Showing 10 of 515 results
Several extensions of the Standard Model predict the production of dark matter particles at the LHC. A search for dark matter particles produced in association with a dark Higgs boson decaying into $W^{+}W^{-}$ in the $\ell^\pm\nu q \bar q'$ final states with $\ell=e,\mu$ is presented. This analysis uses 139 fb$^{-1}$ of $pp$ collisions recorded by the ATLAS detector at a centre-of-mass energy of 13 TeV. The $W^\pm \to q\bar q'$ decays are reconstructed from pairs of calorimeter-measured jets or from track-assisted reclustered jets, a technique aimed at resolving the dense topology from a pair of boosted quarks using jets in the calorimeter and tracking information. The observed data are found to agree with Standard Model predictions. Scenarios with dark Higgs boson masses ranging between 140 and 390 GeV are excluded.
Probability of finding at least one TAR jet, where the p<sub>T</sub>-leading TAR jet passes the m<sub>Wcand</sub> and D<sub>2</sub><sup>β=1</sup> requirements, as a function of m<sub>s</sub>. The probability is determined in a sample of signal events with m<sub>Z'</sub>=500 GeV, with the preselections applied.
Probability of finding at least one TAR jet, where the p<sub>T</sub>-leading TAR jet passes the m<sub>Wcand</sub> and D<sub>2</sub><sup>β=1</sup> requirements, as a function of m<sub>s</sub>. The probability is determined in a sample of signal events with m<sub>Z'</sub>=1000 GeV, with the preselections applied.
Probability of finding at least one TAR jet, where the p<sub>T</sub>-leading TAR jet passes the m<sub>Wcand</sub> and D<sub>2</sub><sup>β=1</sup> requirements, as a function of m<sub>s</sub>. The probability is determined in a sample of signal events with m<sub>Z'</sub>=1700 GeV, with the preselections applied.
Probability of finding at least one TAR jet, where the p<sub>T</sub>-leading TAR jet passes the m<sub>Wcand</sub> and D<sub>2</sub><sup>β=1</sup> requirements, as a function of m<sub>s</sub>. The probability is determined in a sample of signal events with m<sub>Z'</sub>=2100 GeV, with the preselections applied.
Probability of finding a W<sub>had</sub> candidate reconstructed as a pair of R=0.4 PFlow jets, as a function of m<sub>s</sub>. The probability is determined in a sample of signal events with m<sub>Z'</sub>=500 GeV, with the preselections applied that do not pass the requirements of the merged category.
Probability of finding a W<sub>had</sub> candidate reconstructed as a pair of R=0.4 PFlow jets, as a function of m<sub>s</sub>. The probability is determined in a sample of signal events with m<sub>Z'</sub>=1000 GeV, with the preselections applied that do not pass the requirements of the merged category.
Probability of finding a W<sub>had</sub> candidate reconstructed as a pair of R=0.4 PFlow jets, as a function of m<sub>s</sub>. The probability is determined in a sample of signal events with m<sub>Z'</sub>=1700 GeV, with the preselections applied that do not pass the requirements of the merged category.
Probability of finding a W<sub>had</sub> candidate reconstructed as a pair of R=0.4 PFlow jets, as a function of m<sub>s</sub>. The probability is determined in a sample of signal events with m<sub>Z'</sub>=2100 GeV, with the preselections applied that do not pass the requirements of the merged category.
Observed exclusion contour at 95% C.L. for the dark Higgs model in the (m<sub>Z'</sub>, m<sub>s</sub>) plane for g<sub>q</sub>=0.25, g<sub>χ</sub>=1, m<sub>χ</sub>=200 GeV, and sinθ=0.01.
Expected exclusion contour at 95% C.L. for the dark Higgs model in the (m<sub>Z'</sub>, m<sub>s</sub>) plane for g<sub>q</sub>=0.25, g<sub>χ</sub>=1, m<sub>χ</sub>=200 GeV, and sinθ=0.01.
Expected+1σ exclusion contour at 95% C.L. for the dark Higgs model in the (m<sub>Z'</sub>, m<sub>s</sub>) plane for g<sub>q</sub>=0.25, g<sub>χ</sub>=1, m<sub>χ</sub>=200 GeV, and sinθ=0.01.
Expected-1σ exclusion contour at 95% C.L. for the dark Higgs model in the (m<sub>Z'</sub>, m<sub>s</sub>) plane for g<sub>q</sub>=0.25, g<sub>χ</sub>=1, m<sub>χ</sub>=200 GeV, and sinθ=0.01.
Expected+2σ exclusion contour at 95% C.L. for the dark Higgs model in the (m<sub>Z'</sub>, m<sub>s</sub>) plane for g<sub>q</sub>=0.25, g<sub>χ</sub>=1, m<sub>χ</sub>=200 GeV, and sinθ=0.01.
Expected-2σ exclusion contour at 95% C.L. for the dark Higgs model in the (m<sub>Z'</sub>, m<sub>s</sub>) plane for g<sub>q</sub>=0.25, g<sub>χ</sub>=1, m<sub>χ</sub>=200 GeV, and sinθ=0.01.
Observed upper limits at 95% C.L. on σ(pp → s χχ) × B(s → W<sup>±</sup> W<sup>∓</sup>) for m<sub>Z'</sub>=0.5 TeV as a function of m<sub>s</sub>. The expected limits, varied up and down by one and two standard deviations, are shown as green and yellow bands, respectively. The observed and expected limits are compared to the theoretical LO cross section for the σ(pp → s χχ) × B(s → W<sup>±</sup> W<sup>∓</sup>) process for m<sub>Z'</sub>=0.5 TeV, shown in dashed blue.
Observed upper limits at 95% C.L. on σ(pp → s χχ) × B(s → W<sup>±</sup> W<sup>∓</sup>) for m<sub>Z'</sub>=1 TeV as a function of m<sub>s</sub>. The expected limits, varied up and down by one and two standard deviations, are shown as green and yellow bands, respectively. The observed and expected limits are compared to the theoretical LO cross section for the σ(pp → s χχ) × B(s → W<sup>±</sup> W<sup>∓</sup>) process for m<sub>Z'</sub>=1 TeV, shown in dashed blue.
Observed upper limits at 95% C.L. on σ(pp → s χχ) × B(s → W<sup>±</sup> W<sup>∓</sup>) for m<sub>Z'</sub>=1.7 TeV as a function of m<sub>s</sub>. The expected limits, varied up and down by one and two standard deviations, are shown as green and yellow bands, respectively. The observed and expected limits are compared to the theoretical LO cross section for the σ(pp → s χχ) × B(s → W<sup>±</sup> W<sup>∓</sup>) process for m<sub>Z'</sub>=1.7 TeV, shown in dashed blue.
Observed upper limits at 95% C.L. on σ(pp → s χχ) × B(s → W<sup>±</sup> W<sup>∓</sup>) for m<sub>Z'</sub>=2.1 TeV as a function of m<sub>s</sub>. The expected limits, varied up and down by one and two standard deviations, are shown as green and yellow bands, respectively. The observed and expected limits are compared to the theoretical LO cross section for the σ(pp → s χχ) × B(s → W<sup>±</sup> W<sup>∓</sup>) process for m<sub>Z'</sub>=2.1 TeV, shown in dashed blue.
Data overlaid on SM background yields stacked in each SR and CR category after the fit to data ('Post-fit'). The yields in the SR are broken down into their contributions to the individual bins. The maximum-likelihood estimators are set to the conditional values of the CR-only fit, and propagated to SR and CRs.
Dominant sources of uncertainty for three dark Higgs scenarios after the fit to data. The uncertainties are quantified in terms of their contribution to the fitted signal uncertainty that is expressed relative to the theory prediction. Three representative dark Higgs signal scenarios with g<sub>q</sub>=0.25, g<sub>χ</sub>=1.0, sinθ=0.01 and m<sub>χ</sub>=200 GeV are considered, which are indicated using the (m<sub>Z'</sub>, m<sub>s</sub>) format in units of GeV in the table columns.
Cumulative efficiencies in the merged category for three representative dark Higgs signal scenarios with g<sub>q</sub>=0.25, g<sub>&chi</sub>;=1.0, sinθ=0.01, m<sub>Z'</sub> = 1 TeV, and m<sub>χ</sub>=200 GeV considering s→W(ℓν)W(qq) decays only.
Cumulative efficiencies in the resolved category for three representative dark Higgs signal scenarios with g<sub>q</sub>=0.25, g<sub>&chi</sub>;=1.0, sinθ=0.01, m<sub>Z'</sub> = 1 TeV, and m<sub>χ</sub>=200 GeV considering s→W(ℓν)W(qq) decays only.
Theoretical cross section for σ(pp → sχχ) × B(s → W<sup>±</sup>W<sup>∓</sup>) for each of the dark Higgs signal points at m<sub>Z′</sub> ={300, 350, 400, 500, 750} GeV, with g<sub>q</sub> = 0.25, g<sub>χ = 1.0, sinθ = 0.01, m<sub>Z′</sub> = 1 TeV , and m<sub>χ</sub> = 200 GeV. Also shown are experimentally excluded cross sections of σ(pp → sχχ) × B(s → W<sup>±</sup>W<sup>∓</sup>) (Obs.) together with the expectations (Exp.) varied up and down by one standard deviation (±1σ).
Theoretical cross section for σ(pp → sχχ) × B(s → W<sup>±</sup>W<sup>∓</sup>) for each of the dark Higgs signal points at m<sub>Z′</sub> ={1000, 1700} GeV, with g<sub>q</sub> = 0.25, g<sub>χ = 1.0, sinθ = 0.01, m<sub>Z′</sub> = 1 TeV , and m<sub>χ</sub> = 200 GeV. Also shown are experimentally excluded cross sections of σ(pp → sχχ) × B(s → W<sup>±</sup>W<sup>∓</sup>) (Obs.) together with the expectations (Exp.) varied up and down by one standard deviation (±1σ).
Theoretical cross section for σ(pp → sχχ) × B(s → W<sup>±</sup>W<sup>∓</sup>) for each of the dark Higgs signal points at m<sub>Z′</sub> ={2100, 2500, 2900, 3300} GeV, with g<sub>q</sub> = 0.25, g<sub>χ = 1.0, sinθ = 0.01, m<sub>Z′</sub> = 1 TeV , and m<sub>χ</sub> = 200 GeV. Also shown are experimentally excluded cross sections of σ(pp → sχχ) × B(s → W<sup>±</sup>W<sup>∓</sup>) (Obs.) together with the expectations (Exp.) varied up and down by one standard deviation (±1σ).
This paper presents a statistical combination of searches targeting final states with two top quarks and invisible particles, characterised by the presence of zero, one or two leptons, at least one jet originating from a $b$-quark and missing transverse momentum. The analyses are searches for phenomena beyond the Standard Model consistent with the direct production of dark matter in $pp$ collisions at the LHC, using 139 fb$^{-\text{1}}$ of data collected with the ATLAS detector at a centre-of-mass energy of 13 TeV. The results are interpreted in terms of simplified dark matter models with a spin-0 scalar or pseudoscalar mediator particle. In addition, the results are interpreted in terms of upper limits on the Higgs boson invisible branching ratio, where the Higgs boson is produced according to the Standard Model in association with a pair of top quarks. For scalar (pseudoscalar) dark matter models, with all couplings set to unity, the statistical combination extends the mass range excluded by the best of the individual channels by 50 (25) GeV, excluding mediator masses up to 370 GeV. In addition, the statistical combination improves the expected coupling exclusion reach by 14% (24%), assuming a scalar (pseudoscalar) mediator mass of 10 GeV. An upper limit on the Higgs boson invisible branching ratio of 0.38 (0.30$^{+\text{0.13}}_{-\text{0.09}}$) is observed (expected) at 95% confidence level.
Post-fit signal region yields for the tt0L-high and the tt0L-low analyses. The bottom panel shows the statistical significance of the difference between the SM prediction and the observed data in each region. '$t\bar{t}$ (other)' represents $t\bar{t}$ events without extra jets or events with extra light-flavour jets. 'Other' includes contributions from $t\bar{t}W$, $tZ$ and $tWZ$ processes. The total uncertainty in the SM expectation is represented with hatched bands and the expected distributions for selected signal models are shown as dashed lines.
Representative fit distribution in the signal region for the tt1L analysis: each bin of such distribution corresponds to a single SR included in the fit. 'Other' includes contributions from $t\bar{t}W$, $tZ$, $tWZ$ and $t\bar{t}$ (semileptonic) processes. The total uncertainty in the SM expectation is represented with hatched bands and the expected distributions for selected signal models are shown as dashed lines.
Representative fit distribution in the same flavour leptons signal region for the tt2L analysis: each bin of such distribution, starting from the red arrow, corresponds to a single SR included in the fit. 'FNP' includes the contribution from fake/non-prompt lepton background arising from jets (mainly $\pi/K$, heavy-flavour hadron decays and photon conversion) misidentified as leptons, estimated in a purely data-driven way. 'Other' includes contributions from $t\bar{t}W$, $tZ$ and $tWZ$ processes. The total uncertainty in the SM expectation is represented with hatched bands and the expected distributions for selected signal models are shown as dashed lines.
Summary of the total uncertainty in the background prediction for each SR of the tt0L-low, tt0L-high, tt1L and tt2L analysis channels in the statistical combination. Their dominant contributions are indicated by individual lines. Individual uncertainties can be correlated, and do not necessarily add up in quadrature to the total background uncertainty.
Exclusion limits for colour-neutral scalar mediator dark matter models as a function of the mediator mass $m(\phi)$ for a DM mass $m_{\chi} = 1$ GeV. Associated production of DM with both single top quarks ($tW$ and $tj$ channels) and top quark pairs is considered. The limits are calculated at 95% CL and are expressed in terms of the ratio of the excluded cross section to the cross section for a coupling assumption of $g = g_q = g_{\chi} = 1$. The solid (dashed) lines show the observed (expected) exclusion limits for each individual channel and their statistical combination.
Exclusion limits for colour-neutral pseudoscalar mediator dark matter models as a function of the mediator mass $m(a)$ for a DM mass $m_{\chi} = 1$ GeV. Associated production of DM with both single top quarks ($tW$ and $tj$ channels) and top quark pairs is considered. The limits are calculated at 95% CL and are expressed in terms of the ratio of the excluded cross section to the cross section for a coupling assumption of $g = g_q = g_{\chi} = 1$. The solid (dashed) lines show the observed (expected) exclusion limits for each individual channel and their statistical combination.
$E_{\text{T}}^{\text{miss}}$ distribution in SR0X for the tt0L-low analysis. The contributions from all SM backgrounds are shown after the profile likelihood simultaneous fit to all tt0L-low CRs, with the hatched bands representing the total uncertainty. The category '$t\bar{t}$ (other)' represents $t\bar{t}$ events without extra jets or events with extra light-flavour jets. 'Other' includes contributions from $t\bar{t}W$, $tZ$ and $tWZ$ processes. The expected distributions for selected signal models are shown as dashed lines. The overflow events are included in the last bin. The bottom panels show the ratio of the observed data to the total SM background prediction, with the hatched area representing the total uncertainty in the background prediction and the red arrows marking data outside the vertical-axis range.
$E_{\text{T}}^{\text{miss}}$ distribution in SRWX for the tt0L-low analysis. The contributions from all SM backgrounds are shown after the profile likelihood simultaneous fit to all tt0L-low CRs, with the hatched bands representing the total uncertainty. The category '$t\bar{t}$ (other)' represents $t\bar{t}$ events without extra jets or events with extra light-flavour jets. 'Other' includes contributions from $t\bar{t}W$, $tZ$ and $tWZ$ processes. The expected distributions for selected signal models are shown as dashed lines. The overflow events are included in the last bin. The bottom panels show the ratio of the observed data to the total SM background prediction, with the hatched area representing the total uncertainty in the background prediction and the red arrows marking data outside the vertical-axis range.
$E_{\text{T}}^{\text{miss}}$ distribution in SRTX for the tt0L-low analysis. The contributions from all SM backgrounds are shown after the profile likelihood simultaneous fit to all tt0L-low CRs, with the hatched bands representing the total uncertainty. The category '$t\bar{t}$ (other)' represents $t\bar{t}$ events without extra jets or events with extra light-flavour jets. 'Other' includes contributions from $t\bar{t}W$, $tZ$ and $tWZ$ processes. The expected distributions for selected signal models are shown as dashed lines. The overflow events are included in the last bin. The bottom panels show the ratio of the observed data to the total SM background prediction, with the hatched area representing the total uncertainty in the background prediction and the red arrows marking data outside the vertical-axis range.
Exclusion limits for colour-neutral scalar mediator dark matter models as a function of the mediator mass $m(\phi)$ for a DM mass $m_{\chi} = 1$ GeV. Associated production of DM with both single top quarks ($tW$ and $tj$ channels) and top quark pairs is considered. The limits are calculated at 95% CL and are expressed in terms of the ratio of the excluded cross section to the nominal cross section for a coupling assumption of $g = g_q = g_{\chi} = 1$. The solid (dashed) lines show the observed (expected) exclusion limits for the tt0L-high and tt0L-low analyses and their statistical combination.
Exclusion limits for colour-neutral pseudoscalar mediator dark matter models as a function of the mediator mass $m(a)$ for a DM mass $m_{\chi} = 1$ GeV. Associated production of DM with both single top quarks ($tW$ and $tj$ channels) and top quark pairs is considered. The limits are calculated at 95% CL and are expressed in terms of the ratio of the excluded cross section to the nominal cross section for a coupling assumption of $g = g_q = g_{\chi} = 1$. The solid (dashed) lines show the observed (expected) exclusion limits for the tt0L-high and tt0L-low analyses and their statistical combination.
Exclusion limits for colour-neutral scalar mediator dark matter models as a function of the mediator mass $m(\phi)$ for a DM mass $m_{\chi} = 1$ GeV. Only associated production of DM with top quark pairs is considered for this interpretation. The limits are calculated at 95% CL and are expressed in terms of the ratio of the excluded cross section to the cross section for a coupling assumption of $g = g_q = g_{\chi} = 1$. The solid (dashed) lines show the observed (expected) exclusion limits for each individual channel and their statistical combination.
Exclusion limits for colour-neutral pseudoscalar mediator dark matter models as a function of the mediator mass $m(a)$ for a DM mass $m_{\chi} = 1$ GeV. Only associated production of DM with top quark pairs is considered for this interpretation. The limits are calculated at 95% CL and are expressed in terms of the ratio of the excluded cross section to the cross section for a coupling assumption of $g = g_q = g_{\chi} = 1$. The solid (dashed) lines show the observed (expected) exclusion limits for each individual channel and their statistical combination.
Exclusion limits for colour-neutral scalar mediator dark matter models as a function of the mediator mass $m(\phi)$ for a DM mass $m_{\chi} = 1$ GeV. Only associated production of DM with top quark pairs is considered for this interpretation. The limits are calculated at 95% CL and are expressed in terms of the ratio of the excluded cross section to the nominal cross section for a coupling assumption of $g = g_q = g_{\chi} = 1$. The solid (dashed) lines show the observed (expected) exclusion limits for the tt0L-high and tt0L-low analyses and their statistical combination.
Exclusion limits for colour-neutral pseudoscalar mediator dark matter models as a function of the mediator mass $m(a)$ for a DM mass $m_{\chi} = 1$ GeV. Only associated production of DM with top quark pairs is considered for this interpretation. The limits are calculated at 95% CL and are expressed in terms of the ratio of the excluded cross section to the nominal cross section for a coupling assumption of $g = g_q = g_{\chi} = 1$. The solid (dashed) lines show the observed (expected) exclusion limits for the tt0L-high and tt0L-low analyses and their statistical combination.
Representative fit distribution in the different flavour leptons signal region for the tt2L analysis: each bin of such distribution, starting from the red arrow, corresponds to a single SR included in the fit. 'FNP' includes the contribution from fake/non-prompt lepton background arising from jets (mainly $\pi/K$, heavy-flavour hadron decays and photon conversion) misidentified as leptons, estimated in a purely data-driven way. 'Other' includes contributions from $t\bar{t}W$, $tZ$ and $tWZ$ processes. The total uncertainty in the SM expectation is represented with hatched bands and the expected distributions for selected signal models are shown as dashed lines.
Signal acceptance in SR0X, SRWX and SRTX for simplified DM+$t\bar{t}$ model, defined as the number of accepted events at generator level in signal Monte Carlo simulation divided by the total number of events in the sample.
Signal acceptance in SR0X, SRWX and SRTX for simplified DM+$tW$ model, defined as the number of accepted events at generator level in signal Monte Carlo simulation divided by the total number of events in the sample.
Signal acceptance in SR0X, SRWX and SRTX for simplified DM+$tj$ model, defined as the number of accepted events at generator level in signal Monte Carlo simulation divided by the total number of events in the sample.
Signal efficiency in SR0X, SRWX and SRTX for simplified DM+$t\bar{t}$ model, defined as the number of selected reconstructed events divided by the acceptance.
Signal efficiency in SR0X, SRWX and SRTX for simplified DM+$tW$ model, defined as the number of selected reconstructed events divided by the acceptance.
Signal efficiency in SR0X, SRWX and SRTX for simplified DM+$tj$ model, defined as the number of selected reconstructed events divided by the acceptance.
Cutflow for the reference point DM+$t\bar{t}$ $m(\phi, \chi) = (10, 1)$ GeV in signal region SR0X. The column labelled 'weighted' shows the event yield including all correction factors applied to simulation, and is normalised to 139 fb$^{-1}$. A notable exception concerns the 'weighted' numbers in the first and the second row, labelled 'Total' and 'Filtered', which correspond to $\mathcal{L}\cdot\sigma$ and $\mathcal{L}\cdot\sigma\cdot\epsilon$ expected, respectively. The 'Skim' selection requires the $p_{\text{T}}$ of the leading four jets to be above (80, 60, 40, 40) GeV, the missing transverse momentum $E_{\text{T}}^{\text{miss}} > 140$ GeV, the missing momentum significance $\mathcal{S} > 8$, $\Delta\phi_{\min}(\vec{p}_{\text{T,1-4}},\vec{p}_{\text{T}}^{\text{miss}}) > 0.4$ and a lepton veto. The 'Orthogonalisation' selection is defined in the main body. In total 2045000 raw MC events were generated prior to the specified cuts, with the column 'Unweighted yield' collecting the numbers after each cut.
Cutflow for the reference point DM+$t\bar{t}$ $m(\phi, \chi) = (10, 1)$ GeV in signal region SRWX. The column labelled 'weighted' shows the event yield including all correction factors applied to simulation, and is normalised to 139 fb$^{-1}$. A notable exception concerns the 'weighted' numbers in the first and the second row, labelled 'Total' and 'Filtered', which correspond to $\mathcal{L}\cdot\sigma$ and $\mathcal{L}\cdot\sigma\cdot\epsilon$ expected, respectively. The 'Skim' selection requires the $p_{\text{T}}$ of the leading four jets to be above (80, 60, 40, 40) GeV, the missing transverse momentum $E_{\text{T}}^{\text{miss}} > 140$ GeV, the missing momentum significance $\mathcal{S} > 8$, $\Delta\phi_{\min}(\vec{p}_{\text{T,1-4}},\vec{p}_{\text{T}}^{\text{miss}}) > 0.4$ and a lepton veto. The 'Orthogonalisation' selection is defined in the main body. In total 2045000 raw MC events were generated prior to the specified cuts, with the column 'Unweighted yield' collecting the numbers after each cut.
Cutflow for the reference point DM+$t\bar{t}$ $m(\phi, \chi) = (10, 1)$ GeV in signal region SRTX. The column labelled 'weighted' shows the event yield including all correction factors applied to simulation, and is normalised to 139 fb$^{-1}$. A notable exception concerns the 'weighted' numbers in the first and the second row, labelled 'Total' and 'Filtered', which correspond to $\mathcal{L}\cdot\sigma$ and $\mathcal{L}\cdot\sigma\cdot\epsilon$ expected, respectively. The 'Skim' selection requires the $p_{\text{T}}$ of the leading four jets to be above (80, 60, 40, 40) GeV, the missing transverse momentum $E_{\text{T}}^{\text{miss}} > 140$ GeV, the missing momentum significance $\mathcal{S} > 8$, $\Delta\phi_{\min}(\vec{p}_{\text{T,1-4}},\vec{p}_{\text{T}}^{\text{miss}}) > 0.4$ and a lepton veto. The 'Orthogonalisation' selection is defined in the main body. In total 2045000 raw MC events were generated prior to the specified cuts, with the column 'Unweighted yield' collecting the numbers after each cut.
Cutflow for the reference point DM+$t\bar{t}$ $m(a, \chi) = (10, 1)$ GeV in signal region SR0X. The column labelled 'weighted' shows the event yield including all correction factors applied to simulation, and is normalised to 139 fb$^{-1}$. A notable exception concerns the 'weighted' numbers in the first and the second row, labelled 'Total' and 'Filtered', which correspond to $\mathcal{L}\cdot\sigma$ and $\mathcal{L}\cdot\sigma\cdot\epsilon$ expected, respectively. The 'Skim' selection requires the $p_{\text{T}}$ of the leading four jets to be above (80, 60, 40, 40) GeV, the missing transverse momentum $E_{\text{T}}^{\text{miss}} > 140$ GeV, the missing momentum significance $\mathcal{S} > 8$, $\Delta\phi_{\min}(\vec{p}_{\text{T,1-4}},\vec{p}_{\text{T}}^{\text{miss}}) > 0.4$ and a lepton veto. The 'Orthogonalisation' selection is defined in the main body. In total 400000 raw MC events were generated prior to the specified cuts, with the column 'Unweighted yield' collecting the numbers after each cut.
Cutflow for the reference point DM+$t\bar{t}$ $m(a, \chi) = (10, 1)$ GeV in signal region SRWX. The column labelled 'weighted' shows the event yield including all correction factors applied to simulation, and is normalised to 139 fb$^{-1}$. A notable exception concerns the 'weighted' numbers in the first and the second row, labelled 'Total' and 'Filtered', which correspond to $\mathcal{L}\cdot\sigma$ and $\mathcal{L}\cdot\sigma\cdot\epsilon$ expected, respectively. The 'Skim' selection requires the $p_{\text{T}}$ of the leading four jets to be above (80, 60, 40, 40) GeV, the missing transverse momentum $E_{\text{T}}^{\text{miss}} > 140$ GeV, the missing momentum significance $\mathcal{S} > 8$, $\Delta\phi_{\min}(\vec{p}_{\text{T,1-4}},\vec{p}_{\text{T}}^{\text{miss}}) > 0.4$ and a lepton veto. The 'Orthogonalisation' selection is defined in the main body. In total 400000 raw MC events were generated prior to the specified cuts, with the column 'Unweighted yield' collecting the numbers after each cut.
