'$ mediator. The ATLAS experiment dataset collected at the Large Hadron Collider from 2015 to 2018 is used, consisting of proton-proton collisions at $\sqrt{s}$ = 13 TeV and corresponding to an integrated luminosity of 140 fb$^{-1}$. The $Z'$ mediator is considered to decay to two dark quarks, which each hadronize and decay to showers containing both dark and Standard Model particles, producing a topology of interacting and non-interacting particles within a jet known as ``semi-visible". Machine learning methods are used to select these dark showers and reject the dominant background of mismeasured multijet events, including an anomaly detection approach to preserve broad sensitivity to a variety of BSM topologies. A resonance search is performed by fitting the transverse mass spectrum based on a functional form background estimation. No significant excess over the expected background is observed. Results are presented as limits on the production cross section of semi-visible jet signals, parameterized by the fraction of invisible particles in the decay and the $Z'$ mass, and by quantifying the significance of any generic Gaussian-shaped mass peak in the anomaly region.

6 data tables

Acceptance times efficiency weighted yields across the signal grid.

The 95% CL limits on the cross-section $\sigma(pp \rightarrow Z' \rightarrow \chi \chi$) times branching ratio B in fb with all statistical and systematic uncertainties, for the $R_{\text{inv}}=$0.2 signal points.

The 95% CL limits on the cross-section $\sigma(pp \rightarrow Z' \rightarrow \chi \chi$) times branching ratio B in fb with all statistical and systematic uncertainties, for the $R_{\text{inv}}=$0.4 signal points.

More…

Search for $B^0 \to K^{\ast 0} \tau^+ \tau^-$ decays at the Belle II experiment

The Belle-II collaboration Adachi, I. ; Adamczyk, K. ; Aggarwal, L. ; et al.
Phys.Rev.Lett. 135 (2025) 151801, 2025.
Inspire Record 2911582 DOI 10.17182/hepdata.159541

We present a search for the rare flavor-changing neutral-current decay $B^0 \to K^{\ast 0} τ^+ τ^-$ with data collected by the Belle II experiment at the SuperKEKB electron-positron collider. The analysis uses a 365 fb$^{-1}$ data sample recorded at the center-of-mass energy of the $Υ(4S)$ resonance. One of the $B$ mesons produced in the $Υ(4S)\to B^0 \bar{B}^0$ process is fully reconstructed in a hadronic decay mode, while its companion $B$ meson is required to decay into a $K^{\ast 0}$ and two $τ$ leptons of opposite charge. The $τ$ leptons are reconstructed in final states with a single electron, muon, charged pion or charged $ρ$ meson, and additional neutrinos. We set an upper limit on the branching ratio of $BR(B^0 \to K^{\ast 0} τ^+ τ^-) < 1.8 \times 10^{-3}$ at the 90% confidence level, which is the most stringent constraint reported to date.

4 data tables

- - - - - - - - Overview of HEPData Record - - - - - - - -<br/><br/></ul><b>Post-fit yields:</b><ul><li><a href="159541?version=1&table=Postfit%20yields:%20fit%20variable">Fit variable $\eta(\rm{BDT})$</a></ul><b>Signal $q^{2}$:</b><ul><li><a href="159541?version=1&table=Generated%20$q^2$"> Generated $q^{2}$ distribution </a></ul><b>Signal selection efficiency:</b><ul><li><a href="159541?version=1&table=Selection%20efficiency"> Selection efficieny in signal region </a>

Observed yields and fit results in bins of $\eta(\rm{BDT})$ as obtained by the fit on the four signal categories, corresponding to an integrated luminosity of 365 fb$^{-1}$. The yields are shown for $B^0 \rightarrow K^{\ast 0}\tau\tau$ signal and the two background components ($B\bar{B}$ decays and $q\bar{q}$ continuum).

Distribution of the di-tau invariant mass squared $q^2$ assumed for the generated signal $B^0 \rightarrow K^{\ast 0}\tau\tau$ events.

