The Upsilon production cross section in proton-proton collisions at sqrt(s) = 7 TeV is measured using a data sample collected with the CMS detector at the LHC, corresponding to an integrated luminosity of 3.1 +/- 0.3 inverse picobarns. Integrated over the rapidity range |y|<2, we find the product of the Upsilon(1S) production cross section and branching fraction to dimuons to be sigma(pp to Upsilon(1S) X) B(Upsilon(1S) to mu+ mu-) = 7.37 +/- 0.13^{+0.61}_{-0.42}\pm 0.81 nb, where the first uncertainty is statistical, the second is systematic, and the third is associated with the estimation of the integrated luminosity of the data sample. This cross section is obtained assuming unpolarized Upsilon(1S) production. If the Upsilon(1S) production polarization is fully transverse or fully longitudinal the cross section changes by about 20%. We also report the measurement of the Upsilon(1S), Upsilon(2S), and Upsilon(3S) differential cross sections as a function of transverse momentum and rapidity.
Production cross sections integrated over the range |eta| < 2 and PT < 30 GeV. The second systematic error is the uncertainty on the luminosity.
UPSI(1S) differential cross sections for |y| < 2.
UPSI(2S) differential cross sections for |y| < 2.
We have observed the reactions p+pbar --> p+X+pbar, with X being a centrally produced J/psi, psi(2S) or chi_c0, and gamma+gamma --> mu+mu-, in proton- antiproton collisions at sqrt{s} = 1.96 TeV using the Run II Collider Detector at Fermilab. The event signature requires two oppositely charged muons, each with pseudorapidity |eta| < 0.6, with M(mumu) in [3.0,4.0] GeV/c2, and either no other particles, or one additional photon, detected. The J/psi and the psi(2S) are prominent, on a continuum consistent with the QED process gamma+gamma --> mu+mu-. Events with a J/psi and an associated photon candidate are consistent with exclusive chi_c0 production through double pomeron exchange. The exclusive vector meson production is as expected for elastic photo- production, gamma+p --> J/psi(psi(2S)) + p, which is observed here for the first time in hadron-hadron collisions. The cross sections ds/dy(y=0) for p + pbar --> p + X + pbar with X = J/psi, psi(2S) orchi_c0 are 3.92+/-0.62 nb, 0.53+/-0.14 nb, and 75+/-14 nb respectively. The cross section for the continuum, with |eta(mu+/-)| < 0.6, M(mumu) in [3.0,4.0] GeV/c2, is [Integral ds/(dM.deta1.deta2)] = 2.7+/-0.5 pb, consistent with QED predictions. We put an upper limit on the cross section for odderon exchange in J/psi production: ds/dy(y=0) (J/psi_O/IP) < 2.3 nb at 95% C.L.
Prompt J/psi cross section from exclusive photoproduction at mid rapidity.
Prompt Psi(2S) cross section from exclusive photoproduction at mid rapidity.
Prompt photoproduction cross-section ratio Psi(2S)/(J/psi) at mid rapidity.
We report the measurement of charged $D^*$ mesons in inclusive jets produced in proton-proton collisions at a center of mass energy $\sqrt{s}$ = 200 GeV with the STAR experiment at RHIC. For $D^{*}$ mesons with fractional momenta $0.2 < z < 0.5$ in inclusive jets with 11.5 GeV mean transverse energy, the production rate is found to be $N(D^{*+}+D^{*-})/N(\mathrm{jet}) = 0.015 \pm 0.008 (\mathrm{stat}) \pm 0.007 (\mathrm{sys})$. This rate is consistent with perturbative QCD evaluation of gluon splitting into a pair of charm quarks and subsequent hadronization.
D*+-/jet azimuthal correlations. Delta Phi represents the difference in azimuthal angle between D*+- (of 2<Pt<10 GeV/c) and the jet's (of 8<Pt<20 GeV/c) axis.
Production rate of D*+- mesons with fractional longitudinal momenta 0.2<z<0.5 (z = Pl(D*+-)/Ejet, Pl is the momentum projection on the jet axis and Ejet is the total jet energy) in inclusive jets of 11.5 Gev mean transverse energy.
The NA60 experiment studies muon pair production at the CERN SPS. In this letter we report on a precision measurement of J/psi in In-In collisions. We have studied the J/psi centrality distribution, and we have compared it with the one expected if absorption in cold nuclear matter were the only active suppression mechanism. For collisions involving more than ~80 participant nucleons, we find that an extra suppression is present. This result is in qualitative agreement with previous Pb-Pb measurements by the NA50 experiment, but no theoretical explanation is presently able to coherently describe both results.
Values of the J/PSI production cross section, divided by the Drell-Yann cross section, as a function of centrality. Centrality is determined by the amount of energy collectedby the zero degree calorimeter (ZDC), and the average nuber of participants, obtained from E(ZDC) is also given. (High E(ZDC) corresponds to peripheral events and low number of participants, and vice-versa) The values are uncorrected for the J/PSI decay branching ratio.