Cutflow for the reference point DM+$t\bar{t}$ $m(a, \chi) = (10, 1)$ GeV in signal region SRTX. The column labelled 'weighted' shows the event yield including all correction factors applied to simulation, and is normalised to 139 fb$^{-1}$. A notable exception concerns the 'weighted' numbers in the first and the second row, labelled 'Total' and 'Filtered', which correspond to $\mathcal{L}\cdot\sigma$ and $\mathcal{L}\cdot\sigma\cdot\epsilon$ expected, respectively. The 'Skim' selection requires the $p_{\text{T}}$ of the leading four jets to be above (80, 60, 40, 40) GeV, the missing transverse momentum $E_{\text{T}}^{\text{miss}} > 140$ GeV, the missing momentum significance $\mathcal{S} > 8$, $\Delta\phi_{\min}(\vec{p}_{\text{T,1-4}},\vec{p}_{\text{T}}^{\text{miss}}) > 0.4$ and a lepton veto. The 'Orthogonalisation' selection is defined in the main body. In total 400000 raw MC events were generated prior to the specified cuts, with the column 'Unweighted yield' collecting the numbers after each cut.
Cutflow for the reference point DM+$tW$ $m(\phi, \chi) = (10, 1)$ GeV in signal region SR0X. The column labelled 'weighted' shows the event yield including all correction factors applied to simulation, and is normalised to 139 fb$^{-1}$. A notable exception concerns the 'weighted' numbers in the first and the second row, labelled 'Total' and 'Filtered', which correspond to $\mathcal{L}\cdot\sigma$ and $\mathcal{L}\cdot\sigma\cdot\epsilon$ expected, respectively. The 'Skim' selection requires the $p_{\text{T}}$ of the leading four jets to be above (80, 60, 40, 40) GeV, the missing transverse momentum $E_{\text{T}}^{\text{miss}} > 140$ GeV, the missing momentum significance $\mathcal{S} > 8$, $\Delta\phi_{\min}(\vec{p}_{\text{T,1-4}},\vec{p}_{\text{T}}^{\text{miss}}) > 0.4$ and a lepton veto. The 'Orthogonalisation' selection is defined in the main body. In total 120000 raw MC events were generated prior to the specified cuts, with the column 'Unweighted yield' collecting the numbers after each cut.
Cutflow for the reference point DM+$tW$ $m(\phi, \chi) = (10, 1)$ GeV in signal region SRWX. The column labelled 'weighted' shows the event yield including all correction factors applied to simulation, and is normalised to 139 fb$^{-1}$. A notable exception concerns the 'weighted' numbers in the first and the second row, labelled 'Total' and 'Filtered', which correspond to $\mathcal{L}\cdot\sigma$ and $\mathcal{L}\cdot\sigma\cdot\epsilon$ expected, respectively. The 'Skim' selection requires the $p_{\text{T}}$ of the leading four jets to be above (80, 60, 40, 40) GeV, the missing transverse momentum $E_{\text{T}}^{\text{miss}} > 140$ GeV, the missing momentum significance $\mathcal{S} > 8$, $\Delta\phi_{\min}(\vec{p}_{\text{T,1-4}},\vec{p}_{\text{T}}^{\text{miss}}) > 0.4$ and a lepton veto. The 'Orthogonalisation' selection is defined in the main body. In total 120000 raw MC events were generated prior to the specified cuts, with the column 'Unweighted yield' collecting the numbers after each cut.
Cutflow for the reference point DM+$tW$ $m(\phi, \chi) = (10, 1)$ GeV in signal region SRTX. The column labelled 'weighted' shows the event yield including all correction factors applied to simulation, and is normalised to 139 fb$^{-1}$. A notable exception concerns the 'weighted' numbers in the first and the second row, labelled 'Total' and 'Filtered', which correspond to $\mathcal{L}\cdot\sigma$ and $\mathcal{L}\cdot\sigma\cdot\epsilon$ expected, respectively. The 'Skim' selection requires the $p_{\text{T}}$ of the leading four jets to be above (80, 60, 40, 40) GeV, the missing transverse momentum $E_{\text{T}}^{\text{miss}} > 140$ GeV, the missing momentum significance $\mathcal{S} > 8$, $\Delta\phi_{\min}(\vec{p}_{\text{T,1-4}},\vec{p}_{\text{T}}^{\text{miss}}) > 0.4$ and a lepton veto. The 'Orthogonalisation' selection is defined in the main body. In total 120000 raw MC events were generated prior to the specified cuts, with the column 'Unweighted yield' collecting the numbers after each cut.
Cutflow for the reference point DM+$tW$ $m(a, \chi) = (10, 1)$ GeV in signal region SR0X. The column labelled 'weighted' shows the event yield including all correction factors applied to simulation, and is normalised to 139 fb$^{-1}$. A notable exception concerns the 'weighted' numbers in the first and the second row, labelled 'Total' and 'Filtered', which correspond to $\mathcal{L}\cdot\sigma$ and $\mathcal{L}\cdot\sigma\cdot\epsilon$ expected, respectively. The 'Skim' selection requires the $p_{\text{T}}$ of the leading four jets to be above (80, 60, 40, 40) GeV, the missing transverse momentum $E_{\text{T}}^{\text{miss}} > 140$ GeV, the missing momentum significance $\mathcal{S} > 8$, $\Delta\phi_{\min}(\vec{p}_{\text{T,1-4}},\vec{p}_{\text{T}}^{\text{miss}}) > 0.4$ and a lepton veto. The 'Orthogonalisation' selection is defined in the main body. In total 100000 raw MC events were generated prior to the specified cuts, with the column 'Unweighted yield' collecting the numbers after each cut.
Cutflow for the reference point DM+$tW$ $m(a, \chi) = (10, 1)$ GeV in signal region SRWX. The column labelled 'weighted' shows the event yield including all correction factors applied to simulation, and is normalised to 139 fb$^{-1}$. A notable exception concerns the 'weighted' numbers in the first and the second row, labelled 'Total' and 'Filtered', which correspond to $\mathcal{L}\cdot\sigma$ and $\mathcal{L}\cdot\sigma\cdot\epsilon$ expected, respectively. The 'Skim' selection requires the $p_{\text{T}}$ of the leading four jets to be above (80, 60, 40, 40) GeV, the missing transverse momentum $E_{\text{T}}^{\text{miss}} > 140$ GeV, the missing momentum significance $\mathcal{S} > 8$, $\Delta\phi_{\min}(\vec{p}_{\text{T,1-4}},\vec{p}_{\text{T}}^{\text{miss}}) > 0.4$ and a lepton veto. The 'Orthogonalisation' selection is defined in the main body. In total 100000 raw MC events were generated prior to the specified cuts, with the column 'Unweighted yield' collecting the numbers after each cut.
Cutflow for the reference point DM+$tW$ $m(a, \chi) = (10, 1)$ GeV in signal region SRTX. The column labelled 'weighted' shows the event yield including all correction factors applied to simulation, and is normalised to 139 fb$^{-1}$. A notable exception concerns the 'weighted' numbers in the first and the second row, labelled 'Total' and 'Filtered', which correspond to $\mathcal{L}\cdot\sigma$ and $\mathcal{L}\cdot\sigma\cdot\epsilon$ expected, respectively. The 'Skim' selection requires the $p_{\text{T}}$ of the leading four jets to be above (80, 60, 40, 40) GeV, the missing transverse momentum $E_{\text{T}}^{\text{miss}} > 140$ GeV, the missing momentum significance $\mathcal{S} > 8$, $\Delta\phi_{\min}(\vec{p}_{\text{T,1-4}},\vec{p}_{\text{T}}^{\text{miss}}) > 0.4$ and a lepton veto. The 'Orthogonalisation' selection is defined in the main body. In total 100000 raw MC events were generated prior to the specified cuts, with the column 'Unweighted yield' collecting the numbers after each cut.
Cutflow for the reference point DM+$tj$ $m(\phi, \chi) = (10, 1)$ GeV in signal region SR0X. The column labelled 'weighted' shows the event yield including all correction factors applied to simulation, and is normalised to 139 fb$^{-1}$. A notable exception concerns the 'weighted' numbers in the first and the second row, labelled 'Total' and 'Filtered', which correspond to $\mathcal{L}\cdot\sigma$ and $\mathcal{L}\cdot\sigma\cdot\epsilon$ expected, respectively. The 'Skim' selection requires the $p_{\text{T}}$ of the leading four jets to be above (80, 60, 40, 40) GeV, the missing transverse momentum $E_{\text{T}}^{\text{miss}} > 140$ GeV, the missing momentum significance $\mathcal{S} > 8$, $\Delta\phi_{\min}(\vec{p}_{\text{T,1-4}},\vec{p}_{\text{T}}^{\text{miss}}) > 0.4$ and a lepton veto. The 'Orthogonalisation' selection is defined in the main body. In total 169000 raw MC events were generated prior to the specified cuts, with the column 'Unweighted yield' collecting the numbers after each cut.
Cutflow for the reference point DM+$tj$ $m(\phi, \chi) = (10, 1)$ GeV in signal region SRWX. The column labelled 'weighted' shows the event yield including all correction factors applied to simulation, and is normalised to 139 fb$^{-1}$. A notable exception concerns the 'weighted' numbers in the first and the second row, labelled 'Total' and 'Filtered', which correspond to $\mathcal{L}\cdot\sigma$ and $\mathcal{L}\cdot\sigma\cdot\epsilon$ expected, respectively. The 'Skim' selection requires the $p_{\text{T}}$ of the leading four jets to be above (80, 60, 40, 40) GeV, the missing transverse momentum $E_{\text{T}}^{\text{miss}} > 140$ GeV, the missing momentum significance $\mathcal{S} > 8$, $\Delta\phi_{\min}(\vec{p}_{\text{T,1-4}},\vec{p}_{\text{T}}^{\text{miss}}) > 0.4$ and a lepton veto. The 'Orthogonalisation' selection is defined in the main body. In total 169000 raw MC events were generated prior to the specified cuts, with the column 'Unweighted yield' collecting the numbers after each cut.
Cutflow for the reference point DM+$tj$ $m(\phi, \chi) = (10, 1)$ GeV in signal region SRTX. The column labelled 'weighted' shows the event yield including all correction factors applied to simulation, and is normalised to 139 fb$^{-1}$. A notable exception concerns the 'weighted' numbers in the first and the second row, labelled 'Total' and 'Filtered', which correspond to $\mathcal{L}\cdot\sigma$ and $\mathcal{L}\cdot\sigma\cdot\epsilon$ expected, respectively. The 'Skim' selection requires the $p_{\text{T}}$ of the leading four jets to be above (80, 60, 40, 40) GeV, the missing transverse momentum $E_{\text{T}}^{\text{miss}} > 140$ GeV, the missing momentum significance $\mathcal{S} > 8$, $\Delta\phi_{\min}(\vec{p}_{\text{T,1-4}},\vec{p}_{\text{T}}^{\text{miss}}) > 0.4$ and a lepton veto. The 'Orthogonalisation' selection is defined in the main body. In total 169000 raw MC events were generated prior to the specified cuts, with the column 'Unweighted yield' collecting the numbers after each cut.
Cutflow for the reference point DM+$tj$ $m(a, \chi) = (10, 1)$ GeV in signal region SR0X. The column labelled 'weighted' shows the event yield including all correction factors applied to simulation, and is normalised to 139 fb$^{-1}$. A notable exception concerns the 'weighted' numbers in the first and the second row, labelled 'Total' and 'Filtered', which correspond to $\mathcal{L}\cdot\sigma$ and $\mathcal{L}\cdot\sigma\cdot\epsilon$ expected, respectively. The 'Skim' selection requires the $p_{\text{T}}$ of the leading four jets to be above (80, 60, 40, 40) GeV, the missing transverse momentum $E_{\text{T}}^{\text{miss}} > 140$ GeV, the missing momentum significance $\mathcal{S} > 8$, $\Delta\phi_{\min}(\vec{p}_{\text{T,1-4}},\vec{p}_{\text{T}}^{\text{miss}}) > 0.4$ and a lepton veto. The 'Orthogonalisation' selection is defined in the main body. In total 140000 raw MC events were generated prior to the specified cuts, with the column 'Unweighted yield' collecting the numbers after each cut.
Cutflow for the reference point DM+$tj$ $m(a, \chi) = (10, 1)$ GeV in signal region SRWX. The column labelled 'weighted' shows the event yield including all correction factors applied to simulation, and is normalised to 139 fb$^{-1}$. A notable exception concerns the 'weighted' numbers in the first and the second row, labelled 'Total' and 'Filtered', which correspond to $\mathcal{L}\cdot\sigma$ and $\mathcal{L}\cdot\sigma\cdot\epsilon$ expected, respectively. The 'Skim' selection requires the $p_{\text{T}}$ of the leading four jets to be above (80, 60, 40, 40) GeV, the missing transverse momentum $E_{\text{T}}^{\text{miss}} > 140$ GeV, the missing momentum significance $\mathcal{S} > 8$, $\Delta\phi_{\min}(\vec{p}_{\text{T,1-4}},\vec{p}_{\text{T}}^{\text{miss}}) > 0.4$ and a lepton veto. The 'Orthogonalisation' selection is defined in the main body. In total 140000 raw MC events were generated prior to the specified cuts, with the column 'Unweighted yield' collecting the numbers after each cut.
Cutflow for the reference point DM+$tj$ $m(a, \chi) = (10, 1)$ GeV in signal region SRTX. The column labelled 'weighted' shows the event yield including all correction factors applied to simulation, and is normalised to 139 fb$^{-1}$. A notable exception concerns the 'weighted' numbers in the first and the second row, labelled 'Total' and 'Filtered', which correspond to $\mathcal{L}\cdot\sigma$ and $\mathcal{L}\cdot\sigma\cdot\epsilon$ expected, respectively. The 'Skim' selection requires the $p_{\text{T}}$ of the leading four jets to be above (80, 60, 40, 40) GeV, the missing transverse momentum $E_{\text{T}}^{\text{miss}} > 140$ GeV, the missing momentum significance $\mathcal{S} > 8$, $\Delta\phi_{\min}(\vec{p}_{\text{T,1-4}},\vec{p}_{\text{T}}^{\text{miss}}) > 0.4$ and a lepton veto. The 'Orthogonalisation' selection is defined in the main body. In total 140000 raw MC events were generated prior to the specified cuts, with the column 'Unweighted yield' collecting the numbers after each cut.
A measurement of the jet mass distribution in hadronic decays of Lorentz-boosted top quarks is presented. The measurement is performed in the lepton+jets channel of top quark pair production ($\mathrm{t\bar{t}}$) events, where the lepton is an electron or muon. The products of the hadronic top quark decay are reconstructed using a single large-radius jet with transverse momentum greater than 400 GeV. The data were collected with the CMS detector at the LHC in proton-proton collisions and correspond to an integrated luminosity of 138 fb$^{-1}$. The differential $\mathrm{t\bar{t}}$ production cross section as a function of the jet mass is unfolded to the particle level and is used to extract the top quark mass. The jet mass scale is calibrated using the hadronic W boson decay within the large-radius jet. The uncertainties in the modelling of the final state radiation are reduced by studying angular correlations in the jet substructure. These developments lead to a significant increase in precision, and a top quark mass of 173.06 $\pm$ 0.84 GeV.
The particle-level $\mathrm{t}\overline{\mathrm{t}}$ differential cross section in the fiducial region as a function of the XCone-jet mass.
Correlations between bins in the particle-level $\mathrm{t}\overline{\mathrm{t}}$ differential cross section as a function of the XCone-jet mass.
The covariance matrix containing the statistical uncertainties of the particle-level $\mathrm{t}\overline{\mathrm{t}}$ differential cross section as a function of the XCone-jet mass.
The covariance matrix containing the experimental uncertainties of the particle-level $\mathrm{t}\overline{\mathrm{t}}$ differential cross section as a function of the XCone-jet mass.
The covariance matrix containing the model uncertainties of the particle-level $\mathrm{t}\overline{\mathrm{t}}$ differential cross section as a function of the XCone-jet mass.
The normalized particle-level $\mathrm{t}\overline{\mathrm{t}}$ differential cross section in the fiducial region as a function of the XCone-jet mass.
Correlations between bins in the normalized particle-level $\mathrm{t}\overline{\mathrm{t}}$ differential cross section as a function of the XCone-jet mass.
The covariance matrix containing the statistical uncertainties of the normalized particle-level $\mathrm{t}\overline{\mathrm{t}}$ differential cross section as a function of the XCone-jet mass.
The covariance matrix containing the experimental uncertainties of the normalized particle-level $\mathrm{t}\overline{\mathrm{t}}$ differential cross section as a function of the XCone-jet mass.
The covariance matrix containing the model uncertainties of the normalized particle-level $\mathrm{t}\overline{\mathrm{t}}$ differential cross section as a function of the XCone-jet mass.
Relative experimental uncertainties of the particle-level $\mathrm{t}\overline{\mathrm{t}}$ differential cross section in the fiducial region as a function of the XCone-jet mass.
Relative model uncertainties of the particle-level $\mathrm{t}\overline{\mathrm{t}}$ differential cross section in the fiducial region as a function of the XCone-jet mass.
Relative experimental uncertainties of the normalized particle-level $\mathrm{t}\overline{\mathrm{t}}$ differential cross section in the fiducial region as a function of the XCone-jet mass.
Relative model uncertainties of the normalized particle-level $\mathrm{t}\overline{\mathrm{t}}$ differential cross section in the fiducial region as a function of the XCone-jet mass.
Multijet events at large transverse momentum ($p_\mathrm{T}$) are measured at $\sqrt{s}$ = 13 TeV using data recorded with the CMS detector at the LHC, corresponding to an integrated luminosity of 36.3 fb$^{-1}$. The multiplicity of jets with $p_\mathrm{T}$$>$ 50 GeV that are produced in association with a high-$p_\mathrm{T}$ dijet system is measured in various ranges of the $p_\mathrm{T}$ of the jet with the highest transverse momentum and as a function of the azimuthal angle difference $\Delta\phi_{1,2}$ between the two highest $p_\mathrm{T}$ jets in the dijet system. The differential production cross sections are measured as a function of the transverse momenta of the four highest $p_\mathrm{T}$ jets. The measurements are compared with leading and next-to-leading order matrix element calculations supplemented with simulations of parton shower, hadronization, and multiparton interactions. In addition, the measurements are compared with next-to-leading order matrix element calculations combined with transverse-momentum dependent parton densities and transverse-momentum dependent parton shower.
Jet multiplicity measured for a leading-pT jet ($p_{T1}$) with 200 < $p_{T1}$ < 400 GeV and for an azimuthal separation between the two leading jets of $0 < \Delta\Phi_{1,2} < 150^{\circ}$. The full breakdown of the uncertainties is displayed, with PU corresponding to Pileup, PREF to Trigger Prefering, PTHAT to the hard-scale (renormalization and factorization scales), MISS and FAKE to the inefficienties and background, LUMI to integrated luminosity. With JES, JER and stat. unc. following the notation in the paper.
Jet multiplicity measured for a leading-pT jet ($p_{T1}$) with 200 < $p_{T1}$ < 400 GeV and for an azimuthal separation between the two leading jets of $150 < \Delta\Phi_{1,2} < 170^{\circ}$. The full breakdown of the uncertainties is displayed, with PU corresponding to Pileup, PREF to Trigger Prefering, PTHAT to the hard-scale (renormalization and factorization scales), MISS and FAKE to the inefficienties and background, LUMI to integrated luminosity. With JES, JER and stat. unc. following the notation in the paper.
Jet multiplicity measured for a leading-pT jet ($p_{T1}$) with 200 < $p_{T1}$ < 400 GeV and for an azimuthal separation between the two leading jets of $170 < \Delta\Phi_{1,2} < 180^{\circ}$. The full breakdown of the uncertainties is displayed, with PU corresponding to Pileup, PREF to Trigger Prefering, PTHAT to the hard-scale (renormalization and factorization scales), MISS and FAKE to the inefficienties and background, LUMI to integrated luminosity. With JES, JER and stat. unc. following the notation in the paper.
Jet multiplicity measured for a leading-pT jet ($p_{T1}$) with 400 < $p_{T1}$ < 800 GeV and for an azimuthal separation between the two leading jets of $0 < \Delta\Phi_{1,2} < 150^{\circ}$. The full breakdown of the uncertainties is displayed, with PU corresponding to Pileup, PREF to Trigger Prefering, PTHAT to the hard-scale (renormalization and factorization scales), MISS and FAKE to the inefficienties and background, LUMI to integrated luminosity. With JES, JER and stat. unc. following the notation in the paper.
Jet multiplicity measured for a leading-pT jet ($p_{T1}$) with 400 < $p_{T1}$ < 800 GeV and for an azimuthal separation between the two leading jets of $150 < \Delta\Phi_{1,2} < 170^{\circ}$. The full breakdown of the uncertainties is displayed, with PU corresponding to Pileup, PREF to Trigger Prefering, PTHAT to the hard-scale (renormalization and factorization scales), MISS and FAKE to the inefficienties and background, LUMI to integrated luminosity. With JES, JER and stat. unc. following the notation in the paper.
Jet multiplicity measured for a leading-pT jet ($p_{T1}$) with 400 < $p_{T1}$ < 800 GeV and for an azimuthal separation between the two leading jets of $170 < \Delta\Phi_{1,2} < 180^{\circ}$. The full breakdown of the uncertainties is displayed, with PU corresponding to Pileup, PREF to Trigger Prefering, PTHAT to the hard-scale (renormalization and factorization scales), MISS and FAKE to the inefficienties and background, LUMI to integrated luminosity. With JES, JER and stat. unc. following the notation in the paper.
Jet multiplicity measured for a leading-pT jet ($p_{T1}$) with $p_{T1}$ > 800 and for an azimuthal separation between the two leading jets of $0 < \Delta\Phi_{1,2} < 150^{\circ}$. The full breakdown of the uncertainties is displayed, with PU corresponding to Pileup, PREF to Trigger Prefering, PTHAT to the hard-scale (renormalization and factorization scales), MISS and FAKE to the inefficienties and background, LUMI to integrated luminosity. With JES, JER and stat. unc. following the notation in the paper.
Jet multiplicity measured for a leading-pT jet ($p_{T1}$) with $p_{T1}$ > 800 and for an azimuthal separation between the two leading jets of $150 < \Delta\Phi_{1,2} < 170^{\circ}$. The full breakdown of the uncertainties is displayed, with PU corresponding to Pileup, PREF to Trigger Prefering, PTHAT to the hard-scale (renormalization and factorization scales), MISS and FAKE to the inefficienties and background, LUMI to integrated luminosity. With JES, JER and stat. unc. following the notation in the paper.
Jet multiplicity measured for a leading-pT jet ($p_{T1}$) with $p_{T1}$ > 800 and for an azimuthal separation between the two leading jets of $170 < \Delta\Phi_{1,2} < 180^{\circ}$. The full breakdown of the uncertainties is displayed, with PU corresponding to Pileup, PREF to Trigger Prefering, PTHAT to the hard-scale (renormalization and factorization scales), MISS and FAKE to the inefficienties and background, LUMI to integrated luminosity. With JES, JER and stat. unc. following the notation in the paper.
Measured transverse momentum of the leading $p_{T}$ jet ($p_{T1}$). The full breakdown of the uncertainties is displayed, with PU corresponding to Pileup, PREF to Trigger Prefering, PTHAT to the hard-scale (renormalization and factorization scales), MISS and FAKE to the inefficienties and background, LUMI to integrated luminosity. With JES, JER and stat. unc. following the notation in the paper.
Measured transverse momentum of the subleading $p_{T}$ jet ($p_{T2}$). The full breakdown of the uncertainties is displayed, with PU corresponding to Pileup, PREF to Trigger Prefering, PTHAT to the hard-scale (renormalization and factorization scales), MISS and FAKE to the inefficienties and background, LUMI to integrated luminosity. With JES, JER and stat. unc. following the notation in the paper.
Measured transverse momentum of the third leading $p_{T}$ jet ($p_{T3}$). The full breakdown of the uncertainties is displayed, with PU corresponding to Pileup, PREF to Trigger Prefering, PTHAT to the hard-scale (renormalization and factorization scales), MISS and FAKE to the inefficienties and background, LUMI to integrated luminosity. With JES, JER and stat. unc. following the notation in the paper.
Measured transverse momentum of the fourth leading $p_{T}$ jet ($p_{T4}$). The full breakdown of the uncertainties is displayed, with PU corresponding to Pileup, PREF to Trigger Prefering, PTHAT to the hard-scale (renormalization and factorization scales), MISS and FAKE to the inefficienties and background, LUMI to integrated luminosity. With JES, JER and stat. unc. following the notation in the paper.
Jet multiplicity distribution in TUnfold binning ($N_{jets},\Delta\phi_{1,2},p_{T1}$) as indicated in the XML file provided as additional resource. The uncertainties follow the notation of Table 1.
Correlation matrix at particle level for the measured jet multiplicity in TUnfold binning ($N_{jets},\Delta\phi_{1,2},p_{T1}$) as indicated in the XML file provided as additional resource.
Jet $p_{T}$ distributions in TUnfold binning ($p_{T1},p_{T2},p_{T3},p_{T4}$) as indicated in the XML file provided as additional resource. The uncertainties follow the notation of Table 1.
Correlation matrix at particle level for the measured jet $p_{T}$ distributions in TUnfold binning ($p_{T1},p_{T2},p_{T3},p_{T4}$) as indicated in the XML file provided as additional resource.