More…

Measurements of Higgs boson production via gluon-gluon fusion and vector-boson fusion using $H\rightarrow WW^\ast \rightarrow \ellν\ellν$ decays in $pp$ collisions with the ATLAS detector and their effective field theory interpretations

The ATLAS collaboration Aad, Georges ; Aakvaag, Erlend ; Abbott, Braden Keim ; et al.
Eur.Phys.J.C 85 (2025) 1403, 2025.
Inspire Record 2910761 DOI 10.17182/hepdata.157266

Higgs boson production cross-sections via gluon-gluon fusion and vector-boson fusion in proton-proton collisions are measured in the $H\rightarrow WW^\ast \rightarrow \ellν\ellν$ decay channel. The Large Hadron Collider delivered proton-proton collisions at a centre-of-mass energy of $13\,\textrm{TeV}$ between 2015 and 2018, which were recorded by the ATLAS detector, corresponding to an integrated luminosity of $140\,\textrm{fb}^{-1}$. The total cross-sections for Higgs boson production by gluon-gluon fusion and vector-boson fusion times the $H\rightarrow WW^\ast$ branching ratio are measured to be $12.4^{+1.3}_{-1.2}\,\textrm{pb}$ and $0.79^{+0.18}_{-0.16}\,\textrm{pb}$, respectively, in agreement with the Standard Model predictions. Higgs boson production is further characterised through measurements of Simplified Template Cross-Sections in a total of fifteen kinematic fiducial regions. A new scheme of kinematic fiducial regions has been introduced to enhance the sensitivity to CP-violating effects in Higgs boson interactions. Both schemes are used to constrain CP-even and CP-odd dimension-six operators in the Standard Model effective field theory.

75 data tables

Expected values and uncertainties for the $H \to WW^{\ast}$ cross-sections measured in each of the STXS categories, normalised to the corresponding SM predictions.

Best-fit values and uncertainties for the $H \to WW^{\ast}$ cross-sections measured in each of the STXS categories, normalised to the corresponding SM predictions.

Expected correlations between the production cross-sections multiplied by the $H \to WW^{\ast}$ branching ratio for each of the STXS categories.

More…

Revealing the microscopic mechanism of deuteron formation at the LHC

The ALICE collaboration Acharya, S. ; Agarwal, A. ; Aglieri Rinella, G. ; et al.
Nature 648 (2025) 306-311, 2025.
Inspire Record 2907586 DOI 10.17182/hepdata.165804

The formation of light (anti)nuclei with mass number A of a few units (e.g., d, $^3$He, and $^4$He) in high-energy hadronic collisions presents a longstanding mystery in nuclear physics [1,2]. It is not clear how nuclei bound by a few MeV can emerge in environments characterized by temperatures above 100 MeV [3-5], about 100,000 times hotter than the center of the Sun. Despite extensive studies, this question remained unanswered. The ALICE Collaboration now addresses it with a novel approach using deuteron-pion momentum correlations in proton-proton (pp) collisions at the Large Hadron Collider (LHC). Our results provide model-independent evidence that about 80% of the observed (anti)deuterons are produced in nuclear fusion reactions [6] following the decay of short-lived resonances, such as the $\Delta (1232)$. These findings resolve a crucial gap in our understanding of nucleosynthesis in hadronic collisions. Beyond answering the fundamental question on how nuclei are formed in hadronic collisions, the results can be employed in the modeling of the production of light and heavy nuclei in cosmic rays [7] and dark matter decays [8,9].

7 data tables

Measured $\pi^{+}$–d$\oplus\pi^{-}$–$\overline{\mathrm{d}}$ (left panel) correlation function.

Measured $\pi^{-}$–d$\oplus\pi^{+}$–$\overline{\mathrm{d}}$ (right panel) correlation function.

The extracted kinetic decoupling temperature is derived from $\pi^{+}$–d correlation functions.

More…