We measure the ratio of cross section times branching fraction, $R_p \equiv \sigma_{\chi_{c2}} {\cal B}(\chi_{c2} \to J/\psi \gamma)/ \sigma_{\chi_{c1}} {\cal B}(\chi_{c1} \to J/\psi \gamma)$, in 1.1 fb$^{-1}$ of $p\bar{p}$ collisions at $\sqrt{s} =$ 1.96 TeV. This measurement covers the kinematic range $p_T(J/\psi)>4.0$ GeV/$c$, $|\eta(J/\psi)| < 1.0$, and $p_T(\gamma)>1.0$ GeV/$c$. For events due to prompt processes, we find $R_p = 0.395\pm0.016(stat.)\pm0.015(sys.)$. This result represents a significant improvement in precision over previous measurements of prompt $\chi_{c1,2}$ hadroproduction.
Ratios of cross section times branching fractions of the X_cJ states for the prompt events and B decay events Relative systematic uncertainty +-0.037% for SIG(Q=CHI/C2)/SIG(Q=CHI/C1). Relative systematic uncertainty +-0.038% for SIG(Q=B_CHI/C2)/SIG(Q=B_CHI/C1).
We report on a study of the ratio of inclusive three-jet to inclusive two-jet production cross sections as a function of total transverse energy in p-pbar collisions at a center-of-mass energy sqrt{s} = 1.8 TeV, using data collected with the D0 detector during the 1992-1993 run of the Fermilab Tevatron Collider. The measurements are used to deduce preferred renormalization scales in perturbative O(alpha_s^3) QCD calculations in modeling soft-jet emission.
First and second errors correspond to uncorrelated (C=UNCORR) and correlated (C=CORR) uncertainties. Uncorrelated uncertainties include statistical and uncorrelated systematic uncertainties added in quadrature.
Measurements are presented of the polarisation of W+W- boson pairs produced in e+e- collisions, and of CP-violating WWZ and WWGamma trilinear gauge couplings. The data were recorded by the OPAL experiment at LEP during 1998, where a total integrated luminosity of 183 pb^-1 was obtained at a centre-of-mass energy of 189 GeV. The measurements are performed through a spin density matrix analysis of the W boson decay products. The fraction of W bosons produced with longitudinal polarisation was found to be sigma_L/sigma_total = (21.0 +- 3.3 +- 1.6)% where the first error is statistical and the second systematic. The joint W boson pair production fractions were found to be sigma_TT/sigma_total = (78.1 +- 9.0 +- 3.2) %, sigma_LL/sigma_total = (20.1 +- 7.2 +- 1.8) % and sigma_TL/sigma_total = (1.8 +- 14.7 +- 3.8) %. In the CP-violating trilinear gauge coupling sector we find kappa_z = -0.20 +0.10 -0.07, g^z_4 = -0.02 +0.32 -0.33 and lambda_z = -0.18 +0.24 -0.16, where errors include both statistical and systematic uncertainties. In each case the coupling is determined with all other couplings set to their Standard Model values except those related to the measured coupling via SU(2)_LxU(1)_Y symmetry. These results are consistent with Standard Model expectations.
Individual W-boson transverse polarised cross-sections.
Individual W-boson longitudinal polarised cross-sections.
W pair polarized cross-sections. (C=TT), (C=LL), and (C=TL) stand for both W transversely polarised, for both W longitudinally polarised, and for transversely and longitudinally polarisedW-bosons, respectively.
The measurements of Rb = sigma(e+e- -> bb~)/sigma(e+e- -> qq~) and of the b quark forward-backward charge asymmetry, A^b_fb, at centre-of-mass energies above the Z pole are described. The measurement of Rb is performed at \root{s} between 130 and 189 GeV using a b-tagging method that exploits the relatively large decay length of b-hadrons. The measurement of A^b_fb is performed using the large statistics event sample collected at \root{s}=189 GeV with a lepton-tag analysis based on the selection of prompt muons and electrons. The results at \root{s}=189 GeV are: Rb = 0.163 +/- 0.013 (stat.) +/- 0.005 (syst.), A^b_fb = 0.61 +/- 0.18 (stat.) +/- 0.09 (syst.).
No description provided.
No description provided.
The three different helicity states of W bosons, produced in the reaction e+e- -> W+W- -> l nu q q~ are studied using leptonic and hadronic W decays at sqrt{s}=183GeV and 189GeV. The W polarisation is also measured as a function of the scattering angle between the W- and the direction of the e- beam. The analysis demonstrates that W bosons are produced with all three helicities, the longitudinal and the two transverse states. Combining the results from the two center-of-mass energies and with leptonic and hadronic W decays, the fraction of longitudinally polarised W bosons is measured to be 0.261 +/- 0.051(stat.) +/- 0.016(syst.) in agreement with the expectation from the Standard Model.
Fraction of longitudinally polarized W bosons. Combined results from 183 and 189 GeV.
We report a measurement of the p p ̄ total cross section at s =1.8 TeV at the Fermilab Tevatron Collider, using the luminosity independent method. Our result is σ T =71.71±2.02 mb. We also obtained values of the total elastic and total inelastic cross sections.
No description provided.
No description provided.