A search for the electroweak production of pairs of charged sleptons or charginos decaying into two-lepton final states with missing transverse momentum is presented. Two simplified models of $R$-parity-conserving supersymmetry are considered: direct pair-production of sleptons ($\tilde{\ell}\tilde{\ell}$), with each decaying into a charged lepton and a $\tilde{\chi}_1^0$ neutralino, and direct pair-production of the lightest charginos $(\tilde{\chi}_1^\pm\tilde{\chi}_1^\mp)$, with each decaying into a $W$-boson and a $\tilde{\chi}_1^0$. The lightest neutralino ($\tilde{\chi}_1^0$) is assumed to be the lightest supersymmetric particle (LSP). The analyses target the experimentally challenging mass regions where $m(\tilde{\ell})-m(\tilde{\chi}_1^0)$ and $m(\tilde{\chi}_1^\pm)-m(\tilde{\chi}_1^0)$ are close to the $W$-boson mass (`moderately compressed' regions). The search uses 139 fb$^{-1}$ of $\sqrt{s}=13$ TeV proton-proton collisions recorded by the ATLAS detector at the Large Hadron Collider. No significant excesses over the expected background are observed. Exclusion limits on the simplified models under study are reported in the ($\tilde{\ell},\tilde{\chi}_1^0$) and ($\tilde{\chi}_1^\pm,\tilde{\chi}_1^0$) mass planes at 95% confidence level (CL). Sleptons with masses up to 150 GeV are excluded at 95% CL for the case of a mass-splitting between sleptons and the LSP of 50 GeV. Chargino masses up to 140 GeV are excluded at 95% CL for the case of a mass-splitting between the chargino and the LSP down to about 100 GeV.
<b>- - - - - - - - Overview of HEPData Record - - - - - - - -</b> <b>Title: </b><em>Search for direct pair production of sleptons and charginos decaying to two leptons and neutralinos with mass splittings near the $W$ boson mass in $\sqrt{s}=13$ TeV $pp$ collisions with the ATLAS detector</em> <b>Paper website:</b> <a href="https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/SUSY-2019-02/">SUSY-2019-02</a> <b>Exclusion contours</b> <ul><li><b>Sleptons:</b> <a href=?table=excl_comb_obs_nominal>Combined Observed Nominal</a> <a href=?table=excl_comb_obs_up>Combined Observed Up</a> <a href=?table=excl_comb_obs_down>Combined Observed Down</a> <a href=?table=excl_comb_exp_nominal>Combined Expected Nominal</a> <a href=?table=excl_comb_exp_up>Combined Expected Up</a> <a href=?table=excl_comb_exp_down>Combined Expected Down</a> <a href=?table=excl_comb_obs_nominal_dM>Combined Observed Nominal $(\Delta m)$</a> <a href=?table=excl_comb_obs_up_dM>Combined Observed Up $(\Delta m)$</a> <a href=?table=excl_comb_obs_down_dM>Combined Observed Down $(\Delta m)$</a> <a href=?table=excl_comb_exp_nominal_dM>Combined Expected Nominal $(\Delta m)$</a> <a href=?table=excl_comb_exp_up_dM>Combined Expected Up $(\Delta m)$</a> <a href=?table=excl_comb_exp_down_dM>Combined Expected Down $(\Delta m)$</a> <a href=?table=excl_ee_obs_nominal>$\tilde{e}_\mathrm{L,R}$ Observed Nominal</a> <a href=?table=excl_ee_exp_nominal>$\tilde{e}_\mathrm{L,R}$ Expected Nominal</a> <a href=?table=excl_eLeL_obs_nominal>$\tilde{e}_\mathrm{L}$ Observed Nominal</a> <a href=?table=excl_eLeL_exp_nominal>$\tilde{e}_\mathrm{L}$ Expected Nominal</a> <a href=?table=excl_eReR_obs_nominal>$\tilde{e}_\mathrm{R}$ Observed Nominal</a> <a href=?table=excl_eReR_exp_nominal>$\tilde{e}_\mathrm{R}$ Expected Nominal</a> <a href=?table=excl_ee_obs_nominal_dM>$\tilde{e}_\mathrm{L,R}$ Observed Nominal $(\Delta m)$</a> <a href=?table=excl_ee_exp_nominal_dM>$\tilde{e}_\mathrm{L,R}$ Expected Nominal $(\Delta m)$</a> <a href=?table=excl_eLeL_obs_nominal_dM>$\tilde{e}_\mathrm{L}$ Observed Nominal $(\Delta m)$</a> <a href=?table=excl_eLeL_exp_nominal_dM>$\tilde{e}_\mathrm{L}$ Expected Nominal $(\Delta m)$</a> <a href=?table=excl_eReR_obs_nominal_dM>$\tilde{e}_\mathrm{R}$ Observed Nominal $(\Delta m)$</a> <a href=?table=excl_eReR_exp_nominal_dM>$\tilde{e}_\mathrm{R}$ Expected Nominal $(\Delta m)$</a> <a href=?table=excl_mm_obs_nominal>$\tilde{\mu}_\mathrm{L,R}$ Observed Nominal</a> <a href=?table=excl_mm_exp_nominal>$\tilde{\mu}_\mathrm{L,R}$ Expected Nominal</a> <a href=?table=excl_mLmL_obs_nominal>$\tilde{\mu}_\mathrm{L}$ Observed Nominal</a> <a href=?table=excl_mLmL_exp_nominal>$\tilde{\mu}_\mathrm{L}$ Expected Nominal</a> <a href=?table=excl_mRmR_obs_nominal>$\tilde{\mu}_\mathrm{R}$ Observed Nominal</a> <a href=?table=excl_mRmR_exp_nominal>$\tilde{\mu}_\mathrm{R}$ Expected Nominal</a> <a href=?table=excl_mm_obs_nominal_dM>$\tilde{\mu}_\mathrm{L,R}$ Observed Nominal $(\Delta m)$</a> <a href=?table=excl_mm_exp_nominal_dM>$\tilde{\mu}_\mathrm{L,R}$ Expected Nominal $(\Delta m)$</a> <a href=?table=excl_mLmL_obs_nominal_dM>$\tilde{\mu}_\mathrm{L}$ Observed Nominal $(\Delta m)$</a> <a href=?table=excl_mLmL_exp_nominal_dM>$\tilde{\mu}_\mathrm{L}$ Expected Nominal $(\Delta m)$</a> <a href=?table=excl_mRmR_obs_nominal_dM>$\tilde{\mu}_\mathrm{R}$ Observed Nominal $(\Delta m)$</a> <a href=?table=excl_mRmR_exp_nominal_dM>$\tilde{\mu}_\mathrm{R}$ Expected Nominal $(\Delta m)$</a> <a href=?table=excl_comb_obs_nominal_SR0j>Combined Observed Nominal SR-0j</a> <a href=?table=excl_comb_exp_nominal_SR0j>Combined Expected Nominal SR-0j</a> <a href=?table=excl_comb_obs_nominal_SR1j>Combined Observed Nominal SR-1j</a> <a href=?table=excl_comb_exp_nominal_SR1j>Combined Expected Nominal SR-1j</a> <li><b>Charginos:</b> <a href=?table=excl_c1c1_obs_nominal>Observed Nominal</a> <a href=?table=excl_c1c1_obs_up>Observed Up</a> <a href=?table=excl_c1c1_obs_down>Observed Down</a> <a href=?table=excl_c1c1_exp_nominal>Expected Nominal</a> <a href=?table=excl_c1c1_exp_nominal>Expected Up</a> <a href=?table=excl_c1c1_exp_nominal>Expected Down</a> <a href=?table=excl_c1c1_obs_nominal_dM>Observed Nominal $(\Delta m)$</a> <a href=?table=excl_c1c1_obs_up_dM>Observed Up $(\Delta m)$</a> <a href=?table=excl_c1c1_obs_down_dM>Observed Down $(\Delta m)$</a> <a href=?table=excl_c1c1_exp_nominal_dM>Expected Nominal $(\Delta m)$</a> <a href=?table=excl_c1c1_exp_nominal_dM>Expected Up $(\Delta m)$</a> <a href=?table=excl_c1c1_exp_nominal_dM>Expected Down $(\Delta m)$</a> </ul> <b>Upper Limits</b> <ul><li><b>Sleptons:</b> <a href=?table=UL_slep>ULs</a> <li><b>Charginos:</b> <a href=?table=UL_c1c1>ULs</a> </ul> <b>Pull Plots</b> <ul><li><b>Sleptons:</b> <a href=?table=pullplot_slep>SRs summary plot</a> <li><b>Charginos:</b> <a href=?table=pullplot_c1c1>SRs summary plot</a> </ul> <b>Cutflows</b> <ul><li><b>Sleptons:</b> <a href=?table=Cutflow_slep_SR0j>Towards SR-0J</a> <a href=?table=Cutflow_slep_SR1j>Towards SR-1J</a> <li><b>Charginos:</b> <a href=?table=Cutflow_SRs>Towards SRs</a> </ul> <b>Acceptance and Efficiencies</b> <ul><li><b>Sleptons:</b> <a href=?table=Acceptance_SR0j_MT2_100_infty>SR-0J $m_{\mathrm{T2}}^{100} \in[100,\infty)$ Acceptance</a> <a href=?table=Efficiency_SR0j_MT2_100_infty>SR-0J $m_{\mathrm{T2}}^{100} \in[100,\infty)$ Efficiency</a> <a href=?table=Acceptance_SR0j_MT2_110_infty>SR-0J $m_{\mathrm{T2}}^{100} \in[110,\infty)$ Acceptance</a> <a href=?table=Efficiency_SR0j_MT2_110_infty>SR-0J $m_{\mathrm{T2}}^{100} \in[110,\infty)$ Efficiency</a> <a href=?table=Acceptance_SR0j_MT2_120_infty>SR-0J $m_{\mathrm{T2}}^{100} \in[120,\infty)$ Acceptance</a> <a href=?table=Efficiency_SR0j_MT2_120_infty>SR-0J $m_{\mathrm{T2}}^{100} \in[120,\infty)$ Efficiency</a> <a href=?table=Acceptance_SR0j_MT2_130_infty>SR-0J $m_{\mathrm{T2}}^{100} \in[130,\infty)$ Acceptance</a> <a href=?table=Efficiency_SR0j_MT2_130_infty>SR-0J $m_{\mathrm{T2}}^{100} \in[130,\infty)$ Efficiency</a> <a href=?table=Acceptance_SR0j_MT2_100_105>SR-0J $m_{\mathrm{T2}}^{100} \in[100,105)$ Acceptance</a> <a href=?table=Efficiency_SR0j_MT2_100_105>SR-0J $m_{\mathrm{T2}}^{100} \in[100,105)$ Efficiency</a> <a href=?table=Acceptance_SR0j_MT2_105_110>SR-0J $m_{\mathrm{T2}}^{100} \in[105,110)$ Acceptance</a> <a href=?table=Efficiency_SR0j_MT2_105_110>SR-0J $m_{\mathrm{T2}}^{100} \in[105,110)$ Efficiency</a> <a href=?table=Acceptance_SR0j_MT2_110_115>SR-0J $m_{\mathrm{T2}}^{100} \in[110,115)$ Acceptance</a> <a href=?table=Efficiency_SR0j_MT2_110_115>SR-0J $m_{\mathrm{T2}}^{100} \in[110,115)$ Efficiency</a> <a href=?table=Acceptance_SR0j_MT2_115_120>SR-0J $m_{\mathrm{T2}}^{100} \in[115,120)$ Acceptance</a> <a href=?table=Efficiency_SR0j_MT2_115_120>SR-0J $m_{\mathrm{T2}}^{100} \in[115,120)$ Efficiency</a> <a href=?table=Acceptance_SR0j_MT2_120_125>SR-0J $m_{\mathrm{T2}}^{100} \in[120,125)$ Acceptance</a> <a href=?table=Efficiency_SR0j_MT2_125_130>SR-0J $m_{\mathrm{T2}}^{100} \in[125,130)$ Efficiency</a> <a href=?table=Acceptance_SR0j_MT2_130_140>SR-0J $m_{\mathrm{T2}}^{100} \in[130,140)$ Acceptance</a> <a href=?table=Efficiency_SR0j_MT2_130_140>SR-0J $m_{\mathrm{T2}}^{100} \in[130,140)$ Efficiency</a> <a href=?table=Acceptance_SR0j_MT2_140_infty>SR-0J $m_{\mathrm{T2}}^{100} \in[140,\infty)$ Acceptance</a> <a href=?table=Efficiency_SR0j_MT2_140_infty>SR-0J $m_{\mathrm{T2}}^{100} \in[140,\infty)$ Efficiency</a> <a href=?table=Acceptance_SR1j_MT2_100_infty>SR-1j $m_{\mathrm{T2}}^{100} \in[100,\infty)$ Acceptance</a> <a href=?table=Efficiency_SR1j_MT2_100_infty>SR-1j $m_{\mathrm{T2}}^{100} \in[100,\infty)$ Efficiency</a> <a href=?table=Acceptance_SR1j_MT2_110_infty>SR-1j $m_{\mathrm{T2}}^{100} \in[110,\infty)$ Acceptance</a> <a href=?table=Efficiency_SR1j_MT2_110_infty>SR-1j $m_{\mathrm{T2}}^{100} \in[110,\infty)$ Efficiency</a> <a href=?table=Acceptance_SR1j_MT2_120_infty>SR-1j $m_{\mathrm{T2}}^{100} \in[120,\infty)$ Acceptance</a> <a href=?table=Efficiency_SR1j_MT2_120_infty>SR-1j $m_{\mathrm{T2}}^{100} \in[120,\infty)$ Efficiency</a> <a href=?table=Acceptance_SR1j_MT2_130_infty>SR-1j $m_{\mathrm{T2}}^{100} \in[130,\infty)$ Acceptance</a> <a href=?table=Efficiency_SR1j_MT2_130_infty>SR-1j $m_{\mathrm{T2}}^{100} \in[130,\infty)$ Efficiency</a> <a href=?table=Acceptance_SR1j_MT2_100_105>SR-1j $m_{\mathrm{T2}}^{100} \in[100,105)$ Acceptance</a> <a href=?table=Efficiency_SR1j_MT2_100_105>SR-1j $m_{\mathrm{T2}}^{100} \in[100,105)$ Efficiency</a> <a href=?table=Acceptance_SR1j_MT2_105_110>SR-1j $m_{\mathrm{T2}}^{100} \in[105,110)$ Acceptance</a> <a href=?table=Efficiency_SR1j_MT2_105_110>SR-1j $m_{\mathrm{T2}}^{100} \in[105,110)$ Efficiency</a> <a href=?table=Acceptance_SR1j_MT2_110_115>SR-1j $m_{\mathrm{T2}}^{100} \in[110,115)$ Acceptance</a> <a href=?table=Efficiency_SR1j_MT2_110_115>SR-1j $m_{\mathrm{T2}}^{100} \in[110,115)$ Efficiency</a> <a href=?table=Acceptance_SR1j_MT2_115_120>SR-1j $m_{\mathrm{T2}}^{100} \in[115,120)$ Acceptance</a> <a href=?table=Efficiency_SR1j_MT2_115_120>SR-1j $m_{\mathrm{T2}}^{100} \in[115,120)$ Efficiency</a> <a href=?table=Acceptance_SR1j_MT2_120_125>SR-1j $m_{\mathrm{T2}}^{100} \in[120,125)$ Acceptance</a> <a href=?table=Efficiency_SR1j_MT2_125_130>SR-1j $m_{\mathrm{T2}}^{100} \in[125,130)$ Efficiency</a> <a href=?table=Acceptance_SR1j_MT2_130_140>SR-1j $m_{\mathrm{T2}}^{100} \in[130,140)$ Acceptance</a> <a href=?table=Efficiency_SR1j_MT2_130_140>SR-1j $m_{\mathrm{T2}}^{100} \in[130,140)$ Efficiency</a> <a href=?table=Acceptance_SR1j_MT2_140_infty>SR-1j $m_{\mathrm{T2}}^{100} \in[140,\infty)$ Acceptance</a> <a href=?table=Efficiency_SR1j_MT2_140_infty>SR-1j $m_{\mathrm{T2}}^{100} \in[140,\infty)$ Efficiency</a> <li><b>Charginos:</b> <a href=?table=Acceptance_SR_DF_81_1_SF_77_1>SR$^{\text{-DF BDT-signal}\in(0.81,1]}_{\text{-SF BDT-signal}\in(0.77,1]}$ Acceptance</a> <a href=?table=Efficiency_SR_DF_81_1_SF_77_1>SR$^{\text{-DF BDT-signal}\in(0.81,1]}_{\text{-SF BDT-signal}\in(0.77,1]}$ Efficiency</a> <a href=?table=Acceptance_SR_DF_81_1>SR-DF BDT-signal$\in(0.81,1]$ Acceptance</a> <a href=?table=Efficiency_SR_DF_81_1>SR-DF BDT-signal$\in(0.81,1]$ Efficiency</a> <a href=?table=Acceptance_SR_DF_82_1>SR-DF BDT-signal$\in(0.82,1]$ Acceptance</a> <a href=?table=Efficiency_SR_DF_82_1>SR-DF BDT-signal$\in(0.82,1]$ Efficiency</a> <a href=?table=Acceptance_SR_DF_83_1>SR-DF BDT-signal$\in(0.83,1]$ Acceptance</a> <a href=?table=Efficiency_SR_DF_83_1>SR-DF BDT-signal$\in(0.83,1]$ Efficiency</a> <a href=?table=Acceptance_SR_DF_84_1>SR-DF BDT-signal$\in(0.84,1]$ Acceptance</a> <a href=?table=Efficiency_SR_DF_84_1>SR-DF BDT-signal$\in(0.84,1]$ Efficiency</a> <a href=?table=Acceptance_SR_DF_85_1>SR-DF BDT-signal$\in(0.85,1]$ Acceptance</a> <a href=?table=Efficiency_SR_DF_85_1>SR-DF BDT-signal$\in(0.85,1]$ Efficiency</a> <a href=?table=Acceptance_SR_DF_81_8125>SR-DF BDT-signal$\in(0.81,8125]$ Acceptance</a> <a href=?table=Efficiency_SR_DF_81_8125>SR-DF BDT-signal$\in(0.81,8125]$ Efficiency</a> <a href=?table=Acceptance_SR_DF_8125_815>SR-DF BDT-signal$\in(0.8125,815]$ Acceptance</a> <a href=?table=Efficiency_SR_DF_8125_815>SR-DF BDT-signal$\in(0.8125,815]$ Efficiency</a> <a href=?table=Acceptance_SR_DF_815_8175>SR-DF BDT-signal$\in(0.815,8175]$ Acceptance</a> <a href=?table=Efficiency_SR_DF_815_8175>SR-DF BDT-signal$\in(0.815,8175]$ Efficiency</a> <a href=?table=Acceptance_SR_DF_8175_82>SR-DF BDT-signal$\in(0.8175,82]$ Acceptance</a> <a href=?table=Efficiency_SR_DF_8175_82>SR-DF BDT-signal$\in(0.8175,82]$ Efficiency</a> <a href=?table=Acceptance_SR_DF_82_8225>SR-DF BDT-signal$\in(0.82,8225]$ Acceptance</a> <a href=?table=Efficiency_SR_DF_82_8225>SR-DF BDT-signal$\in(0.82,8225]$ Efficiency</a> <a href=?table=Acceptance_SR_DF_8225_825>SR-DF BDT-signal$\in(0.8225,825]$ Acceptance</a> <a href=?table=Efficiency_SR_DF_8225_825>SR-DF BDT-signal$\in(0.8225,825]$ Efficiency</a> <a href=?table=Acceptance_SR_DF_825_8275>SR-DF BDT-signal$\in(0.825,8275]$ Acceptance</a> <a href=?table=Efficiency_SR_DF_825_8275>SR-DF BDT-signal$\in(0.825,8275]$ Efficiency</a> <a href=?table=Acceptance_SR_DF_8275_83>SR-DF BDT-signal$\in(0.8275,83]$ Acceptance</a> <a href=?table=Efficiency_SR_DF_8275_83>SR-DF BDT-signal$\in(0.8275,83]$ Efficiency</a> <a href=?table=Acceptance_SR_DF_83_8325>SR-DF BDT-signal$\in(0.83,8325]$ Acceptance</a> <a href=?table=Efficiency_SR_DF_83_8325>SR-DF BDT-signal$\in(0.83,8325]$ Efficiency</a> <a href=?table=Acceptance_SR_DF_8325_835>SR-DF BDT-signal$\in(0.8325,835]$ Acceptance</a> <a href=?table=Efficiency_SR_DF_8325_835>SR-DF BDT-signal$\in(0.8325,835]$ Efficiency</a> <a href=?table=Acceptance_SR_DF_835_8375>SR-DF BDT-signal$\in(0.835,8375]$ Acceptance</a> <a href=?table=Efficiency_SR_DF_835_8375>SR-DF BDT-signal$\in(0.835,8375]$ Efficiency</a> <a href=?table=Acceptance_SR_DF_8375_84>SR-DF BDT-signal$\in(0.8375,84]$ Acceptance</a> <a href=?table=Efficiency_SR_DF_8375_84>SR-DF BDT-signal$\in(0.8375,84]$ Efficiency</a> <a href=?table=Acceptance_SR_DF_84_845>SR-DF BDT-signal$\in(0.85,845]$ Acceptance</a> <a href=?table=Efficiency_SR_DF_84_845>SR-DF BDT-signal$\in(0.85,845]$ Efficiency</a> <a href=?table=Acceptance_SR_DF_845_85>SR-DF BDT-signal$\in(0.845,85]$ Acceptance</a> <a href=?table=Efficiency_SR_DF_845_85>SR-DF BDT-signal$\in(0.845,85]$ Efficiency</a> <a href=?table=Acceptance_SR_DF_85_86>SR-DF BDT-signal$\in(0.85,86]$ Acceptance</a> <a href=?table=Efficiency_SR_DF_85_86>SR-DF BDT-signal$\in(0.85,86]$ Efficiency</a> <a href=?table=Acceptance_SR_DF_86_1>SR-DF BDT-signal$\in(0.86,1]$ Acceptance</a> <a href=?table=Efficiency_SR_DF_86_1>SR-DF BDT-signal$\in(0.86,1]$ Efficiency</a> <a href=?table=Acceptance_SR_SF_77_1>SR-SF BDT-signal$\in(0.77,1]$ Acceptance</a> <a href=?table=Efficiency_SR_SF_77_1>SR-SF BDT-signal$\in(0.77,1]$ Efficiency</a> <a href=?table=Acceptance_SR_SF_78_1>SR-SF BDT-signal$\in(0.78,1]$ Acceptance</a> <a href=?table=Efficiency_SR_SF_78_1>SR-SF BDT-signal$\in(0.78,1]$ Efficiency</a> <a href=?table=Acceptance_SR_SF_79_1>SR-SF BDT-signal$\in(0.79,1]$ Acceptance</a> <a href=?table=Efficiency_SR_SF_79_1>SR-SF BDT-signal$\in(0.79,1]$ Efficiency</a> <a href=?table=Acceptance_SR_SF_80_1>SR-SF BDT-signal$\in(0.80,1]$ Acceptance</a> <a href=?table=Efficiency_SR_SF_80_1>SR-SF BDT-signal$\in(0.80,1]$ Efficiency</a> <a href=?table=Acceptance_SR_SF_77_775>SR-SF BDT-signal$\in(0.77,0.775]$ Acceptance</a> <a href=?table=Efficiency_SR_SF_77_775>SR-SF BDT-signal$\in(0.77,0.775]$ Efficiency</a> <a href=?table=Acceptance_SR_SF_775_78>SR-SF BDT-signal$\in(0.775,0.78]$ Acceptance</a> <a href=?table=Efficiency_SR_SF_775_78>SR-SF BDT-signal$\in(0.775,0.78]$ Efficiency</a> <a href=?table=Acceptance_SR_SF_78_785>SR-SF BDT-signal$\in(0.78,0.785]$ Acceptance</a> <a href=?table=Efficiency_SR_SF_78_785>SR-SF BDT-signal$\in(0.78,0.785]$ Efficiency</a> <a href=?table=Acceptance_SR_SF_785_79>SR-SF BDT-signal$\in(0.785,0.79]$ Acceptance</a> <a href=?table=Efficiency_SR_SF_785_79>SR-SF BDT-signal$\in(0.785,0.79]$ Efficiency</a> <a href=?table=Acceptance_SR_SF_79_795>SR-SF BDT-signal$\in(0.79,0.795]$ Acceptance</a> <a href=?table=Efficiency_SR_SF_79_795>SR-SF BDT-signal$\in(0.79,0.795]$ Efficiency</a> <a href=?table=Acceptance_SR_SF_795_80>SR-SF BDT-signal$\in(0.795,0.80]$ Acceptance</a> <a href=?table=Efficiency_SR_SF_795_80>SR-SF BDT-signal$\in(0.795,0.80]$ Efficiency</a> <a href=?table=Acceptance_SR_SF_80_81>SR-SF BDT-signal$\in(0.80,0.81]$ Acceptance</a> <a href=?table=Efficiency_SR_SF_80_81>SR-SF BDT-signal$\in(0.80,0.81]$ Efficiency</a> <a href=?table=Acceptance_SR_SF_81_1>SR-SF BDT-signal$\in(0.81,1]$ Acceptance</a> <a href=?table=Efficiency_SR_SF_81_1>SR-SF BDT-signal$\in(0.81,1]$ Efficiency</a></ul> <b>Truth Code snippets</b>, <b>SLHA</b> and <b>machine learning</b> files are available under "Resources" (purple button on the left)
The figure shows the signal acceptance (a) and efficiency (b) plots for the slepton pair production model, in the SR-0J $m_{\mathrm{T2}}^{100} \in[100,\infty)$ region. Acceptance is calculated by applying the signal region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out. Large acceptance and efficiency differences in neighbouring points are due to statistical fluctuations.
The figure shows the signal acceptance (a) and efficiency (b) plots for the slepton pair production model, in the SR-0J $m_{\mathrm{T2}}^{100} \in[100,\infty)$ region. Acceptance is calculated by applying the signal region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out. Large acceptance and efficiency differences in neighbouring points are due to statistical fluctuations.
The figure shows the signal acceptance (a) and efficiency (b) plots for the slepton pair production model, in the SR-0J $m_{\mathrm{T2}}^{100} \in[110,\infty)$ region. Acceptance is calculated by applying the signal region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out. Large acceptance and efficiency differences in neighbouring points are due to statistical fluctuations.
The figure shows the signal acceptance (a) and efficiency (b) plots for the slepton pair production model, in the SR-0J $m_{\mathrm{T2}}^{100} \in[110,\infty)$ region. Acceptance is calculated by applying the signal region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out. Large acceptance and efficiency differences in neighbouring points are due to statistical fluctuations.
The figure shows the signal acceptance (a) and efficiency (b) plots for the slepton pair production model, in the SR-0J $m_{\mathrm{T2}}^{100} \in[120,\infty)$ region. Acceptance is calculated by applying the signal region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out. Large acceptance and efficiency differences in neighbouring points are due to statistical fluctuations.
The figure shows the signal acceptance (a) and efficiency (b) plots for the slepton pair production model, in the SR-0J $m_{\mathrm{T2}}^{100} \in[120,\infty)$ region. Acceptance is calculated by applying the signal region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out. Large acceptance and efficiency differences in neighbouring points are due to statistical fluctuations.
The figure shows the signal acceptance (a) and efficiency (b) plots for the slepton pair production model, in the SR-0J $m_{\mathrm{T2}}^{100} \in[130,\infty)$ region. Acceptance is calculated by applying the signal region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out. Large acceptance and efficiency differences in neighbouring points are due to statistical fluctuations.
The figure shows the signal acceptance (a) and efficiency (b) plots for the slepton pair production model, in the SR-0J $m_{\mathrm{T2}}^{100} \in[130,\infty)$ region. Acceptance is calculated by applying the signal region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out. Large acceptance and efficiency differences in neighbouring points are due to statistical fluctuations.
The figure shows the signal acceptance (a) and efficiency (b) plots for the slepton pair production model, in the SR-0J $m_{\mathrm{T2}}^{100} \in[100,105)$ region. Acceptance is calculated by applying the signal region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out. Large acceptance and efficiency differences in neighbouring points are due to statistical fluctuations.
The figure shows the signal acceptance (a) and efficiency (b) plots for the slepton pair production model, in the SR-0J $m_{\mathrm{T2}}^{100} \in[100,105)$ region. Acceptance is calculated by applying the signal region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out. Large acceptance and efficiency differences in neighbouring points are due to statistical fluctuations.
The figure shows the signal acceptance (a) and efficiency (b) plots for the slepton pair production model, in the SR-0J $m_{\mathrm{T2}}^{100} \in[105,110)$ region. Acceptance is calculated by applying the signal region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out. Large acceptance and efficiency differences in neighbouring points are due to statistical fluctuations.
The figure shows the signal acceptance (a) and efficiency (b) plots for the slepton pair production model, in the SR-0J $m_{\mathrm{T2}}^{100} \in[105,110)$ region. Acceptance is calculated by applying the signal region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out. Large acceptance and efficiency differences in neighbouring points are due to statistical fluctuations.
The figure shows the signal acceptance (a) and efficiency (b) plots for the slepton pair production model, in the SR-0J $m_{\mathrm{T2}}^{100} \in[110,115)$ region. Acceptance is calculated by applying the signal region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out. Large acceptance and efficiency differences in neighbouring points are due to statistical fluctuations.
The figure shows the signal acceptance (a) and efficiency (b) plots for the slepton pair production model, in the SR-0J $m_{\mathrm{T2}}^{100} \in[110,115)$ region. Acceptance is calculated by applying the signal region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out. Large acceptance and efficiency differences in neighbouring points are due to statistical fluctuations.
The figure shows the signal acceptance (a) and efficiency (b) plots for the slepton pair production model, in the SR-0J $m_{\mathrm{T2}}^{100} \in[115,120)$ region. Acceptance is calculated by applying the signal region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out. Large acceptance and efficiency differences in neighbouring points are due to statistical fluctuations.
The figure shows the signal acceptance (a) and efficiency (b) plots for the slepton pair production model, in the SR-0J $m_{\mathrm{T2}}^{100} \in[115,120)$ region. Acceptance is calculated by applying the signal region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out. Large acceptance and efficiency differences in neighbouring points are due to statistical fluctuations.
The figure shows the signal acceptance (a) and efficiency (b) plots for the slepton pair production model, in the SR-0J $m_{\mathrm{T2}}^{100} \in[120,125)$ region. Acceptance is calculated by applying the signal region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out. Large acceptance and efficiency differences in neighbouring points are due to statistical fluctuations.
The figure shows the signal acceptance (a) and efficiency (b) plots for the slepton pair production model, in the SR-0J $m_{\mathrm{T2}}^{100} \in[120,125)$ region. Acceptance is calculated by applying the signal region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out. Large acceptance and efficiency differences in neighbouring points are due to statistical fluctuations.
The figure shows the signal acceptance (a) and efficiency (b) plots for the slepton pair production model, in the SR-0J $m_{\mathrm{T2}}^{100} \in[125,130)$ region. Acceptance is calculated by applying the signal region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out. Large acceptance and efficiency differences in neighbouring points are due to statistical fluctuations.
The figure shows the signal acceptance (a) and efficiency (b) plots for the slepton pair production model, in the SR-0J $m_{\mathrm{T2}}^{100} \in[125,130)$ region. Acceptance is calculated by applying the signal region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out. Large acceptance and efficiency differences in neighbouring points are due to statistical fluctuations.
The figure shows the signal acceptance (a) and efficiency (b) plots for the slepton pair production model, in the SR-0J $m_{\mathrm{T2}}^{100} \in[130,140)$ region. Acceptance is calculated by applying the signal region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out. Large acceptance and efficiency differences in neighbouring points are due to statistical fluctuations.
The figure shows the signal acceptance (a) and efficiency (b) plots for the slepton pair production model, in the SR-0J $m_{\mathrm{T2}}^{100} \in[130,140)$ region. Acceptance is calculated by applying the signal region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out. Large acceptance and efficiency differences in neighbouring points are due to statistical fluctuations.
The figure shows the signal acceptance (a) and efficiency (b) plots for the slepton pair production model, in the SR-0J $m_{\mathrm{T2}}^{100} \in[140,\infty)$ region. Acceptance is calculated by applying the signal region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out. Large acceptance and efficiency differences in neighbouring points are due to statistical fluctuations.
The figure shows the signal acceptance (a) and efficiency (b) plots for the slepton pair production model, in the SR-0J $m_{\mathrm{T2}}^{100} \in[140,\infty)$ region. Acceptance is calculated by applying the signal region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out. Large acceptance and efficiency differences in neighbouring points are due to statistical fluctuations.
The figure shows the signal acceptance (a) and efficiency (b) plots for the slepton pair production model, in the SR-1J $m_{\mathrm{T2}}^{100} \in[100,\infty)$ region. Acceptance is calculated by applying the signal region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out. Large acceptance and efficiency differences in neighbouring points are due to statistical fluctuations.
The figure shows the signal acceptance (a) and efficiency (b) plots for the slepton pair production model, in the SR-1J $m_{\mathrm{T2}}^{100} \in[100,\infty)$ region. Acceptance is calculated by applying the signal region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out. Large acceptance and efficiency differences in neighbouring points are due to statistical fluctuations.
The figure shows the signal acceptance (a) and efficiency (b) plots for the slepton pair production model, in the SR-1J $m_{\mathrm{T2}}^{100} \in[110,\infty)$ region. Acceptance is calculated by applying the signal region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out. Large acceptance and efficiency differences in neighbouring points are due to statistical fluctuations.
The figure shows the signal acceptance (a) and efficiency (b) plots for the slepton pair production model, in the SR-1J $m_{\mathrm{T2}}^{100} \in[110,\infty)$ region. Acceptance is calculated by applying the signal region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out. Large acceptance and efficiency differences in neighbouring points are due to statistical fluctuations.
The figure shows the signal acceptance (a) and efficiency (b) plots for the slepton pair production model, in the SR-1J $m_{\mathrm{T2}}^{100} \in[120,\infty)$ region. Acceptance is calculated by applying the signal region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out. Large acceptance and efficiency differences in neighbouring points are due to statistical fluctuations.
The figure shows the signal acceptance (a) and efficiency (b) plots for the slepton pair production model, in the SR-1J $m_{\mathrm{T2}}^{100} \in[120,\infty)$ region. Acceptance is calculated by applying the signal region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out. Large acceptance and efficiency differences in neighbouring points are due to statistical fluctuations.
The figure shows the signal acceptance (a) and efficiency (b) plots for the slepton pair production model, in the SR-1J $m_{\mathrm{T2}}^{100} \in[130,\infty)$ region. Acceptance is calculated by applying the signal region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out. Large acceptance and efficiency differences in neighbouring points are due to statistical fluctuations.
The figure shows the signal acceptance (a) and efficiency (b) plots for the slepton pair production model, in the SR-1J $m_{\mathrm{T2}}^{100} \in[130,\infty)$ region. Acceptance is calculated by applying the signal region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out. Large acceptance and efficiency differences in neighbouring points are due to statistical fluctuations.
The figure shows the signal acceptance (a) and efficiency (b) plots for the slepton pair production model, in the SR-1J $m_{\mathrm{T2}}^{100} \in[100,105)$ region. Acceptance is calculated by applying the signal region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out. Large acceptance and efficiency differences in neighbouring points are due to statistical fluctuations.
The figure shows the signal acceptance (a) and efficiency (b) plots for the slepton pair production model, in the SR-1J $m_{\mathrm{T2}}^{100} \in[100,105)$ region. Acceptance is calculated by applying the signal region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out. Large acceptance and efficiency differences in neighbouring points are due to statistical fluctuations.
The figure shows the signal acceptance (a) and efficiency (b) plots for the slepton pair production model, in the SR-1J $m_{\mathrm{T2}}^{100} \in[105,110)$ region. Acceptance is calculated by applying the signal region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out. Large acceptance and efficiency differences in neighbouring points are due to statistical fluctuations.
The figure shows the signal acceptance (a) and efficiency (b) plots for the slepton pair production model, in the SR-1J $m_{\mathrm{T2}}^{100} \in[105,110)$ region. Acceptance is calculated by applying the signal region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out. Large acceptance and efficiency differences in neighbouring points are due to statistical fluctuations.
The figure shows the signal acceptance (a) and efficiency (b) plots for the slepton pair production model, in the SR-1J $m_{\mathrm{T2}}^{100} \in[110,115)$ region. Acceptance is calculated by applying the signal region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out. Large acceptance and efficiency differences in neighbouring points are due to statistical fluctuations.
The figure shows the signal acceptance (a) and efficiency (b) plots for the slepton pair production model, in the SR-1J $m_{\mathrm{T2}}^{100} \in[110,115)$ region. Acceptance is calculated by applying the signal region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out. Large acceptance and efficiency differences in neighbouring points are due to statistical fluctuations.
The figure shows the signal acceptance (a) and efficiency (b) plots for the slepton pair production model, in the SR-1J $m_{\mathrm{T2}}^{100} \in[115,120)$ region. Acceptance is calculated by applying the signal region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out. Large acceptance and efficiency differences in neighbouring points are due to statistical fluctuations.
The figure shows the signal acceptance (a) and efficiency (b) plots for the slepton pair production model, in the SR-1J $m_{\mathrm{T2}}^{100} \in[115,120)$ region. Acceptance is calculated by applying the signal region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out. Large acceptance and efficiency differences in neighbouring points are due to statistical fluctuations.
The figure shows the signal acceptance (a) and efficiency (b) plots for the slepton pair production model, in the SR-1J $m_{\mathrm{T2}}^{100} \in[120,125)$ region. Acceptance is calculated by applying the signal region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out. Large acceptance and efficiency differences in neighbouring points are due to statistical fluctuations.
The figure shows the signal acceptance (a) and efficiency (b) plots for the slepton pair production model, in the SR-1J $m_{\mathrm{T2}}^{100} \in[120,125)$ region. Acceptance is calculated by applying the signal region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out. Large acceptance and efficiency differences in neighbouring points are due to statistical fluctuations.
The figure shows the signal acceptance (a) and efficiency (b) plots for the slepton pair production model, in the SR-1J $m_{\mathrm{T2}}^{100} \in[125,130)$ region. Acceptance is calculated by applying the signal region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out. Large acceptance and efficiency differences in neighbouring points are due to statistical fluctuations.
The figure shows the signal acceptance (a) and efficiency (b) plots for the slepton pair production model, in the SR-1J $m_{\mathrm{T2}}^{100} \in[125,130)$ region. Acceptance is calculated by applying the signal region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out. Large acceptance and efficiency differences in neighbouring points are due to statistical fluctuations.
The figure shows the signal acceptance (a) and efficiency (b) plots for the slepton pair production model, in the SR-1J $m_{\mathrm{T2}}^{100} \in[130,140)$ region. Acceptance is calculated by applying the signal region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out. Large acceptance and efficiency differences in neighbouring points are due to statistical fluctuations.
The figure shows the signal acceptance (a) and efficiency (b) plots for the slepton pair production model, in the SR-1J $m_{\mathrm{T2}}^{100} \in[130,140)$ region. Acceptance is calculated by applying the signal region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out. Large acceptance and efficiency differences in neighbouring points are due to statistical fluctuations.
The figure shows the signal acceptance (a) and efficiency (b) plots for the slepton pair production model, in the SR-1J $m_{\mathrm{T2}}^{100} \in[140,\infty)$ region. Acceptance is calculated by applying the signal region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out. Large acceptance and efficiency differences in neighbouring points are due to statistical fluctuations.
The figure shows the signal acceptance (a) and efficiency (b) plots for the slepton pair production model, in the SR-1J $m_{\mathrm{T2}}^{100} \in[140,\infty)$ region. Acceptance is calculated by applying the signal region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out. Large acceptance and efficiency differences in neighbouring points are due to statistical fluctuations.
Cutflow table for the slepton signal sample with $m(\tilde{\ell},\tilde{\chi}_1^0) = (100,70)$ GeV, in the SR-0J $m_{\mathrm{T2}}^{100} \in [100,\infty)$ region. The yields include the process cross section and are weighted to the 139 fb$^{-1}$ luminosity. 246000 events were generated for the sample.
Cutflow table for the slepton signal sample with $m(\tilde{\ell},\tilde{\chi}_1^0) = (100,70)$ GeV, in the SR-1J $m_{\mathrm{T2}}^{100} \in [100,\infty)$ region. The yields include the process cross section and are weighted to the 139 fb$^{-1}$ luminosity. 246000 events were generated for the sample.
Observed and expected exclusion limits on SUSY simplified models, with observed upper limits on signal cross-section (fb) overlaid, for slepton-pair production in the $m(\tilde{\ell})-m(\tilde{\chi}_1^0)$ plane. Only $\tilde{e}$ and $\tilde{\mu}$ are considered. The observed (solid thick line) and expected (thin dashed line) exclusion contours are indicated. The shaded band around the dashed line corresponds to the $\pm 1 \sigma$ variations in the expected limit, including all uncertainties except theoretical uncertainties in the signal cross-section. The dotted lines around the observed limit illustrate the change in the observed limit as the nominal signal cross-section is scaled up and down by the theoretical uncertainty. All limits are computed at 95% CL. The observed limits obtained at LEP for $\tilde{\mu}_{\textup{R}}$ and by the ATLAS experiment in previous searches are also shown.
Observed and expected exclusion limits on SUSY simplified models for slepton-pair production in the (a) $m(\tilde{\ell})-m(\tilde{\chi}_1^0)$ and (b) $m(\tilde{\ell})-\Delta m(\tilde{\ell},\tilde{\chi}_1^0)$ planes. Only $\tilde{e}$ and $\tilde{\mu}$ are considered. The observed (solid thick line) and expected (thin dashed line) exclusion contours are indicated. The shaded band around the dashed line corresponds to the $\pm 1 \sigma$ variations in the expected limit, including all uncertainties except theoretical uncertainties in the signal cross-section. The dotted lines around the observed limit illustrate the change in the observed limit as the nominal signal cross-section is scaled up and down by the theoretical uncertainty. All limits are computed at 95% CL. The observed limits obtained at LEP for $\tilde{\mu}_{\textup{R}}$ and by the ATLAS experiment in previous searches are also shown.
Observed and expected exclusion limits on SUSY simplified models for slepton-pair production in the (a) $m(\tilde{\ell})-m(\tilde{\chi}_1^0)$ and (b) $m(\tilde{\ell})-\Delta m(\tilde{\ell},\tilde{\chi}_1^0)$ planes. Only $\tilde{e}$ and $\tilde{\mu}$ are considered. The observed (solid thick line) and expected (thin dashed line) exclusion contours are indicated. The shaded band around the dashed line corresponds to the $\pm 1 \sigma$ variations in the expected limit, including all uncertainties except theoretical uncertainties in the signal cross-section. The dotted lines around the observed limit illustrate the change in the observed limit as the nominal signal cross-section is scaled up and down by the theoretical uncertainty. All limits are computed at 95% CL. The observed limits obtained at LEP for $\tilde{\mu}_{\textup{R}}$ and by the ATLAS experiment in previous searches are also shown.
Observed and expected exclusion limits on SUSY simplified models for slepton-pair production in the (a) $m(\tilde{\ell})-m(\tilde{\chi}_1^0)$ and (b) $m(\tilde{\ell})-\Delta m(\tilde{\ell},\tilde{\chi}_1^0)$ planes. Only $\tilde{e}$ and $\tilde{\mu}$ are considered. The observed (solid thick line) and expected (thin dashed line) exclusion contours are indicated. The shaded band around the dashed line corresponds to the $\pm 1 \sigma$ variations in the expected limit, including all uncertainties except theoretical uncertainties in the signal cross-section. The dotted lines around the observed limit illustrate the change in the observed limit as the nominal signal cross-section is scaled up and down by the theoretical uncertainty. All limits are computed at 95% CL. The observed limits obtained at LEP for $\tilde{\mu}_{\textup{R}}$ and by the ATLAS experiment in previous searches are also shown.
Observed and expected exclusion limits on SUSY simplified models for slepton-pair production in the (a) $m(\tilde{\ell})-m(\tilde{\chi}_1^0)$ and (b) $m(\tilde{\ell})-\Delta m(\tilde{\ell},\tilde{\chi}_1^0)$ planes. Only $\tilde{e}$ and $\tilde{\mu}$ are considered. The observed (solid thick line) and expected (thin dashed line) exclusion contours are indicated. The shaded band around the dashed line corresponds to the $\pm 1 \sigma$ variations in the expected limit, including all uncertainties except theoretical uncertainties in the signal cross-section. The dotted lines around the observed limit illustrate the change in the observed limit as the nominal signal cross-section is scaled up and down by the theoretical uncertainty. All limits are computed at 95% CL. The observed limits obtained at LEP for $\tilde{\mu}_{\textup{R}}$ and by the ATLAS experiment in previous searches are also shown.
Observed and expected exclusion limits on SUSY simplified models for slepton-pair production in the (a) $m(\tilde{\ell})-m(\tilde{\chi}_1^0)$ and (b) $m(\tilde{\ell})-\Delta m(\tilde{\ell},\tilde{\chi}_1^0)$ planes. Only $\tilde{e}$ and $\tilde{\mu}$ are considered. The observed (solid thick line) and expected (thin dashed line) exclusion contours are indicated. The shaded band around the dashed line corresponds to the $\pm 1 \sigma$ variations in the expected limit, including all uncertainties except theoretical uncertainties in the signal cross-section. The dotted lines around the observed limit illustrate the change in the observed limit as the nominal signal cross-section is scaled up and down by the theoretical uncertainty. All limits are computed at 95% CL. The observed limits obtained at LEP for $\tilde{\mu}_{\textup{R}}$ and by the ATLAS experiment in previous searches are also shown.
Observed and expected exclusion limits on SUSY simplified models for slepton-pair production in the (a) $m(\tilde{\ell})-m(\tilde{\chi}_1^0)$ and (b) $m(\tilde{\ell})-\Delta m(\tilde{\ell},\tilde{\chi}_1^0)$ planes. Only $\tilde{e}$ and $\tilde{\mu}$ are considered. The observed (solid thick line) and expected (thin dashed line) exclusion contours are indicated. The shaded band around the dashed line corresponds to the $\pm 1 \sigma$ variations in the expected limit, including all uncertainties except theoretical uncertainties in the signal cross-section. The dotted lines around the observed limit illustrate the change in the observed limit as the nominal signal cross-section is scaled up and down by the theoretical uncertainty. All limits are computed at 95% CL. The observed limits obtained at LEP for $\tilde{\mu}_{\textup{R}}$ and by the ATLAS experiment in previous searches are also shown.
Observed and expected exclusion limits on SUSY simplified models for slepton-pair production in the (a) $m(\tilde{\ell})-m(\tilde{\chi}_1^0)$ and (b) $m(\tilde{\ell})-\Delta m(\tilde{\ell},\tilde{\chi}_1^0)$ planes. Only $\tilde{e}$ and $\tilde{\mu}$ are considered. The observed (solid thick line) and expected (thin dashed line) exclusion contours are indicated. The shaded band around the dashed line corresponds to the $\pm 1 \sigma$ variations in the expected limit, including all uncertainties except theoretical uncertainties in the signal cross-section. The dotted lines around the observed limit illustrate the change in the observed limit as the nominal signal cross-section is scaled up and down by the theoretical uncertainty. All limits are computed at 95% CL. The observed limits obtained at LEP for $\tilde{\mu}_{\textup{R}}$ and by the ATLAS experiment in previous searches are also shown.
Observed and expected exclusion limits on SUSY simplified models for slepton-pair production in the (a) $m(\tilde{\ell})-m(\tilde{\chi}_1^0)$ and (b) $m(\tilde{\ell})-\Delta m(\tilde{\ell},\tilde{\chi}_1^0)$ planes. Only $\tilde{e}$ and $\tilde{\mu}$ are considered. The observed (solid thick line) and expected (thin dashed line) exclusion contours are indicated. The shaded band around the dashed line corresponds to the $\pm 1 \sigma$ variations in the expected limit, including all uncertainties except theoretical uncertainties in the signal cross-section. The dotted lines around the observed limit illustrate the change in the observed limit as the nominal signal cross-section is scaled up and down by the theoretical uncertainty. All limits are computed at 95% CL. The observed limits obtained at LEP for $\tilde{\mu}_{\textup{R}}$ and by the ATLAS experiment in previous searches are also shown.
Observed and expected exclusion limits on SUSY simplified models for slepton-pair production in the (a) $m(\tilde{\ell})-m(\tilde{\chi}_1^0)$ and (b) $m(\tilde{\ell})-\Delta m(\tilde{\ell},\tilde{\chi}_1^0)$ planes. Only $\tilde{e}$ and $\tilde{\mu}$ are considered. The observed (solid thick line) and expected (thin dashed line) exclusion contours are indicated. The shaded band around the dashed line corresponds to the $\pm 1 \sigma$ variations in the expected limit, including all uncertainties except theoretical uncertainties in the signal cross-section. The dotted lines around the observed limit illustrate the change in the observed limit as the nominal signal cross-section is scaled up and down by the theoretical uncertainty. All limits are computed at 95% CL. The observed limits obtained at LEP for $\tilde{\mu}_{\textup{R}}$ and by the ATLAS experiment in previous searches are also shown.
Observed and expected exclusion limits on SUSY simplified models for slepton-pair production in the (a) $m(\tilde{\ell})-m(\tilde{\chi}_1^0)$ and (b) $m(\tilde{\ell})-\Delta m(\tilde{\ell},\tilde{\chi}_1^0)$ planes. Only $\tilde{e}$ and $\tilde{\mu}$ are considered. The observed (solid thick line) and expected (thin dashed line) exclusion contours are indicated. The shaded band around the dashed line corresponds to the $\pm 1 \sigma$ variations in the expected limit, including all uncertainties except theoretical uncertainties in the signal cross-section. The dotted lines around the observed limit illustrate the change in the observed limit as the nominal signal cross-section is scaled up and down by the theoretical uncertainty. All limits are computed at 95% CL. The observed limits obtained at LEP for $\tilde{\mu}_{\textup{R}}$ and by the ATLAS experiment in previous searches are also shown.
Observed and expected exclusion limits on SUSY simplified models for slepton-pair production in the (a) $m(\tilde{\ell})-m(\tilde{\chi}_1^0)$ and (b) $m(\tilde{\ell})-\Delta m(\tilde{\ell},\tilde{\chi}_1^0)$ planes. Only $\tilde{e}$ and $\tilde{\mu}$ are considered. The observed (solid thick line) and expected (thin dashed line) exclusion contours are indicated. The shaded band around the dashed line corresponds to the $\pm 1 \sigma$ variations in the expected limit, including all uncertainties except theoretical uncertainties in the signal cross-section. The dotted lines around the observed limit illustrate the change in the observed limit as the nominal signal cross-section is scaled up and down by the theoretical uncertainty. All limits are computed at 95% CL. The observed limits obtained at LEP for $\tilde{\mu}_{\textup{R}}$ and by the ATLAS experiment in previous searches are also shown.
Observed and expected exclusion limits on SUSY simplified models for slepton-pair production in the (a) $m(\tilde{\ell})-m(\tilde{\chi}_1^0)$ and (b) $m(\tilde{\ell})-\Delta m(\tilde{\ell},\tilde{\chi}_1^0)$ planes. Only $\tilde{e}$ and $\tilde{\mu}$ are considered. The observed (solid thick line) and expected (thin dashed line) exclusion contours are indicated. The shaded band around the dashed line corresponds to the $\pm 1 \sigma$ variations in the expected limit, including all uncertainties except theoretical uncertainties in the signal cross-section. The dotted lines around the observed limit illustrate the change in the observed limit as the nominal signal cross-section is scaled up and down by the theoretical uncertainty. All limits are computed at 95% CL. The observed limits obtained at LEP for $\tilde{\mu}_{\textup{R}}$ and by the ATLAS experiment in previous searches are also shown.
Observed and expected exclusion limits on SUSY simplified models for direct selectron production in the (a) $m(\tilde{e})-m(\tilde{\chi}_1^0)$ and (c) $m(\tilde{e})-\Delta m(\tilde{e},\tilde{\chi}_1^0)$ planes, and for direct smuon production in the (b) $m(\tilde{\mu})-m(\tilde{\chi}_1^0)$ and (d) $m(\tilde{\mu})-\Delta m(\tilde{\mu},\tilde{\chi}_1^0)$ planes. In Figure (a) and (c) the observed (solid thick lines) and expected (dashed lines) exclusion contours are indicated for combined $\tilde{e}_{\textup{L,R}}$ and for $\tilde{e}_{\textup{L}}$ and $\tilde{e}_{\textup{R}}$. In Figure (b) and (d) the observed (solid thick lines) and expected (dashed lines) exclusion contours are indicated for combined $\tilde{\mu}_{\textup{L,R}}$ and for $\tilde{\mu}_{\textup{L}}$. No unique sensitivity to $\tilde{\mu}_{\textup{R}}$ is observed. All limits are computed at 95% CL. The observed limits obtained at LEP and by the ATLAS experiment in previous searches are also shown in the shaded areas.
Observed and expected exclusion limits on SUSY simplified models for direct selectron production in the (a) $m(\tilde{e})-m(\tilde{\chi}_1^0)$ and (c) $m(\tilde{e})-\Delta m(\tilde{e},\tilde{\chi}_1^0)$ planes, and for direct smuon production in the (b) $m(\tilde{\mu})-m(\tilde{\chi}_1^0)$ and (d) $m(\tilde{\mu})-\Delta m(\tilde{\mu},\tilde{\chi}_1^0)$ planes. In Figure (a) and (c) the observed (solid thick lines) and expected (dashed lines) exclusion contours are indicated for combined $\tilde{e}_{\textup{L,R}}$ and for $\tilde{e}_{\textup{L}}$ and $\tilde{e}_{\textup{R}}$. In Figure (b) and (d) the observed (solid thick lines) and expected (dashed lines) exclusion contours are indicated for combined $\tilde{\mu}_{\textup{L,R}}$ and for $\tilde{\mu}_{\textup{L}}$. No unique sensitivity to $\tilde{\mu}_{\textup{R}}$ is observed. All limits are computed at 95% CL. The observed limits obtained at LEP and by the ATLAS experiment in previous searches are also shown in the shaded areas.
Observed and expected exclusion limits on SUSY simplified models for direct selectron production in the (a) $m(\tilde{e})-m(\tilde{\chi}_1^0)$ and (c) $m(\tilde{e})-\Delta m(\tilde{e},\tilde{\chi}_1^0)$ planes, and for direct smuon production in the (b) $m(\tilde{\mu})-m(\tilde{\chi}_1^0)$ and (d) $m(\tilde{\mu})-\Delta m(\tilde{\mu},\tilde{\chi}_1^0)$ planes. In Figure (a) and (c) the observed (solid thick lines) and expected (dashed lines) exclusion contours are indicated for combined $\tilde{e}_{\textup{L,R}}$ and for $\tilde{e}_{\textup{L}}$ and $\tilde{e}_{\textup{R}}$. In Figure (b) and (d) the observed (solid thick lines) and expected (dashed lines) exclusion contours are indicated for combined $\tilde{\mu}_{\textup{L,R}}$ and for $\tilde{\mu}_{\textup{L}}$. No unique sensitivity to $\tilde{\mu}_{\textup{R}}$ is observed. All limits are computed at 95% CL. The observed limits obtained at LEP and by the ATLAS experiment in previous searches are also shown in the shaded areas.
Observed and expected exclusion limits on SUSY simplified models for direct selectron production in the (a) $m(\tilde{e})-m(\tilde{\chi}_1^0)$ and (c) $m(\tilde{e})-\Delta m(\tilde{e},\tilde{\chi}_1^0)$ planes, and for direct smuon production in the (b) $m(\tilde{\mu})-m(\tilde{\chi}_1^0)$ and (d) $m(\tilde{\mu})-\Delta m(\tilde{\mu},\tilde{\chi}_1^0)$ planes. In Figure (a) and (c) the observed (solid thick lines) and expected (dashed lines) exclusion contours are indicated for combined $\tilde{e}_{\textup{L,R}}$ and for $\tilde{e}_{\textup{L}}$ and $\tilde{e}_{\textup{R}}$. In Figure (b) and (d) the observed (solid thick lines) and expected (dashed lines) exclusion contours are indicated for combined $\tilde{\mu}_{\textup{L,R}}$ and for $\tilde{\mu}_{\textup{L}}$. No unique sensitivity to $\tilde{\mu}_{\textup{R}}$ is observed. All limits are computed at 95% CL. The observed limits obtained at LEP and by the ATLAS experiment in previous searches are also shown in the shaded areas.
Observed and expected exclusion limits on SUSY simplified models for direct selectron production in the (a) $m(\tilde{e})-m(\tilde{\chi}_1^0)$ and (c) $m(\tilde{e})-\Delta m(\tilde{e},\tilde{\chi}_1^0)$ planes, and for direct smuon production in the (b) $m(\tilde{\mu})-m(\tilde{\chi}_1^0)$ and (d) $m(\tilde{\mu})-\Delta m(\tilde{\mu},\tilde{\chi}_1^0)$ planes. In Figure (a) and (c) the observed (solid thick lines) and expected (dashed lines) exclusion contours are indicated for combined $\tilde{e}_{\textup{L,R}}$ and for $\tilde{e}_{\textup{L}}$ and $\tilde{e}_{\textup{R}}$. In Figure (b) and (d) the observed (solid thick lines) and expected (dashed lines) exclusion contours are indicated for combined $\tilde{\mu}_{\textup{L,R}}$ and for $\tilde{\mu}_{\textup{L}}$. No unique sensitivity to $\tilde{\mu}_{\textup{R}}$ is observed. All limits are computed at 95% CL. The observed limits obtained at LEP and by the ATLAS experiment in previous searches are also shown in the shaded areas.
Observed and expected exclusion limits on SUSY simplified models for direct selectron production in the (a) $m(\tilde{e})-m(\tilde{\chi}_1^0)$ and (c) $m(\tilde{e})-\Delta m(\tilde{e},\tilde{\chi}_1^0)$ planes, and for direct smuon production in the (b) $m(\tilde{\mu})-m(\tilde{\chi}_1^0)$ and (d) $m(\tilde{\mu})-\Delta m(\tilde{\mu},\tilde{\chi}_1^0)$ planes. In Figure (a) and (c) the observed (solid thick lines) and expected (dashed lines) exclusion contours are indicated for combined $\tilde{e}_{\textup{L,R}}$ and for $\tilde{e}_{\textup{L}}$ and $\tilde{e}_{\textup{R}}$. In Figure (b) and (d) the observed (solid thick lines) and expected (dashed lines) exclusion contours are indicated for combined $\tilde{\mu}_{\textup{L,R}}$ and for $\tilde{\mu}_{\textup{L}}$. No unique sensitivity to $\tilde{\mu}_{\textup{R}}$ is observed. All limits are computed at 95% CL. The observed limits obtained at LEP and by the ATLAS experiment in previous searches are also shown in the shaded areas.
Observed and expected exclusion limits on SUSY simplified models for direct selectron production in the (a) $m(\tilde{e})-m(\tilde{\chi}_1^0)$ and (c) $m(\tilde{e})-\Delta m(\tilde{e},\tilde{\chi}_1^0)$ planes, and for direct smuon production in the (b) $m(\tilde{\mu})-m(\tilde{\chi}_1^0)$ and (d) $m(\tilde{\mu})-\Delta m(\tilde{\mu},\tilde{\chi}_1^0)$ planes. In Figure (a) and (c) the observed (solid thick lines) and expected (dashed lines) exclusion contours are indicated for combined $\tilde{e}_{\textup{L,R}}$ and for $\tilde{e}_{\textup{L}}$ and $\tilde{e}_{\textup{R}}$. In Figure (b) and (d) the observed (solid thick lines) and expected (dashed lines) exclusion contours are indicated for combined $\tilde{\mu}_{\textup{L,R}}$ and for $\tilde{\mu}_{\textup{L}}$. No unique sensitivity to $\tilde{\mu}_{\textup{R}}$ is observed. All limits are computed at 95% CL. The observed limits obtained at LEP and by the ATLAS experiment in previous searches are also shown in the shaded areas.
Observed and expected exclusion limits on SUSY simplified models for direct selectron production in the (a) $m(\tilde{e})-m(\tilde{\chi}_1^0)$ and (c) $m(\tilde{e})-\Delta m(\tilde{e},\tilde{\chi}_1^0)$ planes, and for direct smuon production in the (b) $m(\tilde{\mu})-m(\tilde{\chi}_1^0)$ and (d) $m(\tilde{\mu})-\Delta m(\tilde{\mu},\tilde{\chi}_1^0)$ planes. In Figure (a) and (c) the observed (solid thick lines) and expected (dashed lines) exclusion contours are indicated for combined $\tilde{e}_{\textup{L,R}}$ and for $\tilde{e}_{\textup{L}}$ and $\tilde{e}_{\textup{R}}$. In Figure (b) and (d) the observed (solid thick lines) and expected (dashed lines) exclusion contours are indicated for combined $\tilde{\mu}_{\textup{L,R}}$ and for $\tilde{\mu}_{\textup{L}}$. No unique sensitivity to $\tilde{\mu}_{\textup{R}}$ is observed. All limits are computed at 95% CL. The observed limits obtained at LEP and by the ATLAS experiment in previous searches are also shown in the shaded areas.
Observed and expected exclusion limits on SUSY simplified models for direct selectron production in the (a) $m(\tilde{e})-m(\tilde{\chi}_1^0)$ and (c) $m(\tilde{e})-\Delta m(\tilde{e},\tilde{\chi}_1^0)$ planes, and for direct smuon production in the (b) $m(\tilde{\mu})-m(\tilde{\chi}_1^0)$ and (d) $m(\tilde{\mu})-\Delta m(\tilde{\mu},\tilde{\chi}_1^0)$ planes. In Figure (a) and (c) the observed (solid thick lines) and expected (dashed lines) exclusion contours are indicated for combined $\tilde{e}_{\textup{L,R}}$ and for $\tilde{e}_{\textup{L}}$ and $\tilde{e}_{\textup{R}}$. In Figure (b) and (d) the observed (solid thick lines) and expected (dashed lines) exclusion contours are indicated for combined $\tilde{\mu}_{\textup{L,R}}$ and for $\tilde{\mu}_{\textup{L}}$. No unique sensitivity to $\tilde{\mu}_{\textup{R}}$ is observed. All limits are computed at 95% CL. The observed limits obtained at LEP and by the ATLAS experiment in previous searches are also shown in the shaded areas.
Observed and expected exclusion limits on SUSY simplified models for direct selectron production in the (a) $m(\tilde{e})-m(\tilde{\chi}_1^0)$ and (c) $m(\tilde{e})-\Delta m(\tilde{e},\tilde{\chi}_1^0)$ planes, and for direct smuon production in the (b) $m(\tilde{\mu})-m(\tilde{\chi}_1^0)$ and (d) $m(\tilde{\mu})-\Delta m(\tilde{\mu},\tilde{\chi}_1^0)$ planes. In Figure (a) and (c) the observed (solid thick lines) and expected (dashed lines) exclusion contours are indicated for combined $\tilde{e}_{\textup{L,R}}$ and for $\tilde{e}_{\textup{L}}$ and $\tilde{e}_{\textup{R}}$. In Figure (b) and (d) the observed (solid thick lines) and expected (dashed lines) exclusion contours are indicated for combined $\tilde{\mu}_{\textup{L,R}}$ and for $\tilde{\mu}_{\textup{L}}$. No unique sensitivity to $\tilde{\mu}_{\textup{R}}$ is observed. All limits are computed at 95% CL. The observed limits obtained at LEP and by the ATLAS experiment in previous searches are also shown in the shaded areas.
Observed and expected exclusion limits on SUSY simplified models for direct selectron production in the (a) $m(\tilde{e})-m(\tilde{\chi}_1^0)$ and (c) $m(\tilde{e})-\Delta m(\tilde{e},\tilde{\chi}_1^0)$ planes, and for direct smuon production in the (b) $m(\tilde{\mu})-m(\tilde{\chi}_1^0)$ and (d) $m(\tilde{\mu})-\Delta m(\tilde{\mu},\tilde{\chi}_1^0)$ planes. In Figure (a) and (c) the observed (solid thick lines) and expected (dashed lines) exclusion contours are indicated for combined $\tilde{e}_{\textup{L,R}}$ and for $\tilde{e}_{\textup{L}}$ and $\tilde{e}_{\textup{R}}$. In Figure (b) and (d) the observed (solid thick lines) and expected (dashed lines) exclusion contours are indicated for combined $\tilde{\mu}_{\textup{L,R}}$ and for $\tilde{\mu}_{\textup{L}}$. No unique sensitivity to $\tilde{\mu}_{\textup{R}}$ is observed. All limits are computed at 95% CL. The observed limits obtained at LEP and by the ATLAS experiment in previous searches are also shown in the shaded areas.
Observed and expected exclusion limits on SUSY simplified models for direct selectron production in the (a) $m(\tilde{e})-m(\tilde{\chi}_1^0)$ and (c) $m(\tilde{e})-\Delta m(\tilde{e},\tilde{\chi}_1^0)$ planes, and for direct smuon production in the (b) $m(\tilde{\mu})-m(\tilde{\chi}_1^0)$ and (d) $m(\tilde{\mu})-\Delta m(\tilde{\mu},\tilde{\chi}_1^0)$ planes. In Figure (a) and (c) the observed (solid thick lines) and expected (dashed lines) exclusion contours are indicated for combined $\tilde{e}_{\textup{L,R}}$ and for $\tilde{e}_{\textup{L}}$ and $\tilde{e}_{\textup{R}}$. In Figure (b) and (d) the observed (solid thick lines) and expected (dashed lines) exclusion contours are indicated for combined $\tilde{\mu}_{\textup{L,R}}$ and for $\tilde{\mu}_{\textup{L}}$. No unique sensitivity to $\tilde{\mu}_{\textup{R}}$ is observed. All limits are computed at 95% CL. The observed limits obtained at LEP and by the ATLAS experiment in previous searches are also shown in the shaded areas.
Observed and expected exclusion limits on SUSY simplified models for direct selectron production in the (a) $m(\tilde{e})-m(\tilde{\chi}_1^0)$ and (c) $m(\tilde{e})-\Delta m(\tilde{e},\tilde{\chi}_1^0)$ planes, and for direct smuon production in the (b) $m(\tilde{\mu})-m(\tilde{\chi}_1^0)$ and (d) $m(\tilde{\mu})-\Delta m(\tilde{\mu},\tilde{\chi}_1^0)$ planes. In Figure (a) and (c) the observed (solid thick lines) and expected (dashed lines) exclusion contours are indicated for combined $\tilde{e}_{\textup{L,R}}$ and for $\tilde{e}_{\textup{L}}$ and $\tilde{e}_{\textup{R}}$. In Figure (b) and (d) the observed (solid thick lines) and expected (dashed lines) exclusion contours are indicated for combined $\tilde{\mu}_{\textup{L,R}}$ and for $\tilde{\mu}_{\textup{L}}$. No unique sensitivity to $\tilde{\mu}_{\textup{R}}$ is observed. All limits are computed at 95% CL. The observed limits obtained at LEP and by the ATLAS experiment in previous searches are also shown in the shaded areas.
Observed and expected exclusion limits on SUSY simplified models for direct selectron production in the (a) $m(\tilde{e})-m(\tilde{\chi}_1^0)$ and (c) $m(\tilde{e})-\Delta m(\tilde{e},\tilde{\chi}_1^0)$ planes, and for direct smuon production in the (b) $m(\tilde{\mu})-m(\tilde{\chi}_1^0)$ and (d) $m(\tilde{\mu})-\Delta m(\tilde{\mu},\tilde{\chi}_1^0)$ planes. In Figure (a) and (c) the observed (solid thick lines) and expected (dashed lines) exclusion contours are indicated for combined $\tilde{e}_{\textup{L,R}}$ and for $\tilde{e}_{\textup{L}}$ and $\tilde{e}_{\textup{R}}$. In Figure (b) and (d) the observed (solid thick lines) and expected (dashed lines) exclusion contours are indicated for combined $\tilde{\mu}_{\textup{L,R}}$ and for $\tilde{\mu}_{\textup{L}}$. No unique sensitivity to $\tilde{\mu}_{\textup{R}}$ is observed. All limits are computed at 95% CL. The observed limits obtained at LEP and by the ATLAS experiment in previous searches are also shown in the shaded areas.
Observed and expected exclusion limits on SUSY simplified models for direct selectron production in the (a) $m(\tilde{e})-m(\tilde{\chi}_1^0)$ and (c) $m(\tilde{e})-\Delta m(\tilde{e},\tilde{\chi}_1^0)$ planes, and for direct smuon production in the (b) $m(\tilde{\mu})-m(\tilde{\chi}_1^0)$ and (d) $m(\tilde{\mu})-\Delta m(\tilde{\mu},\tilde{\chi}_1^0)$ planes. In Figure (a) and (c) the observed (solid thick lines) and expected (dashed lines) exclusion contours are indicated for combined $\tilde{e}_{\textup{L,R}}$ and for $\tilde{e}_{\textup{L}}$ and $\tilde{e}_{\textup{R}}$. In Figure (b) and (d) the observed (solid thick lines) and expected (dashed lines) exclusion contours are indicated for combined $\tilde{\mu}_{\textup{L,R}}$ and for $\tilde{\mu}_{\textup{L}}$. No unique sensitivity to $\tilde{\mu}_{\textup{R}}$ is observed. All limits are computed at 95% CL. The observed limits obtained at LEP and by the ATLAS experiment in previous searches are also shown in the shaded areas.
Observed and expected exclusion limits on SUSY simplified models for direct selectron production in the (a) $m(\tilde{e})-m(\tilde{\chi}_1^0)$ and (c) $m(\tilde{e})-\Delta m(\tilde{e},\tilde{\chi}_1^0)$ planes, and for direct smuon production in the (b) $m(\tilde{\mu})-m(\tilde{\chi}_1^0)$ and (d) $m(\tilde{\mu})-\Delta m(\tilde{\mu},\tilde{\chi}_1^0)$ planes. In Figure (a) and (c) the observed (solid thick lines) and expected (dashed lines) exclusion contours are indicated for combined $\tilde{e}_{\textup{L,R}}$ and for $\tilde{e}_{\textup{L}}$ and $\tilde{e}_{\textup{R}}$. In Figure (b) and (d) the observed (solid thick lines) and expected (dashed lines) exclusion contours are indicated for combined $\tilde{\mu}_{\textup{L,R}}$ and for $\tilde{\mu}_{\textup{L}}$. No unique sensitivity to $\tilde{\mu}_{\textup{R}}$ is observed. All limits are computed at 95% CL. The observed limits obtained at LEP and by the ATLAS experiment in previous searches are also shown in the shaded areas.
Observed and expected exclusion limits on SUSY simplified models for direct selectron production in the (a) $m(\tilde{e})-m(\tilde{\chi}_1^0)$ and (c) $m(\tilde{e})-\Delta m(\tilde{e},\tilde{\chi}_1^0)$ planes, and for direct smuon production in the (b) $m(\tilde{\mu})-m(\tilde{\chi}_1^0)$ and (d) $m(\tilde{\mu})-\Delta m(\tilde{\mu},\tilde{\chi}_1^0)$ planes. In Figure (a) and (c) the observed (solid thick lines) and expected (dashed lines) exclusion contours are indicated for combined $\tilde{e}_{\textup{L,R}}$ and for $\tilde{e}_{\textup{L}}$ and $\tilde{e}_{\textup{R}}$. In Figure (b) and (d) the observed (solid thick lines) and expected (dashed lines) exclusion contours are indicated for combined $\tilde{\mu}_{\textup{L,R}}$ and for $\tilde{\mu}_{\textup{L}}$. No unique sensitivity to $\tilde{\mu}_{\textup{R}}$ is observed. All limits are computed at 95% CL. The observed limits obtained at LEP and by the ATLAS experiment in previous searches are also shown in the shaded areas.
Observed and expected exclusion limits on SUSY simplified models for direct selectron production in the (a) $m(\tilde{e})-m(\tilde{\chi}_1^0)$ and (c) $m(\tilde{e})-\Delta m(\tilde{e},\tilde{\chi}_1^0)$ planes, and for direct smuon production in the (b) $m(\tilde{\mu})-m(\tilde{\chi}_1^0)$ and (d) $m(\tilde{\mu})-\Delta m(\tilde{\mu},\tilde{\chi}_1^0)$ planes. In Figure (a) and (c) the observed (solid thick lines) and expected (dashed lines) exclusion contours are indicated for combined $\tilde{e}_{\textup{L,R}}$ and for $\tilde{e}_{\textup{L}}$ and $\tilde{e}_{\textup{R}}$. In Figure (b) and (d) the observed (solid thick lines) and expected (dashed lines) exclusion contours are indicated for combined $\tilde{\mu}_{\textup{L,R}}$ and for $\tilde{\mu}_{\textup{L}}$. No unique sensitivity to $\tilde{\mu}_{\textup{R}}$ is observed. All limits are computed at 95% CL. The observed limits obtained at LEP and by the ATLAS experiment in previous searches are also shown in the shaded areas.
Observed and expected exclusion limits on SUSY simplified models for direct selectron production in the (a) $m(\tilde{e})-m(\tilde{\chi}_1^0)$ and (c) $m(\tilde{e})-\Delta m(\tilde{e},\tilde{\chi}_1^0)$ planes, and for direct smuon production in the (b) $m(\tilde{\mu})-m(\tilde{\chi}_1^0)$ and (d) $m(\tilde{\mu})-\Delta m(\tilde{\mu},\tilde{\chi}_1^0)$ planes. In Figure (a) and (c) the observed (solid thick lines) and expected (dashed lines) exclusion contours are indicated for combined $\tilde{e}_{\textup{L,R}}$ and for $\tilde{e}_{\textup{L}}$ and $\tilde{e}_{\textup{R}}$. In Figure (b) and (d) the observed (solid thick lines) and expected (dashed lines) exclusion contours are indicated for combined $\tilde{\mu}_{\textup{L,R}}$ and for $\tilde{\mu}_{\textup{L}}$. No unique sensitivity to $\tilde{\mu}_{\textup{R}}$ is observed. All limits are computed at 95% CL. The observed limits obtained at LEP and by the ATLAS experiment in previous searches are also shown in the shaded areas.
Observed and expected exclusion limits on SUSY simplified models for direct selectron production in the (a) $m(\tilde{e})-m(\tilde{\chi}_1^0)$ and (c) $m(\tilde{e})-\Delta m(\tilde{e},\tilde{\chi}_1^0)$ planes, and for direct smuon production in the (b) $m(\tilde{\mu})-m(\tilde{\chi}_1^0)$ and (d) $m(\tilde{\mu})-\Delta m(\tilde{\mu},\tilde{\chi}_1^0)$ planes. In Figure (a) and (c) the observed (solid thick lines) and expected (dashed lines) exclusion contours are indicated for combined $\tilde{e}_{\textup{L,R}}$ and for $\tilde{e}_{\textup{L}}$ and $\tilde{e}_{\textup{R}}$. In Figure (b) and (d) the observed (solid thick lines) and expected (dashed lines) exclusion contours are indicated for combined $\tilde{\mu}_{\textup{L,R}}$ and for $\tilde{\mu}_{\textup{L}}$. No unique sensitivity to $\tilde{\mu}_{\textup{R}}$ is observed. All limits are computed at 95% CL. The observed limits obtained at LEP and by the ATLAS experiment in previous searches are also shown in the shaded areas.
Observed and expected exclusion limits on SUSY simplified models for direct selectron production in the (a) $m(\tilde{e})-m(\tilde{\chi}_1^0)$ and (c) $m(\tilde{e})-\Delta m(\tilde{e},\tilde{\chi}_1^0)$ planes, and for direct smuon production in the (b) $m(\tilde{\mu})-m(\tilde{\chi}_1^0)$ and (d) $m(\tilde{\mu})-\Delta m(\tilde{\mu},\tilde{\chi}_1^0)$ planes. In Figure (a) and (c) the observed (solid thick lines) and expected (dashed lines) exclusion contours are indicated for combined $\tilde{e}_{\textup{L,R}}$ and for $\tilde{e}_{\textup{L}}$ and $\tilde{e}_{\textup{R}}$. In Figure (b) and (d) the observed (solid thick lines) and expected (dashed lines) exclusion contours are indicated for combined $\tilde{\mu}_{\textup{L,R}}$ and for $\tilde{\mu}_{\textup{L}}$. No unique sensitivity to $\tilde{\mu}_{\textup{R}}$ is observed. All limits are computed at 95% CL. The observed limits obtained at LEP and by the ATLAS experiment in previous searches are also shown in the shaded areas.
Observed and expected exclusion limits on SUSY simplified models for direct selectron production in the (a) $m(\tilde{e})-m(\tilde{\chi}_1^0)$ and (c) $m(\tilde{e})-\Delta m(\tilde{e},\tilde{\chi}_1^0)$ planes, and for direct smuon production in the (b) $m(\tilde{\mu})-m(\tilde{\chi}_1^0)$ and (d) $m(\tilde{\mu})-\Delta m(\tilde{\mu},\tilde{\chi}_1^0)$ planes. In Figure (a) and (c) the observed (solid thick lines) and expected (dashed lines) exclusion contours are indicated for combined $\tilde{e}_{\textup{L,R}}$ and for $\tilde{e}_{\textup{L}}$ and $\tilde{e}_{\textup{R}}$. In Figure (b) and (d) the observed (solid thick lines) and expected (dashed lines) exclusion contours are indicated for combined $\tilde{\mu}_{\textup{L,R}}$ and for $\tilde{\mu}_{\textup{L}}$. No unique sensitivity to $\tilde{\mu}_{\textup{R}}$ is observed. All limits are computed at 95% CL. The observed limits obtained at LEP and by the ATLAS experiment in previous searches are also shown in the shaded areas.
Observed and expected exclusion limits on SUSY simplified models for direct selectron production in the (a) $m(\tilde{e})-m(\tilde{\chi}_1^0)$ and (c) $m(\tilde{e})-\Delta m(\tilde{e},\tilde{\chi}_1^0)$ planes, and for direct smuon production in the (b) $m(\tilde{\mu})-m(\tilde{\chi}_1^0)$ and (d) $m(\tilde{\mu})-\Delta m(\tilde{\mu},\tilde{\chi}_1^0)$ planes. In Figure (a) and (c) the observed (solid thick lines) and expected (dashed lines) exclusion contours are indicated for combined $\tilde{e}_{\textup{L,R}}$ and for $\tilde{e}_{\textup{L}}$ and $\tilde{e}_{\textup{R}}$. In Figure (b) and (d) the observed (solid thick lines) and expected (dashed lines) exclusion contours are indicated for combined $\tilde{\mu}_{\textup{L,R}}$ and for $\tilde{\mu}_{\textup{L}}$. No unique sensitivity to $\tilde{\mu}_{\textup{R}}$ is observed. All limits are computed at 95% CL. The observed limits obtained at LEP and by the ATLAS experiment in previous searches are also shown in the shaded areas.
Observed and expected exclusion limits on SUSY simplified models for direct selectron production in the (a) $m(\tilde{e})-m(\tilde{\chi}_1^0)$ and (c) $m(\tilde{e})-\Delta m(\tilde{e},\tilde{\chi}_1^0)$ planes, and for direct smuon production in the (b) $m(\tilde{\mu})-m(\tilde{\chi}_1^0)$ and (d) $m(\tilde{\mu})-\Delta m(\tilde{\mu},\tilde{\chi}_1^0)$ planes. In Figure (a) and (c) the observed (solid thick lines) and expected (dashed lines) exclusion contours are indicated for combined $\tilde{e}_{\textup{L,R}}$ and for $\tilde{e}_{\textup{L}}$ and $\tilde{e}_{\textup{R}}$. In Figure (b) and (d) the observed (solid thick lines) and expected (dashed lines) exclusion contours are indicated for combined $\tilde{\mu}_{\textup{L,R}}$ and for $\tilde{\mu}_{\textup{L}}$. No unique sensitivity to $\tilde{\mu}_{\textup{R}}$ is observed. All limits are computed at 95% CL. The observed limits obtained at LEP and by the ATLAS experiment in previous searches are also shown in the shaded areas.
Observed and expected exclusion limits on SUSY simplified models for slepton-pair production in the $m(\tilde{\ell})-m(\tilde{\chi}_1^0)$ plane. Only $\tilde{e}$ and $\tilde{\mu}$ are considered. The observed (solid thick line) and expected (thin dashed line) exclusion contours are indicated. The red contour shows the exclusion limits obtained using both the SR-0J and SR-1J region, as presented in Figure 6. The blue and green contours correspond to the result obtained considering only SR-0J and SR-1J region respectively. All limits are computed at 95% CL. The observed limits obtained by the ATLAS experiment in previous searches are also shown.
Observed and expected exclusion limits on SUSY simplified models for slepton-pair production in the $m(\tilde{\ell})-m(\tilde{\chi}_1^0)$ plane. Only $\tilde{e}$ and $\tilde{\mu}$ are considered. The observed (solid thick line) and expected (thin dashed line) exclusion contours are indicated. The red contour shows the exclusion limits obtained using both the SR-0J and SR-1J region, as presented in Figure 6. The blue and green contours correspond to the result obtained considering only SR-0J and SR-1J region respectively. All limits are computed at 95% CL. The observed limits obtained by the ATLAS experiment in previous searches are also shown.
Observed and expected exclusion limits on SUSY simplified models for slepton-pair production in the $m(\tilde{\ell})-m(\tilde{\chi}_1^0)$ plane. Only $\tilde{e}$ and $\tilde{\mu}$ are considered. The observed (solid thick line) and expected (thin dashed line) exclusion contours are indicated. The red contour shows the exclusion limits obtained using both the SR-0J and SR-1J region, as presented in Figure 6. The blue and green contours correspond to the result obtained considering only SR-0J and SR-1J region respectively. All limits are computed at 95% CL. The observed limits obtained by the ATLAS experiment in previous searches are also shown.
Observed and expected exclusion limits on SUSY simplified models for slepton-pair production in the $m(\tilde{\ell})-m(\tilde{\chi}_1^0)$ plane. Only $\tilde{e}$ and $\tilde{\mu}$ are considered. The observed (solid thick line) and expected (thin dashed line) exclusion contours are indicated. The red contour shows the exclusion limits obtained using both the SR-0J and SR-1J region, as presented in Figure 6. The blue and green contours correspond to the result obtained considering only SR-0J and SR-1J region respectively. All limits are computed at 95% CL. The observed limits obtained by the ATLAS experiment in previous searches are also shown.
The upper panel shows the observed number of events in each of the binned SRs defined in Table 3, together with the expected SM backgrounds obtained after applying the efficiency correction method to compute the number of expected FSB events. `Others' include the non-dominant background sources, e.g. $t \bar{t}$+$V$, Higgs boson and Drell--Yan events. The uncertainty band includes systematic and statistical errors from all sources. The distributions of two signal points with mass splittings $\Delta m(\tilde{\ell},\tilde{\chi}_1^0) = m(\tilde{\ell})-m(\tilde{\chi}_1^0) = 30$ GeV and $\Delta m(\tilde{\ell},\tilde{\chi}_1^0) = m(\tilde{\ell})-m(\tilde{\chi}_1^0) = 50$ GeV are overlaid. The lower panel shows the significance as defined in Ref. [115].
The figure shows the signal acceptance (a) and efficiency (b) plots for the $\tilde{\chi}_1^+\tilde{\chi}_1^-$ production with $W$-boson-mediated decay model, in the SR$^{\text{-DF BDT-signal}\in(0.81,1]}_{\text{-SF BDT-signal}\in(0.77,1]}$ inclusive region. Acceptance is calculated by applying the signal region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out. Large acceptance and efficiency differences in neighbouring points are due to statistical fluctuations.
The figure shows the signal acceptance (a) and efficiency (b) plots for the $\tilde{\chi}_1^+\tilde{\chi}_1^-$ production with $W$-boson-mediated decay model, in the SR$^{\text{-DF BDT-signal}\in(0.81,1]}_{\text{-SF BDT-signal}\in(0.77,1]}$ inclusive region. Acceptance is calculated by applying the signal region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out. Large acceptance and efficiency differences in neighbouring points are due to statistical fluctuations.
The figure shows the signal acceptance (a) and efficiency (b) plots for the $\tilde{\chi}_1^+\tilde{\chi}_1^-$ production with $W$-boson-mediated decay model, in the SR-DF BDT-signal$\in(0.81,1]$ inclusive region. Acceptance is calculated by applying the signal region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out. Large acceptance and efficiency differences in neighbouring points are due to statistical fluctuations.
The figure shows the signal acceptance (a) and efficiency (b) plots for the $\tilde{\chi}_1^+\tilde{\chi}_1^-$ production with $W$-boson-mediated decay model, in the SR-DF BDT-signal$\in(0.81,1]$ inclusive region. Acceptance is calculated by applying the signal region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out. Large acceptance and efficiency differences in neighbouring points are due to statistical fluctuations.
The figure shows the signal acceptance (a) and efficiency (b) plots for the $\tilde{\chi}_1^+\tilde{\chi}_1^-$ production with $W$-boson-mediated decay model, in the SR-DF BDT-signal$\in(0.82,1]$ inclusive region. Acceptance is calculated by applying the signal region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out. Large acceptance and efficiency differences in neighbouring points are due to statistical fluctuations.
The figure shows the signal acceptance (a) and efficiency (b) plots for the $\tilde{\chi}_1^+\tilde{\chi}_1^-$ production with $W$-boson-mediated decay model, in the SR-DF BDT-signal$\in(0.82,1]$ inclusive region. Acceptance is calculated by applying the signal region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out. Large acceptance and efficiency differences in neighbouring points are due to statistical fluctuations.
The figure shows the signal acceptance (a) and efficiency (b) plots for the $\tilde{\chi}_1^+\tilde{\chi}_1^-$ production with $W$-boson-mediated decay model, in the SR-DF BDT-signal$\in(0.83,1]$ inclusive region. Acceptance is calculated by applying the signal region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out. Large acceptance and efficiency differences in neighbouring points are due to statistical fluctuations.
The figure shows the signal acceptance (a) and efficiency (b) plots for the $\tilde{\chi}_1^+\tilde{\chi}_1^-$ production with $W$-boson-mediated decay model, in the SR-DF BDT-signal$\in(0.83,1]$ inclusive region. Acceptance is calculated by applying the signal region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out. Large acceptance and efficiency differences in neighbouring points are due to statistical fluctuations.
The figure shows the signal acceptance (a) and efficiency (b) plots for the $\tilde{\chi}_1^+\tilde{\chi}_1^-$ production with $W$-boson-mediated decay model, in the SR-DF BDT-signal$\in(0.84,1]$ inclusive region. Acceptance is calculated by applying the signal region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out. Large acceptance and efficiency differences in neighbouring points are due to statistical fluctuations.
The figure shows the signal acceptance (a) and efficiency (b) plots for the $\tilde{\chi}_1^+\tilde{\chi}_1^-$ production with $W$-boson-mediated decay model, in the SR-DF BDT-signal$\in(0.84,1]$ inclusive region. Acceptance is calculated by applying the signal region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out. Large acceptance and efficiency differences in neighbouring points are due to statistical fluctuations.
The figure shows the signal acceptance (a) and efficiency (b) plots for the $\tilde{\chi}_1^+\tilde{\chi}_1^-$ production with $W$-boson-mediated decay model, in the SR-DF BDT-signal$\in(0.85,1]$ inclusive region. Acceptance is calculated by applying the signal region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out. Large acceptance and efficiency differences in neighbouring points are due to statistical fluctuations.
The figure shows the signal acceptance (a) and efficiency (b) plots for the $\tilde{\chi}_1^+\tilde{\chi}_1^-$ production with $W$-boson-mediated decay model, in the SR-DF BDT-signal$\in(0.85,1]$ inclusive region. Acceptance is calculated by applying the signal region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out. Large acceptance and efficiency differences in neighbouring points are due to statistical fluctuations.
The figure shows the signal acceptance (a) and efficiency (b) plots for the $\tilde{\chi}_1^+\tilde{\chi}_1^-$ production with $W$-boson-mediated decay model, in the SR-DF BDT-signal$\in(0.81,0.8125]$ inclusive region. Acceptance is calculated by applying the signal region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out. Large acceptance and efficiency differences in neighbouring points are due to statistical fluctuations.
The figure shows the signal acceptance (a) and efficiency (b) plots for the $\tilde{\chi}_1^+\tilde{\chi}_1^-$ production with $W$-boson-mediated decay model, in the SR-DF BDT-signal$\in(0.81,0.8125]$ inclusive region. Acceptance is calculated by applying the signal region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out. Large acceptance and efficiency differences in neighbouring points are due to statistical fluctuations.
The figure shows the signal acceptance (a) and efficiency (b) plots for the $\tilde{\chi}_1^+\tilde{\chi}_1^-$ production with $W$-boson-mediated decay model, in the SR-DF BDT-signal$\in(0.8125,0.815]$ inclusive region. Acceptance is calculated by applying the signal region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out. Large acceptance and efficiency differences in neighbouring points are due to statistical fluctuations.
The figure shows the signal acceptance (a) and efficiency (b) plots for the $\tilde{\chi}_1^+\tilde{\chi}_1^-$ production with $W$-boson-mediated decay model, in the SR-DF BDT-signal$\in(0.8125,0.815]$ inclusive region. Acceptance is calculated by applying the signal region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out. Large acceptance and efficiency differences in neighbouring points are due to statistical fluctuations.
The figure shows the signal acceptance (a) and efficiency (b) plots for the $\tilde{\chi}_1^+\tilde{\chi}_1^-$ production with $W$-boson-mediated decay model, in the SR-DF BDT-signal$\in(0.815,0.8175]$ inclusive region. Acceptance is calculated by applying the signal region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out. Large acceptance and efficiency differences in neighbouring points are due to statistical fluctuations.
The figure shows the signal acceptance (a) and efficiency (b) plots for the $\tilde{\chi}_1^+\tilde{\chi}_1^-$ production with $W$-boson-mediated decay model, in the SR-DF BDT-signal$\in(0.815,0.8175]$ inclusive region. Acceptance is calculated by applying the signal region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out. Large acceptance and efficiency differences in neighbouring points are due to statistical fluctuations.
The figure shows the signal acceptance (a) and efficiency (b) plots for the $\tilde{\chi}_1^+\tilde{\chi}_1^-$ production with $W$-boson-mediated decay model, in the SR-DF BDT-signal$\in(0.8175,0.82]$ inclusive region. Acceptance is calculated by applying the signal region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out. Large acceptance and efficiency differences in neighbouring points are due to statistical fluctuations.
The figure shows the signal acceptance (a) and efficiency (b) plots for the $\tilde{\chi}_1^+\tilde{\chi}_1^-$ production with $W$-boson-mediated decay model, in the SR-DF BDT-signal$\in(0.8175,0.82]$ inclusive region. Acceptance is calculated by applying the signal region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out. Large acceptance and efficiency differences in neighbouring points are due to statistical fluctuations.
The figure shows the signal acceptance (a) and efficiency (b) plots for the $\tilde{\chi}_1^+\tilde{\chi}_1^-$ production with $W$-boson-mediated decay model, in the SR-DF BDT-signal$\in(0.82,0.8225]$ inclusive region. Acceptance is calculated by applying the signal region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out. Large acceptance and efficiency differences in neighbouring points are due to statistical fluctuations.
The figure shows the signal acceptance (a) and efficiency (b) plots for the $\tilde{\chi}_1^+\tilde{\chi}_1^-$ production with $W$-boson-mediated decay model, in the SR-DF BDT-signal$\in(0.82,0.8225]$ inclusive region. Acceptance is calculated by applying the signal region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out. Large acceptance and efficiency differences in neighbouring points are due to statistical fluctuations.
The figure shows the signal acceptance (a) and efficiency (b) plots for the $\tilde{\chi}_1^+\tilde{\chi}_1^-$ production with $W$-boson-mediated decay model, in the SR-DF BDT-signal$\in(0.8225,0.825]$ inclusive region. Acceptance is calculated by applying the signal region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out. Large acceptance and efficiency differences in neighbouring points are due to statistical fluctuations.
The figure shows the signal acceptance (a) and efficiency (b) plots for the $\tilde{\chi}_1^+\tilde{\chi}_1^-$ production with $W$-boson-mediated decay model, in the SR-DF BDT-signal$\in(0.8225,0.825]$ inclusive region. Acceptance is calculated by applying the signal region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out. Large acceptance and efficiency differences in neighbouring points are due to statistical fluctuations.
The figure shows the signal acceptance (a) and efficiency (b) plots for the $\tilde{\chi}_1^+\tilde{\chi}_1^-$ production with $W$-boson-mediated decay model, in the SR-DF BDT-signal$\in(0.825,0.8275]$ inclusive region. Acceptance is calculated by applying the signal region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out. Large acceptance and efficiency differences in neighbouring points are due to statistical fluctuations.
The figure shows the signal acceptance (a) and efficiency (b) plots for the $\tilde{\chi}_1^+\tilde{\chi}_1^-$ production with $W$-boson-mediated decay model, in the SR-DF BDT-signal$\in(0.825,0.8275]$ inclusive region. Acceptance is calculated by applying the signal region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out. Large acceptance and efficiency differences in neighbouring points are due to statistical fluctuations.
The figure shows the signal acceptance (a) and efficiency (b) plots for the $\tilde{\chi}_1^+\tilde{\chi}_1^-$ production with $W$-boson-mediated decay model, in the SR-DF BDT-signal$\in(0.8275,0.83]$ inclusive region. Acceptance is calculated by applying the signal region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out. Large acceptance and efficiency differences in neighbouring points are due to statistical fluctuations.
The figure shows the signal acceptance (a) and efficiency (b) plots for the $\tilde{\chi}_1^+\tilde{\chi}_1^-$ production with $W$-boson-mediated decay model, in the SR-DF BDT-signal$\in(0.8275,0.83]$ inclusive region. Acceptance is calculated by applying the signal region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out. Large acceptance and efficiency differences in neighbouring points are due to statistical fluctuations.
The figure shows the signal acceptance (a) and efficiency (b) plots for the $\tilde{\chi}_1^+\tilde{\chi}_1^-$ production with $W$-boson-mediated decay model, in the SR-DF BDT-signal$\in(0.83,0.8325]$ inclusive region. Acceptance is calculated by applying the signal region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out. Large acceptance and efficiency differences in neighbouring points are due to statistical fluctuations.
The figure shows the signal acceptance (a) and efficiency (b) plots for the $\tilde{\chi}_1^+\tilde{\chi}_1^-$ production with $W$-boson-mediated decay model, in the SR-DF BDT-signal$\in(0.83,0.8325]$ inclusive region. Acceptance is calculated by applying the signal region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out. Large acceptance and efficiency differences in neighbouring points are due to statistical fluctuations.
The figure shows the signal acceptance (a) and efficiency (b) plots for the $\tilde{\chi}_1^+\tilde{\chi}_1^-$ production with $W$-boson-mediated decay model, in the SR-DF BDT-signal$\in(0.8325,0.835]$ inclusive region. Acceptance is calculated by applying the signal region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out. Large acceptance and efficiency differences in neighbouring points are due to statistical fluctuations.
The figure shows the signal acceptance (a) and efficiency (b) plots for the $\tilde{\chi}_1^+\tilde{\chi}_1^-$ production with $W$-boson-mediated decay model, in the SR-DF BDT-signal$\in(0.8325,0.835]$ inclusive region. Acceptance is calculated by applying the signal region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out. Large acceptance and efficiency differences in neighbouring points are due to statistical fluctuations.
The figure shows the signal acceptance (a) and efficiency (b) plots for the $\tilde{\chi}_1^+\tilde{\chi}_1^-$ production with $W$-boson-mediated decay model, in the SR-DF BDT-signal$\in(0.835,0.8375]$ inclusive region. Acceptance is calculated by applying the signal region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out. Large acceptance and efficiency differences in neighbouring points are due to statistical fluctuations.
The figure shows the signal acceptance (a) and efficiency (b) plots for the $\tilde{\chi}_1^+\tilde{\chi}_1^-$ production with $W$-boson-mediated decay model, in the SR-DF BDT-signal$\in(0.835,0.8375]$ inclusive region. Acceptance is calculated by applying the signal region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out. Large acceptance and efficiency differences in neighbouring points are due to statistical fluctuations.
The figure shows the signal acceptance (a) and efficiency (b) plots for the $\tilde{\chi}_1^+\tilde{\chi}_1^-$ production with $W$-boson-mediated decay model, in the SR-DF BDT-signal$\in(0.8375,0.84]$ inclusive region. Acceptance is calculated by applying the signal region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out. Large acceptance and efficiency differences in neighbouring points are due to statistical fluctuations.
The figure shows the signal acceptance (a) and efficiency (b) plots for the $\tilde{\chi}_1^+\tilde{\chi}_1^-$ production with $W$-boson-mediated decay model, in the SR-DF BDT-signal$\in(0.8375,0.84]$ inclusive region. Acceptance is calculated by applying the signal region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out. Large acceptance and efficiency differences in neighbouring points are due to statistical fluctuations.
The figure shows the signal acceptance (a) and efficiency (b) plots for the $\tilde{\chi}_1^+\tilde{\chi}_1^-$ production with $W$-boson-mediated decay model, in the SR-DF BDT-signal$\in(0.84,0.845]$ inclusive region. Acceptance is calculated by applying the signal region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out. Large acceptance and efficiency differences in neighbouring points are due to statistical fluctuations.
The figure shows the signal acceptance (a) and efficiency (b) plots for the $\tilde{\chi}_1^+\tilde{\chi}_1^-$ production with $W$-boson-mediated decay model, in the SR-DF BDT-signal$\in(0.84,0.845]$ inclusive region. Acceptance is calculated by applying the signal region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out. Large acceptance and efficiency differences in neighbouring points are due to statistical fluctuations.
The figure shows the signal acceptance (a) and efficiency (b) plots for the $\tilde{\chi}_1^+\tilde{\chi}_1^-$ production with $W$-boson-mediated decay model, in the SR-DF BDT-signal$\in(0.845,0.85]$ inclusive region. Acceptance is calculated by applying the signal region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out. Large acceptance and efficiency differences in neighbouring points are due to statistical fluctuations.
The figure shows the signal acceptance (a) and efficiency (b) plots for the $\tilde{\chi}_1^+\tilde{\chi}_1^-$ production with $W$-boson-mediated decay model, in the SR-DF BDT-signal$\in(0.845,0.85]$ inclusive region. Acceptance is calculated by applying the signal region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out. Large acceptance and efficiency differences in neighbouring points are due to statistical fluctuations.
The figure shows the signal acceptance (a) and efficiency (b) plots for the $\tilde{\chi}_1^+\tilde{\chi}_1^-$ production with $W$-boson-mediated decay model, in the SR-DF BDT-signal$\in(0.85,0.86]$ inclusive region. Acceptance is calculated by applying the signal region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out. Large acceptance and efficiency differences in neighbouring points are due to statistical fluctuations.
The figure shows the signal acceptance (a) and efficiency (b) plots for the $\tilde{\chi}_1^+\tilde{\chi}_1^-$ production with $W$-boson-mediated decay model, in the SR-DF BDT-signal$\in(0.85,0.86]$ inclusive region. Acceptance is calculated by applying the signal region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out. Large acceptance and efficiency differences in neighbouring points are due to statistical fluctuations.
The figure shows the signal acceptance (a) and efficiency (b) plots for the $\tilde{\chi}_1^+\tilde{\chi}_1^-$ production with $W$-boson-mediated decay model, in the SR-DF BDT-signal$\in(0.86,1]$ inclusive region. Acceptance is calculated by applying the signal region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out. Large acceptance and efficiency differences in neighbouring points are due to statistical fluctuations.
The figure shows the signal acceptance (a) and efficiency (b) plots for the $\tilde{\chi}_1^+\tilde{\chi}_1^-$ production with $W$-boson-mediated decay model, in the SR-DF BDT-signal$\in(0.86,1]$ inclusive region. Acceptance is calculated by applying the signal region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out. Large acceptance and efficiency differences in neighbouring points are due to statistical fluctuations.
The figure shows the signal acceptance (a) and efficiency (b) plots for the $\tilde{\chi}_1^+\tilde{\chi}_1^-$ production with $W$-boson-mediated decay model, in the SR-SF BDT-signal$\in(0.77,1]$ inclusive region. Acceptance is calculated by applying the signal region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out. Large acceptance and efficiency differences in neighbouring points are due to statistical fluctuations.
The figure shows the signal acceptance (a) and efficiency (b) plots for the $\tilde{\chi}_1^+\tilde{\chi}_1^-$ production with $W$-boson-mediated decay model, in the SR-SF BDT-signal$\in(0.77,1]$ inclusive region. Acceptance is calculated by applying the signal region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out. Large acceptance and efficiency differences in neighbouring points are due to statistical fluctuations.
The figure shows the signal acceptance (a) and efficiency (b) plots for the $\tilde{\chi}_1^+\tilde{\chi}_1^-$ production with $W$-boson-mediated decay model, in the SR-SF BDT-signal$\in(0.78,1]$ inclusive region. Acceptance is calculated by applying the signal region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out. Large acceptance and efficiency differences in neighbouring points are due to statistical fluctuations.
The figure shows the signal acceptance (a) and efficiency (b) plots for the $\tilde{\chi}_1^+\tilde{\chi}_1^-$ production with $W$-boson-mediated decay model, in the SR-SF BDT-signal$\in(0.78,1]$ inclusive region. Acceptance is calculated by applying the signal region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out. Large acceptance and efficiency differences in neighbouring points are due to statistical fluctuations.
The figure shows the signal acceptance (a) and efficiency (b) plots for the $\tilde{\chi}_1^+\tilde{\chi}_1^-$ production with $W$-boson-mediated decay model, in the SR-SF BDT-signal$\in(0.79,1]$ inclusive region. Acceptance is calculated by applying the signal region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out. Large acceptance and efficiency differences in neighbouring points are due to statistical fluctuations.
The figure shows the signal acceptance (a) and efficiency (b) plots for the $\tilde{\chi}_1^+\tilde{\chi}_1^-$ production with $W$-boson-mediated decay model, in the SR-SF BDT-signal$\in(0.79,1]$ inclusive region. Acceptance is calculated by applying the signal region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out. Large acceptance and efficiency differences in neighbouring points are due to statistical fluctuations.
The figure shows the signal acceptance (a) and efficiency (b) plots for the $\tilde{\chi}_1^+\tilde{\chi}_1^-$ production with $W$-boson-mediated decay model, in the SR-SF BDT-signal$\in(0.80,1]$ inclusive region. Acceptance is calculated by applying the signal region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out. Large acceptance and efficiency differences in neighbouring points are due to statistical fluctuations.
The figure shows the signal acceptance (a) and efficiency (b) plots for the $\tilde{\chi}_1^+\tilde{\chi}_1^-$ production with $W$-boson-mediated decay model, in the SR-SF BDT-signal$\in(0.80,1]$ inclusive region. Acceptance is calculated by applying the signal region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out. Large acceptance and efficiency differences in neighbouring points are due to statistical fluctuations.
The figure shows the signal acceptance (a) and efficiency (b) plots for the $\tilde{\chi}_1^+\tilde{\chi}_1^-$ production with $W$-boson-mediated decay model, in the SR-SF BDT-signal$\in(0.77,0.775]$ inclusive region. Acceptance is calculated by applying the signal region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out. Large acceptance and efficiency differences in neighbouring points are due to statistical fluctuations.
The figure shows the signal acceptance (a) and efficiency (b) plots for the $\tilde{\chi}_1^+\tilde{\chi}_1^-$ production with $W$-boson-mediated decay model, in the SR-SF BDT-signal$\in(0.77,0.775]$ inclusive region. Acceptance is calculated by applying the signal region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out. Large acceptance and efficiency differences in neighbouring points are due to statistical fluctuations.
The figure shows the signal acceptance (a) and efficiency (b) plots for the $\tilde{\chi}_1^+\tilde{\chi}_1^-$ production with $W$-boson-mediated decay model, in the SR-SF BDT-signal$\in(0.775,0.78]$ inclusive region. Acceptance is calculated by applying the signal region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out. Large acceptance and efficiency differences in neighbouring points are due to statistical fluctuations.
The figure shows the signal acceptance (a) and efficiency (b) plots for the $\tilde{\chi}_1^+\tilde{\chi}_1^-$ production with $W$-boson-mediated decay model, in the SR-SF BDT-signal$\in(0.775,0.78]$ inclusive region. Acceptance is calculated by applying the signal region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out. Large acceptance and efficiency differences in neighbouring points are due to statistical fluctuations.
The figure shows the signal acceptance (a) and efficiency (b) plots for the $\tilde{\chi}_1^+\tilde{\chi}_1^-$ production with $W$-boson-mediated decay model, in the SR-SF BDT-signal$\in(0.78,0.785]$ inclusive region. Acceptance is calculated by applying the signal region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out. Large acceptance and efficiency differences in neighbouring points are due to statistical fluctuations.
The figure shows the signal acceptance (a) and efficiency (b) plots for the $\tilde{\chi}_1^+\tilde{\chi}_1^-$ production with $W$-boson-mediated decay model, in the SR-SF BDT-signal$\in(0.78,0.785]$ inclusive region. Acceptance is calculated by applying the signal region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out. Large acceptance and efficiency differences in neighbouring points are due to statistical fluctuations.
The figure shows the signal acceptance (a) and efficiency (b) plots for the $\tilde{\chi}_1^+\tilde{\chi}_1^-$ production with $W$-boson-mediated decay model, in the SR-SF BDT-signal$\in(0.785,0.79]$ inclusive region. Acceptance is calculated by applying the signal region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out. Large acceptance and efficiency differences in neighbouring points are due to statistical fluctuations.
The figure shows the signal acceptance (a) and efficiency (b) plots for the $\tilde{\chi}_1^+\tilde{\chi}_1^-$ production with $W$-boson-mediated decay model, in the SR-SF BDT-signal$\in(0.785,0.79]$ inclusive region. Acceptance is calculated by applying the signal region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out. Large acceptance and efficiency differences in neighbouring points are due to statistical fluctuations.
The figure shows the signal acceptance (a) and efficiency (b) plots for the $\tilde{\chi}_1^+\tilde{\chi}_1^-$ production with $W$-boson-mediated decay model, in the SR-SF BDT-signal$\in(0.79,0.795]$ inclusive region. Acceptance is calculated by applying the signal region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out. Large acceptance and efficiency differences in neighbouring points are due to statistical fluctuations.
The figure shows the signal acceptance (a) and efficiency (b) plots for the $\tilde{\chi}_1^+\tilde{\chi}_1^-$ production with $W$-boson-mediated decay model, in the SR-SF BDT-signal$\in(0.79,0.795]$ inclusive region. Acceptance is calculated by applying the signal region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out. Large acceptance and efficiency differences in neighbouring points are due to statistical fluctuations.
The figure shows the signal acceptance (a) and efficiency (b) plots for the $\tilde{\chi}_1^+\tilde{\chi}_1^-$ production with $W$-boson-mediated decay model, in the SR-SF BDT-signal$\in(0.795,0.80]$ inclusive region. Acceptance is calculated by applying the signal region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out. Large acceptance and efficiency differences in neighbouring points are due to statistical fluctuations.
The figure shows the signal acceptance (a) and efficiency (b) plots for the $\tilde{\chi}_1^+\tilde{\chi}_1^-$ production with $W$-boson-mediated decay model, in the SR-SF BDT-signal$\in(0.795,0.80]$ inclusive region. Acceptance is calculated by applying the signal region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out. Large acceptance and efficiency differences in neighbouring points are due to statistical fluctuations.
The figure shows the signal acceptance (a) and efficiency (b) plots for the $\tilde{\chi}_1^+\tilde{\chi}_1^-$ production with $W$-boson-mediated decay model, in the SR-SF BDT-signal$\in(0.80,0.81]$ inclusive region. Acceptance is calculated by applying the signal region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out. Large acceptance and efficiency differences in neighbouring points are due to statistical fluctuations.
The figure shows the signal acceptance (a) and efficiency (b) plots for the $\tilde{\chi}_1^+\tilde{\chi}_1^-$ production with $W$-boson-mediated decay model, in the SR-SF BDT-signal$\in(0.80,0.81]$ inclusive region. Acceptance is calculated by applying the signal region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out. Large acceptance and efficiency differences in neighbouring points are due to statistical fluctuations.
The figure shows the signal acceptance (a) and efficiency (b) plots for the $\tilde{\chi}_1^+\tilde{\chi}_1^-$ production with $W$-boson-mediated decay model, in the SR-SF BDT-signal$\in(0.81,1]$ inclusive region. Acceptance is calculated by applying the signal region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out. Large acceptance and efficiency differences in neighbouring points are due to statistical fluctuations.
The figure shows the signal acceptance (a) and efficiency (b) plots for the $\tilde{\chi}_1^+\tilde{\chi}_1^-$ production with $W$-boson-mediated decay model, in the SR-SF BDT-signal$\in(0.81,1]$ inclusive region. Acceptance is calculated by applying the signal region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out. Large acceptance and efficiency differences in neighbouring points are due to statistical fluctuations.
Cutflow table for the chargino signal sample with $m\tilde{\chi}_1^{\pm},\tilde{\chi}_1^0=(125,25)$ GeV, in the SR-SF BDT-signal$\in (0.77,1]$ and SR-DF BDT-signal$\in (0.81,1]$ regions. The yields include the process cross-section and are weighted to the 139 fb$^{-1}$ luminosity. 170000 events were generated for the sample.
Observed and expected exclusion limits on SUSY simplified models, with observed upper limits on signal cross-section (fb) overlaid, for chargino-pair production with $W$-boson-mediated decays in the $m(\tilde{\chi}_1^{\pm})-m(\tilde{\chi}_1^0)$ plane. The observed (solid thick line) and expected (thin dashed line) exclusion contours are indicated. The shaded band around the dashed line corresponds to the $\pm 1 \sigma$ variations in the expected limit, including all uncertainties except theoretical uncertainties in the signal cross-section. The dotted lines around the observed limit illustrate the change in the observed limit as the nominal signal cross-section is scaled up and down by the theoretical uncertainty. All limits are computed at 95% CL. The observed limits obtained at LEP and by the ATLAS experiment in previous searches are also shown. In case of the search performed on ATLAS Run 1 data at $\sqrt{s} = 8$ TeV no sensitivity was expected for the exclusion in the mass plane.
Observed and expected exclusion limits on SUSY simplified models for chargino-pair production with $W$-boson-mediated decays in the (a) $m(\tilde{\chi}_1^{\pm})-m(\tilde{\chi}_1^0)$ and (b) $m(\tilde{\chi}_1^{\pm})-\Delta m(\tilde{\chi}_1^{\pm},\tilde{\chi}_1^0)$ planes. The observed (solid thick line) and expected (thin dashed line) exclusion contours are indicated. The shaded band around the dashed line corresponds to the $\pm 1 \sigma$ variations in the expected limit, including all uncertainties except theoretical uncertainties in the signal cross-section. The dotted lines around the observed limit illustrate the change in the observed limit as the nominal signal cross-section is scaled up and down by the theoretical uncertainty. All limits are computed at 95% CL. The observed limits obtained at LEP and by the ATLAS experiment in previous searches are also shown. In case of the search performed on ATLAS Run 1 data at $\sqrt{s} = 8$ TeV no sensitivity was expected for the exclusion in the mass plane.
Observed and expected exclusion limits on SUSY simplified models for chargino-pair production with $W$-boson-mediated decays in the (a) $m(\tilde{\chi}_1^{\pm})-m(\tilde{\chi}_1^0)$ and (b) $m(\tilde{\chi}_1^{\pm})-\Delta m(\tilde{\chi}_1^{\pm},\tilde{\chi}_1^0)$ planes. The observed (solid thick line) and expected (thin dashed line) exclusion contours are indicated. The shaded band around the dashed line corresponds to the $\pm 1 \sigma$ variations in the expected limit, including all uncertainties except theoretical uncertainties in the signal cross-section. The dotted lines around the observed limit illustrate the change in the observed limit as the nominal signal cross-section is scaled up and down by the theoretical uncertainty. All limits are computed at 95% CL. The observed limits obtained at LEP and by the ATLAS experiment in previous searches are also shown. In case of the search performed on ATLAS Run 1 data at $\sqrt{s} = 8$ TeV no sensitivity was expected for the exclusion in the mass plane.
Observed and expected exclusion limits on SUSY simplified models for chargino-pair production with $W$-boson-mediated decays in the (a) $m(\tilde{\chi}_1^{\pm})-m(\tilde{\chi}_1^0)$ and (b) $m(\tilde{\chi}_1^{\pm})-\Delta m(\tilde{\chi}_1^{\pm},\tilde{\chi}_1^0)$ planes. The observed (solid thick line) and expected (thin dashed line) exclusion contours are indicated. The shaded band around the dashed line corresponds to the $\pm 1 \sigma$ variations in the expected limit, including all uncertainties except theoretical uncertainties in the signal cross-section. The dotted lines around the observed limit illustrate the change in the observed limit as the nominal signal cross-section is scaled up and down by the theoretical uncertainty. All limits are computed at 95% CL. The observed limits obtained at LEP and by the ATLAS experiment in previous searches are also shown. In case of the search performed on ATLAS Run 1 data at $\sqrt{s} = 8$ TeV no sensitivity was expected for the exclusion in the mass plane.
Observed and expected exclusion limits on SUSY simplified models for chargino-pair production with $W$-boson-mediated decays in the (a) $m(\tilde{\chi}_1^{\pm})-m(\tilde{\chi}_1^0)$ and (b) $m(\tilde{\chi}_1^{\pm})-\Delta m(\tilde{\chi}_1^{\pm},\tilde{\chi}_1^0)$ planes. The observed (solid thick line) and expected (thin dashed line) exclusion contours are indicated. The shaded band around the dashed line corresponds to the $\pm 1 \sigma$ variations in the expected limit, including all uncertainties except theoretical uncertainties in the signal cross-section. The dotted lines around the observed limit illustrate the change in the observed limit as the nominal signal cross-section is scaled up and down by the theoretical uncertainty. All limits are computed at 95% CL. The observed limits obtained at LEP and by the ATLAS experiment in previous searches are also shown. In case of the search performed on ATLAS Run 1 data at $\sqrt{s} = 8$ TeV no sensitivity was expected for the exclusion in the mass plane.
Observed and expected exclusion limits on SUSY simplified models for chargino-pair production with $W$-boson-mediated decays in the (a) $m(\tilde{\chi}_1^{\pm})-m(\tilde{\chi}_1^0)$ and (b) $m(\tilde{\chi}_1^{\pm})-\Delta m(\tilde{\chi}_1^{\pm},\tilde{\chi}_1^0)$ planes. The observed (solid thick line) and expected (thin dashed line) exclusion contours are indicated. The shaded band around the dashed line corresponds to the $\pm 1 \sigma$ variations in the expected limit, including all uncertainties except theoretical uncertainties in the signal cross-section. The dotted lines around the observed limit illustrate the change in the observed limit as the nominal signal cross-section is scaled up and down by the theoretical uncertainty. All limits are computed at 95% CL. The observed limits obtained at LEP and by the ATLAS experiment in previous searches are also shown. In case of the search performed on ATLAS Run 1 data at $\sqrt{s} = 8$ TeV no sensitivity was expected for the exclusion in the mass plane.
Observed and expected exclusion limits on SUSY simplified models for chargino-pair production with $W$-boson-mediated decays in the (a) $m(\tilde{\chi}_1^{\pm})-m(\tilde{\chi}_1^0)$ and (b) $m(\tilde{\chi}_1^{\pm})-\Delta m(\tilde{\chi}_1^{\pm},\tilde{\chi}_1^0)$ planes. The observed (solid thick line) and expected (thin dashed line) exclusion contours are indicated. The shaded band around the dashed line corresponds to the $\pm 1 \sigma$ variations in the expected limit, including all uncertainties except theoretical uncertainties in the signal cross-section. The dotted lines around the observed limit illustrate the change in the observed limit as the nominal signal cross-section is scaled up and down by the theoretical uncertainty. All limits are computed at 95% CL. The observed limits obtained at LEP and by the ATLAS experiment in previous searches are also shown. In case of the search performed on ATLAS Run 1 data at $\sqrt{s} = 8$ TeV no sensitivity was expected for the exclusion in the mass plane.
Observed and expected exclusion limits on SUSY simplified models for chargino-pair production with $W$-boson-mediated decays in the (a) $m(\tilde{\chi}_1^{\pm})-m(\tilde{\chi}_1^0)$ and (b) $m(\tilde{\chi}_1^{\pm})-\Delta m(\tilde{\chi}_1^{\pm},\tilde{\chi}_1^0)$ planes. The observed (solid thick line) and expected (thin dashed line) exclusion contours are indicated. The shaded band around the dashed line corresponds to the $\pm 1 \sigma$ variations in the expected limit, including all uncertainties except theoretical uncertainties in the signal cross-section. The dotted lines around the observed limit illustrate the change in the observed limit as the nominal signal cross-section is scaled up and down by the theoretical uncertainty. All limits are computed at 95% CL. The observed limits obtained at LEP and by the ATLAS experiment in previous searches are also shown. In case of the search performed on ATLAS Run 1 data at $\sqrt{s} = 8$ TeV no sensitivity was expected for the exclusion in the mass plane.
Observed and expected exclusion limits on SUSY simplified models for chargino-pair production with $W$-boson-mediated decays in the (a) $m(\tilde{\chi}_1^{\pm})-m(\tilde{\chi}_1^0)$ and (b) $m(\tilde{\chi}_1^{\pm})-\Delta m(\tilde{\chi}_1^{\pm},\tilde{\chi}_1^0)$ planes. The observed (solid thick line) and expected (thin dashed line) exclusion contours are indicated. The shaded band around the dashed line corresponds to the $\pm 1 \sigma$ variations in the expected limit, including all uncertainties except theoretical uncertainties in the signal cross-section. The dotted lines around the observed limit illustrate the change in the observed limit as the nominal signal cross-section is scaled up and down by the theoretical uncertainty. All limits are computed at 95% CL. The observed limits obtained at LEP and by the ATLAS experiment in previous searches are also shown. In case of the search performed on ATLAS Run 1 data at $\sqrt{s} = 8$ TeV no sensitivity was expected for the exclusion in the mass plane.
Observed and expected exclusion limits on SUSY simplified models for chargino-pair production with $W$-boson-mediated decays in the (a) $m(\tilde{\chi}_1^{\pm})-m(\tilde{\chi}_1^0)$ and (b) $m(\tilde{\chi}_1^{\pm})-\Delta m(\tilde{\chi}_1^{\pm},\tilde{\chi}_1^0)$ planes. The observed (solid thick line) and expected (thin dashed line) exclusion contours are indicated. The shaded band around the dashed line corresponds to the $\pm 1 \sigma$ variations in the expected limit, including all uncertainties except theoretical uncertainties in the signal cross-section. The dotted lines around the observed limit illustrate the change in the observed limit as the nominal signal cross-section is scaled up and down by the theoretical uncertainty. All limits are computed at 95% CL. The observed limits obtained at LEP and by the ATLAS experiment in previous searches are also shown. In case of the search performed on ATLAS Run 1 data at $\sqrt{s} = 8$ TeV no sensitivity was expected for the exclusion in the mass plane.
Observed and expected exclusion limits on SUSY simplified models for chargino-pair production with $W$-boson-mediated decays in the (a) $m(\tilde{\chi}_1^{\pm})-m(\tilde{\chi}_1^0)$ and (b) $m(\tilde{\chi}_1^{\pm})-\Delta m(\tilde{\chi}_1^{\pm},\tilde{\chi}_1^0)$ planes. The observed (solid thick line) and expected (thin dashed line) exclusion contours are indicated. The shaded band around the dashed line corresponds to the $\pm 1 \sigma$ variations in the expected limit, including all uncertainties except theoretical uncertainties in the signal cross-section. The dotted lines around the observed limit illustrate the change in the observed limit as the nominal signal cross-section is scaled up and down by the theoretical uncertainty. All limits are computed at 95% CL. The observed limits obtained at LEP and by the ATLAS experiment in previous searches are also shown. In case of the search performed on ATLAS Run 1 data at $\sqrt{s} = 8$ TeV no sensitivity was expected for the exclusion in the mass plane.
Observed and expected exclusion limits on SUSY simplified models for chargino-pair production with $W$-boson-mediated decays in the (a) $m(\tilde{\chi}_1^{\pm})-m(\tilde{\chi}_1^0)$ and (b) $m(\tilde{\chi}_1^{\pm})-\Delta m(\tilde{\chi}_1^{\pm},\tilde{\chi}_1^0)$ planes. The observed (solid thick line) and expected (thin dashed line) exclusion contours are indicated. The shaded band around the dashed line corresponds to the $\pm 1 \sigma$ variations in the expected limit, including all uncertainties except theoretical uncertainties in the signal cross-section. The dotted lines around the observed limit illustrate the change in the observed limit as the nominal signal cross-section is scaled up and down by the theoretical uncertainty. All limits are computed at 95% CL. The observed limits obtained at LEP and by the ATLAS experiment in previous searches are also shown. In case of the search performed on ATLAS Run 1 data at $\sqrt{s} = 8$ TeV no sensitivity was expected for the exclusion in the mass plane.
Observed and expected exclusion limits on SUSY simplified models for chargino-pair production with $W$-boson-mediated decays in the (a) $m(\tilde{\chi}_1^{\pm})-m(\tilde{\chi}_1^0)$ and (b) $m(\tilde{\chi}_1^{\pm})-\Delta m(\tilde{\chi}_1^{\pm},\tilde{\chi}_1^0)$ planes. The observed (solid thick line) and expected (thin dashed line) exclusion contours are indicated. The shaded band around the dashed line corresponds to the $\pm 1 \sigma$ variations in the expected limit, including all uncertainties except theoretical uncertainties in the signal cross-section. The dotted lines around the observed limit illustrate the change in the observed limit as the nominal signal cross-section is scaled up and down by the theoretical uncertainty. All limits are computed at 95% CL. The observed limits obtained at LEP and by the ATLAS experiment in previous searches are also shown. In case of the search performed on ATLAS Run 1 data at $\sqrt{s} = 8$ TeV no sensitivity was expected for the exclusion in the mass plane.
The upper panel shows the observed number of events in the SRs defined in Table 3, together with the expected SM backgrounds obtained after the background fit in the CRs. `Others' include the non-dominant background sources, e.g.$t \bar{t}$+$V$, Higgs boson and Drell--Yan events. The uncertainty band includes systematic and statistical errors from all sources. Distributions for three benchmark signal points are overlaid for comparison. The lower panel shows the significance as defined in Ref. [115].
Searches for the exclusive decays of Higgs and $Z$ bosons into a vector quarkonium state and a photon are performed in the $\mu^+\mu^- \gamma$ final state with a proton$-$proton collision data sample corresponding to an integrated luminosity of $139$ fb$^{-1}$ collected at $\sqrt{s}=13$ TeV with the ATLAS detector at the CERN Large Hadron Collider. The observed data are compatible with the expected backgrounds. The 95% confidence-level upper limits on the branching fractions of the Higgs boson decays into $J/\psi \gamma$, $\psi(2S) \gamma$, and $\Upsilon(1S,2S,3S) \gamma$ are found to be $2.0\times10^{-4}$, $10.5\times10^{-4}$, and $(2.5,4.2,3.4)\times10^{-4}$, respectively, assuming Standard Model production of the Higgs boson. The corresponding 95% CL upper limits on the branching fractions of the $Z$ boson decays are $1.2\times10^{-6}$, $2.4\times10^{-6}$, and $(1.1,1.3,2.4)\times10^{-6}$. An observed 95% CL interval of $(-133,175)$ is obtained for the $\kappa_c/\kappa_\gamma$ ratio of Higgs boson coupling modifiers, and a 95% CL interval of $(-37,40)$ is obtained for $\kappa_b/\kappa_\gamma$.
Numbers of observed and expected background events for the $m_{\mu^+\mu^-\gamma}$ ranges of interest. Each expected background and the corresponding uncertainty of its mean is obtained from a background-only fit to the data; the uncertainty does not take into account statistical fluctuations in each mass range. Expected $Z$ and Higgs boson signal contributions, with their corresponding total systematic uncertainty, are shown for reference branching fractions of $10^{-6}$ and $10^{-3}$, respectively. The ranges in $m_{\mu^+\mu^-}$ are centred around each quarkonium resonance, with a width driven by the resolution of the detector; in particular, the ranges for the $\Upsilon(nS)$ resonances are based on the resolution in the endcaps. It is noted that the discrepancy between the observed and expected backgrounds for $m_{\mu^+\mu^-} = 9.0$-$9.8$ GeV in the endcaps was found to have a small impact on the observed limit for $Z\rightarrow\Upsilon(1S)\,\gamma$.
Expected, with the corresponding $\pm 1\sigma$ intervals, and observed 95% CL branching fraction upper limits for the Higgs and $Z$ boson decays into a quarkonium state and a photon. Standard Model production of the Higgs boson is assumed. The corresponding upper limits on the production cross section times branching fraction $\sigma\times\mathcal{B}$ are also shown.
Three searches are presented for signatures of physics beyond the standard model (SM) in $\tau\tau$ final states in proton-proton collisions at the LHC, using a data sample collected with the CMS detector at $\sqrt{s}$ = 13 TeV, corresponding to an integrated luminosity of 138 fb$^{-1}$. Upper limits at 95% confidence level (CL) are set on the products of the branching fraction for the decay into $\tau$ leptons and the cross sections for the production of a new boson $\phi$, in addition to the H(125) boson, via gluon fusion (gg$\phi$) or in association with b quarks, ranging from $\mathcal{O}$(10 pb) for a mass of 60 GeV to 0.3 fb for a mass of 3.5 TeV each. The data reveal two excesses for gg$\phi$ production with local $p$-values equivalent to about three standard deviations at $m_\phi$ = 0.1 and 1.2 TeV. In a search for $t$-channel exchange of a vector leptoquark U$_1$, 95% CL upper limits are set on the dimensionless U$_1$ leptoquark coupling to quarks and $\tau$ leptons ranging from 1 for a mass of 1 TeV to 6 for a mass of 5 TeV, depending on the scenario. In the interpretations of the $M_\mathrm{h}^{125}$ and $M_\mathrm{h, EFT}^{125}$ minimal supersymmetric SM benchmark scenarios, additional Higgs bosons with masses below 350 GeV are excluded at 95% CL.
Expected and observed $95\%\text{ CL}$ upper limits on the product of the cross sections and branching fraction for the decay into $\tau$ leptons for $gg\phi$ production in a mass range of $60\leq m_\phi\leq 3500\text{ GeV}$, in addition to $\text{H}(125)$. The central $68$ and $95\%$ intervals are given in addition to the expected median value. In this case, $bb\phi$ production rate has been profiled. The peak in the expected $gg\phi$ limit is tribute to a loss of sensitivity around $90\text{ GeV}$ due to the background from $Z/\gamma^\ast\rightarrow\tau\tau$ events. Numerical values provided in this table correspond to Figure 10a of the publication.
Expected and observed $95\%\text{ CL}$ upper limits on the product of the cross sections and branching fraction for the decay into $\tau$ leptons for $bb\phi$ production in a mass range of $60\leq m_\phi\leq 3500\text{ GeV}$, in addition to $\text{H}(125)$. The central $68$ and $95\%$ intervals are given in addition to the expected median value. In this case, $gg\phi$ production rate has been profiled. Numerical values provided in this table correspond to Figure 10b of the publication.
Expected and observed $95\%\text{ CL}$ upper limits on the product of the cross sections and branching fraction for the decay into $\tau$ leptons for $gg\phi$ production in a mass range of $60\leq m_\phi\leq 3500\text{ GeV}$, in addition to $\text{H}(125)$. The central $68$ and $95\%$ intervals are given in addition to the expected median value. In this case, $bb\phi$ production rate has been fixed to zero. Numerical values provided in this table correspond to Figure 37 of the auxilliary material of the publication.
Expected and observed $95\%\text{ CL}$ upper limits on the product of the cross sections and branching fraction for the decay into $\tau$ leptons for $bb\phi$ production in a mass range of $60\leq m_\phi\leq 3500\text{ GeV}$, in addition to $\text{H}(125)$. The central $68$ and $95\%$ intervals are given in addition to the expected median value. In this case, $gg\phi$ production rate has been fixed to zero. Numerical values provided in this table correspond to Figure 38 of the auxilliary material of the publication.
Expected and observed $95\%\text{ CL}$ upper limits on the product of the cross sections and branching fraction for the decay into $\tau$ leptons for $gg\phi$ production in a mass range of $60\leq m_\phi\leq 3500\text{ GeV}$, in addition to $\text{H}(125)$. The central $68$ and $95\%$ intervals are given in addition to the expected median value. In this case, $bb\phi$ production rate has been profiled and only top quarks have been considered in the $gg\phi$ loop. Numerical values provided in this table correspond to Figure 39 of the auxilliary material of the publication.
Expected and observed $95\%\text{ CL}$ upper limits on the product of the cross sections and branching fraction for the decay into $\tau$ leptons for $gg\phi$ production in a mass range of $60\leq m_\phi\leq 3500\text{ GeV}$, in addition to $\text{H}(125)$. The central $68$ and $95\%$ intervals are given in addition to the expected median value. In this case, $bb\phi$ production rate has been profiled and only bottom quarks have been considered in the $gg\phi$ loop. Numerical values provided in this table correspond to Figure 40 of the auxilliary material of the publication.
Local significance for a $gg\phi$ signal in a mass range of $60\leq m_\phi\leq 3500\text{ GeV}$. In this case, $bb\phi$ production rate has been profiled. Numerical values provided in this table correspond to Figure 31 of the auxilliary material of the publication.
Local significance for a $bb\phi$ signal in a mass range of $60\leq m_\phi\leq 3500\text{ GeV}$. In this case, $gg\phi$ production rate has been profiled. Numerical values provided in this table correspond to Figure 32 of the auxilliary material of the publication.
Local significance for a $gg\phi$ signal in a mass range of $60\leq m_\phi\leq 3500\text{ GeV}$. In this case, $bb\phi$ production rate has been fixed to zero. Numerical values provided in this table correspond to Figure 33 of the auxilliary material of the publication.
Local significance for a $bb\phi$ signal in a mass range of $60\leq m_\phi\leq 3500\text{ GeV}$. In this case, $gg\phi$ production rate has been fixed to zero. Numerical values provided in this table correspond to Figure 34 of the auxilliary material of the publication.
Local significance for a $gg\phi$ signal in a mass range of $60\leq m_\phi\leq 3500\text{ GeV}$. In this case, $bb\phi$ production rate has been profiled and only top quarks have been considered in the $gg\phi$ loop. Numerical values provided in this table correspond to Figure 35 of the auxilliary material of the publication.
Local significance for a $gg\phi$ signal in a mass range of $60\leq m_\phi\leq 3500\text{ GeV}$. In this case, $bb\phi$ production rate has been profiled and only bottom quarks have been considered in the $gg\phi$ loop. Numerical values provided in this table correspond to Figure 36 of the auxilliary material of the publication.
Scan of the likelihood function for the search for a resonance ($\phi$) with a mass of $95\text{ GeV}$, produced via gluon-fusion ($gg\phi$), via vector boson fusion ($qq\phi$) or in association with b quarks ($bb\phi$). In this case, $bb\phi$ production rate is profiled, whereas the scan is performed in the $gg\phi$ and $qq\phi$ production cross-sections, both multiplied with the branching fraction for the $\phi\rightarrow\tau\tau$ decay process. Numerical values provided in this table correspond to Figure 64 of the auxilliary material of the publication.
Scan of the likelihood function for the search for a scalar resonance ($H$) with a mass of $60\text{ GeV}$, produced via gluon-fusion or in association with b quarks. For this scan, we assume the $ggH$ and $bbH$ processes are only influenced by the Yukawa couplings to the top and bottom quarks and we scale the cross sections predicted for a SM-like Higgs boson of the same mass depending on these couplings. The scans are displayed for the product of the reduced Yukawa couplings $g_{b,\,t}^{H}$ and the square root of the branching fraction for the $H\rightarrow\tau\tau$ decay process, where the former is defined as the ratio of the Yukawa coupling of $H$ to the Yukawa coupling expected for a SM-like Higgs boson. Numerical values provided in this table correspond to Figure 65 of the auxilliary material of the publication.
Scan of the likelihood function for the search for a pseudoscalar resonance ($A$) with a mass of $60\text{ GeV}$, produced via gluon-fusion or in association with b quarks. For this scan, we assume the $ggA$ and $bbA$ processes are only influenced by the Yukawa couplings to the top and bottom quarks and we scale the cross sections predicted for a SM-like Higgs boson of the same mass depending on these couplings. For the $ggA$ process, there is also an enhancement to the cross section for a pseudoscalar resonance compared to the equivalent process for the production of a scalar. This enhancement is taken into account when scaling the cross sections for the SM-like Higgs boson. The scans are displayed for the product of the reduced Yukawa couplings $g_{b,\,t}^{A}$ and the square root of the branching fraction for the $A\rightarrow\tau\tau$ decay process, where the former is defined as the ratio of the Yukawa coupling of $A$ to the Yukawa coupling expected for a SM-like Higgs boson. Numerical values provided in this table correspond to Figure 66 of the auxilliary material of the publication.
Scan of the likelihood function for the search for a scalar resonance ($H$) with a mass of $80\text{ GeV}$, produced via gluon-fusion or in association with b quarks. For this scan, we assume the $ggH$ and $bbH$ processes are only influenced by the Yukawa couplings to the top and bottom quarks and we scale the cross sections predicted for a SM-like Higgs boson of the same mass depending on these couplings. The scans are displayed for the product of the reduced Yukawa couplings $g_{b,\,t}^{H}$ and the square root of the branching fraction for the $H\rightarrow\tau\tau$ decay process, where the former is defined as the ratio of the Yukawa coupling of $H$ to the Yukawa coupling expected for a SM-like Higgs boson. Numerical values provided in this table correspond to Figure 67 of the auxilliary material of the publication.
Scan of the likelihood function for the search for a pseudoscalar resonance ($A$) with a mass of $80\text{ GeV}$, produced via gluon-fusion or in association with b quarks. For this scan, we assume the $ggA$ and $bbA$ processes are only influenced by the Yukawa couplings to the top and bottom quarks and we scale the cross sections predicted for a SM-like Higgs boson of the same mass depending on these couplings. For the $ggA$ process, there is also an enhancement to the cross section for a pseudoscalar resonance compared to the equivalent process for the production of a scalar. This enhancement is taken into account when scaling the cross sections for the SM-like Higgs boson. The scans are displayed for the product of the reduced Yukawa couplings $g_{b,\,t}^{A}$ and the square root of the branching fraction for the $A\rightarrow\tau\tau$ decay process, where the former is defined as the ratio of the Yukawa coupling of $A$ to the Yukawa coupling expected for a SM-like Higgs boson. Numerical values provided in this table correspond to Figure 68 of the auxilliary material of the publication.
Scan of the likelihood function for the search for a scalar resonance ($H$) with a mass of $95\text{ GeV}$, produced via gluon-fusion or in association with b quarks. For this scan, we assume the $ggH$ and $bbH$ processes are only influenced by the Yukawa couplings to the top and bottom quarks and we scale the cross sections predicted for a SM-like Higgs boson of the same mass depending on these couplings. The scans are displayed for the product of the reduced Yukawa couplings $g_{b,\,t}^{H}$ and the square root of the branching fraction for the $H\rightarrow\tau\tau$ decay process, where the former is defined as the ratio of the Yukawa coupling of $H$ to the Yukawa coupling expected for a SM-like Higgs boson. Numerical values provided in this table correspond to Figure 69 of the auxilliary material of the publication.
Scan of the likelihood function for the search for a pseudoscalar resonance ($A$) with a mass of $95\text{ GeV}$, produced via gluon-fusion or in association with b quarks. For this scan, we assume the $ggA$ and $bbA$ processes are only influenced by the Yukawa couplings to the top and bottom quarks and we scale the cross sections predicted for a SM-like Higgs boson of the same mass depending on these couplings. For the $ggA$ process, there is also an enhancement to the cross section for a pseudoscalar resonance compared to the equivalent process for the production of a scalar. This enhancement is taken into account when scaling the cross sections for the SM-like Higgs boson. The scans are displayed for the product of the reduced Yukawa couplings $g_{b,\,t}^{A}$ and the square root of the branching fraction for the $A\rightarrow\tau\tau$ decay process, where the former is defined as the ratio of the Yukawa coupling of $A$ to the Yukawa coupling expected for a SM-like Higgs boson. Numerical values provided in this table correspond to Figure 70 of the auxilliary material of the publication.
Scan of the likelihood function for the search for a scalar resonance ($H$) with a mass of $100\text{ GeV}$, produced via gluon-fusion or in association with b quarks. For this scan, we assume the $ggH$ and $bbH$ processes are only influenced by the Yukawa couplings to the top and bottom quarks and we scale the cross sections predicted for a SM-like Higgs boson of the same mass depending on these couplings. The scans are displayed for the product of the reduced Yukawa couplings $g_{b,\,t}^{H}$ and the square root of the branching fraction for the $H\rightarrow\tau\tau$ decay process, where the former is defined as the ratio of the Yukawa coupling of $H$ to the Yukawa coupling expected for a SM-like Higgs boson. Numerical values provided in this table correspond to Figure 71 of the auxilliary material of the publication.
Scan of the likelihood function for the search for a pseudoscalar resonance ($A$) with a mass of $100\text{ GeV}$, produced via gluon-fusion or in association with b quarks. For this scan, we assume the $ggA$ and $bbA$ processes are only influenced by the Yukawa couplings to the top and bottom quarks and we scale the cross sections predicted for a SM-like Higgs boson of the same mass depending on these couplings. For the $ggA$ process, there is also an enhancement to the cross section for a pseudoscalar resonance compared to the equivalent process for the production of a scalar. This enhancement is taken into account when scaling the cross sections for the SM-like Higgs boson. The scans are displayed for the product of the reduced Yukawa couplings $g_{b,\,t}^{A}$ and the square root of the branching fraction for the $A\rightarrow\tau\tau$ decay process, where the former is defined as the ratio of the Yukawa coupling of $A$ to the Yukawa coupling expected for a SM-like Higgs boson. Numerical values provided in this table correspond to Figure 72 of the auxilliary material of the publication.
Scan of the likelihood function for the search for a scalar resonance ($H$) with a mass of $120\text{ GeV}$, produced via gluon-fusion or in association with b quarks. For this scan, we assume the $ggH$ and $bbH$ processes are only influenced by the Yukawa couplings to the top and bottom quarks and we scale the cross sections predicted for a SM-like Higgs boson of the same mass depending on these couplings. The scans are displayed for the product of the reduced Yukawa couplings $g_{b,\,t}^{H}$ and the square root of the branching fraction for the $H\rightarrow\tau\tau$ decay process, where the former is defined as the ratio of the Yukawa coupling of $H$ to the Yukawa coupling expected for a SM-like Higgs boson. Numerical values provided in this table correspond to Figure 73 of the auxilliary material of the publication.
Scan of the likelihood function for the search for a pseudoscalar resonance ($A$) with a mass of $120\text{ GeV}$, produced via gluon-fusion or in association with b quarks. For this scan, we assume the $ggA$ and $bbA$ processes are only influenced by the Yukawa couplings to the top and bottom quarks and we scale the cross sections predicted for a SM-like Higgs boson of the same mass depending on these couplings. For the $ggA$ process, there is also an enhancement to the cross section for a pseudoscalar resonance compared to the equivalent process for the production of a scalar. This enhancement is taken into account when scaling the cross sections for the SM-like Higgs boson. The scans are displayed for the product of the reduced Yukawa couplings $g_{b,\,t}^{A}$ and the square root of the branching fraction for the $A\rightarrow\tau\tau$ decay process, where the former is defined as the ratio of the Yukawa coupling of $A$ to the Yukawa coupling expected for a SM-like Higgs boson. Numerical values provided in this table correspond to Figure 74 of the auxilliary material of the publication.
Scan of the likelihood function for the search for a scalar resonance ($H$) with a mass of $125\text{ GeV}$, produced via gluon-fusion or in association with b quarks. For this scan, we assume the $ggH$ and $bbH$ processes are only influenced by the Yukawa couplings to the top and bottom quarks and we scale the cross sections predicted for a SM-like Higgs boson of the same mass depending on these couplings. The scans are displayed for the product of the reduced Yukawa couplings $g_{b,\,t}^{H}$ and the square root of the branching fraction for the $H\rightarrow\tau\tau$ decay process, where the former is defined as the ratio of the Yukawa coupling of $H$ to the Yukawa coupling expected for a SM-like Higgs boson. Numerical values provided in this table correspond to Figure 75 of the auxilliary material of the publication.
Scan of the likelihood function for the search for a pseudoscalar resonance ($A$) with a mass of $125\text{ GeV}$, produced via gluon-fusion or in association with b quarks. For this scan, we assume the $ggA$ and $bbA$ processes are only influenced by the Yukawa couplings to the top and bottom quarks and we scale the cross sections predicted for a SM-like Higgs boson of the same mass depending on these couplings. For the $ggA$ process, there is also an enhancement to the cross section for a pseudoscalar resonance compared to the equivalent process for the production of a scalar. This enhancement is taken into account when scaling the cross sections for the SM-like Higgs boson. The scans are displayed for the product of the reduced Yukawa couplings $g_{b,\,t}^{A}$ and the square root of the branching fraction for the $A\rightarrow\tau\tau$ decay process, where the former is defined as the ratio of the Yukawa coupling of $A$ to the Yukawa coupling expected for a SM-like Higgs boson. Numerical values provided in this table correspond to Figure 76 of the auxilliary material of the publication.
Scan of the likelihood function for the search for a scalar resonance ($H$) with a mass of $130\text{ GeV}$, produced via gluon-fusion or in association with b quarks. For this scan, we assume the $ggH$ and $bbH$ processes are only influenced by the Yukawa couplings to the top and bottom quarks and we scale the cross sections predicted for a SM-like Higgs boson of the same mass depending on these couplings. The scans are displayed for the product of the reduced Yukawa couplings $g_{b,\,t}^{H}$ and the square root of the branching fraction for the $H\rightarrow\tau\tau$ decay process, where the former is defined as the ratio of the Yukawa coupling of $H$ to the Yukawa coupling expected for a SM-like Higgs boson. Numerical values provided in this table correspond to Figure 77 of the auxilliary material of the publication.
Scan of the likelihood function for the search for a pseudoscalar resonance ($A$) with a mass of $130\text{ GeV}$, produced via gluon-fusion or in association with b quarks. For this scan, we assume the $ggA$ and $bbA$ processes are only influenced by the Yukawa couplings to the top and bottom quarks and we scale the cross sections predicted for a SM-like Higgs boson of the same mass depending on these couplings. For the $ggA$ process, there is also an enhancement to the cross section for a pseudoscalar resonance compared to the equivalent process for the production of a scalar. This enhancement is taken into account when scaling the cross sections for the SM-like Higgs boson. The scans are displayed for the product of the reduced Yukawa couplings $g_{b,\,t}^{A}$ and the square root of the branching fraction for the $A\rightarrow\tau\tau$ decay process, where the former is defined as the ratio of the Yukawa coupling of $A$ to the Yukawa coupling expected for a SM-like Higgs boson. Numerical values provided in this table correspond to Figure 78 of the auxilliary material of the publication.
Scan of the likelihood function for the search for a scalar resonance ($H$) with a mass of $140\text{ GeV}$, produced via gluon-fusion or in association with b quarks. For this scan, we assume the $ggH$ and $bbH$ processes are only influenced by the Yukawa couplings to the top and bottom quarks and we scale the cross sections predicted for a SM-like Higgs boson of the same mass depending on these couplings. The scans are displayed for the product of the reduced Yukawa couplings $g_{b,\,t}^{H}$ and the square root of the branching fraction for the $H\rightarrow\tau\tau$ decay process, where the former is defined as the ratio of the Yukawa coupling of $H$ to the Yukawa coupling expected for a SM-like Higgs boson. Numerical values provided in this table correspond to Figure 79 of the auxilliary material of the publication.
Scan of the likelihood function for the search for a pseudoscalar resonance ($A$) with a mass of $140\text{ GeV}$, produced via gluon-fusion or in association with b quarks. For this scan, we assume the $ggA$ and $bbA$ processes are only influenced by the Yukawa couplings to the top and bottom quarks and we scale the cross sections predicted for a SM-like Higgs boson of the same mass depending on these couplings. For the $ggA$ process, there is also an enhancement to the cross section for a pseudoscalar resonance compared to the equivalent process for the production of a scalar. This enhancement is taken into account when scaling the cross sections for the SM-like Higgs boson. The scans are displayed for the product of the reduced Yukawa couplings $g_{b,\,t}^{A}$ and the square root of the branching fraction for the $A\rightarrow\tau\tau$ decay process, where the former is defined as the ratio of the Yukawa coupling of $A$ to the Yukawa coupling expected for a SM-like Higgs boson. Numerical values provided in this table correspond to Figure 80 of the auxilliary material of the publication.
Scan of the likelihood function for the search for a scalar resonance ($H$) with a mass of $160\text{ GeV}$, produced via gluon-fusion or in association with b quarks. For this scan, we assume the $ggH$ and $bbH$ processes are only influenced by the Yukawa couplings to the top and bottom quarks and we scale the cross sections predicted for a SM-like Higgs boson of the same mass depending on these couplings. The scans are displayed for the product of the reduced Yukawa couplings $g_{b,\,t}^{H}$ and the square root of the branching fraction for the $H\rightarrow\tau\tau$ decay process, where the former is defined as the ratio of the Yukawa coupling of $H$ to the Yukawa coupling expected for a SM-like Higgs boson. Numerical values provided in this table correspond to Figure 81 of the auxilliary material of the publication.
Scan of the likelihood function for the search for a pseudoscalar resonance ($A$) with a mass of $160\text{ GeV}$, produced via gluon-fusion or in association with b quarks. For this scan, we assume the $ggA$ and $bbA$ processes are only influenced by the Yukawa couplings to the top and bottom quarks and we scale the cross sections predicted for a SM-like Higgs boson of the same mass depending on these couplings. For the $ggA$ process, there is also an enhancement to the cross section for a pseudoscalar resonance compared to the equivalent process for the production of a scalar. This enhancement is taken into account when scaling the cross sections for the SM-like Higgs boson. The scans are displayed for the product of the reduced Yukawa couplings $g_{b,\,t}^{A}$ and the square root of the branching fraction for the $A\rightarrow\tau\tau$ decay process, where the former is defined as the ratio of the Yukawa coupling of $A$ to the Yukawa coupling expected for a SM-like Higgs boson. Numerical values provided in this table correspond to Figure 82 of the auxilliary material of the publication.
Scan of the likelihood function for the search for a scalar resonance ($H$) with a mass of $180\text{ GeV}$, produced via gluon-fusion or in association with b quarks. For this scan, we assume the $ggH$ and $bbH$ processes are only influenced by the Yukawa couplings to the top and bottom quarks and we scale the cross sections predicted for a SM-like Higgs boson of the same mass depending on these couplings. The scans are displayed for the product of the reduced Yukawa couplings $g_{b,\,t}^{H}$ and the square root of the branching fraction for the $H\rightarrow\tau\tau$ decay process, where the former is defined as the ratio of the Yukawa coupling of $H$ to the Yukawa coupling expected for a SM-like Higgs boson. Numerical values provided in this table correspond to Figure 83 of the auxilliary material of the publication.
Scan of the likelihood function for the search for a pseudoscalar resonance ($A$) with a mass of $180\text{ GeV}$, produced via gluon-fusion or in association with b quarks. For this scan, we assume the $ggA$ and $bbA$ processes are only influenced by the Yukawa couplings to the top and bottom quarks and we scale the cross sections predicted for a SM-like Higgs boson of the same mass depending on these couplings. For the $ggA$ process, there is also an enhancement to the cross section for a pseudoscalar resonance compared to the equivalent process for the production of a scalar. This enhancement is taken into account when scaling the cross sections for the SM-like Higgs boson. The scans are displayed for the product of the reduced Yukawa couplings $g_{b,\,t}^{A}$ and the square root of the branching fraction for the $A\rightarrow\tau\tau$ decay process, where the former is defined as the ratio of the Yukawa coupling of $A$ to the Yukawa coupling expected for a SM-like Higgs boson. Numerical values provided in this table correspond to Figure 84 of the auxilliary material of the publication.
Scan of the likelihood function for the search for a scalar resonance ($H$) with a mass of $200\text{ GeV}$, produced via gluon-fusion or in association with b quarks. For this scan, we assume the $ggH$ and $bbH$ processes are only influenced by the Yukawa couplings to the top and bottom quarks and we scale the cross sections predicted for a SM-like Higgs boson of the same mass depending on these couplings. The scans are displayed for the product of the reduced Yukawa couplings $g_{b,\,t}^{H}$ and the square root of the branching fraction for the $H\rightarrow\tau\tau$ decay process, where the former is defined as the ratio of the Yukawa coupling of $H$ to the Yukawa coupling expected for a SM-like Higgs boson. Numerical values provided in this table correspond to Figure 85 of the auxilliary material of the publication.
Scan of the likelihood function for the search for a pseudoscalar resonance ($A$) with a mass of $200\text{ GeV}$, produced via gluon-fusion or in association with b quarks. For this scan, we assume the $ggA$ and $bbA$ processes are only influenced by the Yukawa couplings to the top and bottom quarks and we scale the cross sections predicted for a SM-like Higgs boson of the same mass depending on these couplings. For the $ggA$ process, there is also an enhancement to the cross section for a pseudoscalar resonance compared to the equivalent process for the production of a scalar. This enhancement is taken into account when scaling the cross sections for the SM-like Higgs boson. The scans are displayed for the product of the reduced Yukawa couplings $g_{b,\,t}^{A}$ and the square root of the branching fraction for the $A\rightarrow\tau\tau$ decay process, where the former is defined as the ratio of the Yukawa coupling of $A$ to the Yukawa coupling expected for a SM-like Higgs boson. Numerical values provided in this table correspond to Figure 86 of the auxilliary material of the publication.
Expected and observed $95\%\text{ CL}$ upper limits on $g_U$ in the VLQ BM 1 scenario in a mass range of $1\leq m_U\leq 5\text{ TeV}$. The central $68$ and $95\%$ intervals are given in addition to the expected median value. Numerical values provided in this table correspond to Figure 12a of the publication.
Expected and observed $95\%\text{ CL}$ upper limits on $g_U$ in the VLQ BM 2 scenario in a mass range of $1\leq m_U\leq 5\text{ TeV}$. The central $68$ and $95\%$ intervals are given in addition to the expected median value. Numerical values provided in this table correspond to Figure 12b of the publication.
Expected and observed $95\%\text{ CL}$ upper limits on $g_U$ in the VLQ BM 3 scenario in a mass range of $1\leq m_U\leq 5\text{ TeV}$. The central $68$ and $95\%$ intervals are given in addition to the expected median value. Numerical values provided in this table correspond to Figure 92 of the auxilliary material of the publication.
Scan of the likelihood function for the search for a resonance ($\phi$) with a mass of $60\text{ GeV}$, produced via gluon-fusion ($gg\phi$) or in association with b quarks ($bb\phi$). The scan is performed in the $gg\phi$ and $bb\phi$ production cross-sections, both multiplied with the branching fraction for the $\phi\rightarrow\tau\tau$ decay process. Numerical values provided in this table correspond to Figure 11a of the publication.
Scan of the likelihood function for the search for a resonance ($\phi$) with a mass of $80\text{ GeV}$, produced via gluon-fusion ($gg\phi$) or in association with b quarks ($bb\phi$). The scan is performed in the $gg\phi$ and $bb\phi$ production cross-sections, both multiplied with the branching fraction for the $\phi\rightarrow\tau\tau$ decay process. Numerical values provided in this table correspond to Figure 41 of the auxilliary material of the publication.
Scan of the likelihood function for the search for a resonance ($\phi$) with a mass of $95\text{ GeV}$, produced via gluon-fusion ($gg\phi$) or in association with b quarks ($bb\phi$). The scan is performed in the $gg\phi$ and $bb\phi$ production cross-sections, both multiplied with the branching fraction for the $\phi\rightarrow\tau\tau$ decay process. Numerical values provided in this table correspond to Figure 42 of the auxilliary material of the publication.
Scan of the likelihood function for the search for a resonance ($\phi$) with a mass of $100\text{ GeV}$, produced via gluon-fusion ($gg\phi$) or in association with b quarks ($bb\phi$). The scan is performed in the $gg\phi$ and $bb\phi$ production cross-sections, both multiplied with the branching fraction for the $\phi\rightarrow\tau\tau$ decay process. Numerical values provided in this table correspond to Figure 11b of the publication.
Scan of the likelihood function for the search for a resonance ($\phi$) with a mass of $120\text{ GeV}$, produced via gluon-fusion ($gg\phi$) or in association with b quarks ($bb\phi$). The scan is performed in the $gg\phi$ and $bb\phi$ production cross-sections, both multiplied with the branching fraction for the $\phi\rightarrow\tau\tau$ decay process. Numerical values provided in this table correspond to Figure 43 of the auxilliary material of the publication.
Scan of the likelihood function for the search for a resonance ($\phi$) with a mass of $125\text{ GeV}$, produced via gluon-fusion ($gg\phi$) or in association with b quarks ($bb\phi$). The scan is performed in the $gg\phi$ and $bb\phi$ production cross-sections, both multiplied with the branching fraction for the $\phi\rightarrow\tau\tau$ decay process. Numerical values provided in this table correspond to Figure 11c of the publication.
Scan of the likelihood function for the search for a resonance ($\phi$) with a mass of $130\text{ GeV}$, produced via gluon-fusion ($gg\phi$) or in association with b quarks ($bb\phi$). The scan is performed in the $gg\phi$ and $bb\phi$ production cross-sections, both multiplied with the branching fraction for the $\phi\rightarrow\tau\tau$ decay process. Numerical values provided in this table correspond to Figure 44 of the auxilliary material of the publication.
Scan of the likelihood function for the search for a resonance ($\phi$) with a mass of $140\text{ GeV}$, produced via gluon-fusion ($gg\phi$) or in association with b quarks ($bb\phi$). The scan is performed in the $gg\phi$ and $bb\phi$ production cross-sections, both multiplied with the branching fraction for the $\phi\rightarrow\tau\tau$ decay process. Numerical values provided in this table correspond to Figure 45 of the auxilliary material of the publication.
Scan of the likelihood function for the search for a resonance ($\phi$) with a mass of $160\text{ GeV}$, produced via gluon-fusion ($gg\phi$) or in association with b quarks ($bb\phi$). The scan is performed in the $gg\phi$ and $bb\phi$ production cross-sections, both multiplied with the branching fraction for the $\phi\rightarrow\tau\tau$ decay process. Numerical values provided in this table correspond to Figure 11d of the publication.
Scan of the likelihood function for the search for a resonance ($\phi$) with a mass of $180\text{ GeV}$, produced via gluon-fusion ($gg\phi$) or in association with b quarks ($bb\phi$). The scan is performed in the $gg\phi$ and $bb\phi$ production cross-sections, both multiplied with the branching fraction for the $\phi\rightarrow\tau\tau$ decay process. Numerical values provided in this table correspond to Figure 46 of the auxilliary material of the publication.
Scan of the likelihood function for the search for a resonance ($\phi$) with a mass of $200\text{ GeV}$, produced via gluon-fusion ($gg\phi$) or in association with b quarks ($bb\phi$). The scan is performed in the $gg\phi$ and $bb\phi$ production cross-sections, both multiplied with the branching fraction for the $\phi\rightarrow\tau\tau$ decay process. Numerical values provided in this table correspond to Figure 47 of the auxilliary material of the publication.
Scan of the likelihood function for the search for a resonance ($\phi$) with a mass of $250\text{ GeV}$, produced via gluon-fusion ($gg\phi$) or in association with b quarks ($bb\phi$). The scan is performed in the $gg\phi$ and $bb\phi$ production cross-sections, both multiplied with the branching fraction for the $\phi\rightarrow\tau\tau$ decay process. Numerical values provided in this table correspond to Figure 11e of the publication.
Scan of the likelihood function for the search for a resonance ($\phi$) with a mass of $300\text{ GeV}$, produced via gluon-fusion ($gg\phi$) or in association with b quarks ($bb\phi$). The scan is performed in the $gg\phi$ and $bb\phi$ production cross-sections, both multiplied with the branching fraction for the $\phi\rightarrow\tau\tau$ decay process. Numerical values provided in this table correspond to Figure 48 of the auxilliary material of the publication.
Scan of the likelihood function for the search for a resonance ($\phi$) with a mass of $350\text{ GeV}$, produced via gluon-fusion ($gg\phi$) or in association with b quarks ($bb\phi$). The scan is performed in the $gg\phi$ and $bb\phi$ production cross-sections, both multiplied with the branching fraction for the $\phi\rightarrow\tau\tau$ decay process. Numerical values provided in this table correspond to Figure 49 of the auxilliary material of the publication.
Scan of the likelihood function for the search for a resonance ($\phi$) with a mass of $400\text{ GeV}$, produced via gluon-fusion ($gg\phi$) or in association with b quarks ($bb\phi$). The scan is performed in the $gg\phi$ and $bb\phi$ production cross-sections, both multiplied with the branching fraction for the $\phi\rightarrow\tau\tau$ decay process. Numerical values provided in this table correspond to Figure 50 of the auxilliary material of the publication.
Scan of the likelihood function for the search for a resonance ($\phi$) with a mass of $450\text{ GeV}$, produced via gluon-fusion ($gg\phi$) or in association with b quarks ($bb\phi$). The scan is performed in the $gg\phi$ and $bb\phi$ production cross-sections, both multiplied with the branching fraction for the $\phi\rightarrow\tau\tau$ decay process. Numerical values provided in this table correspond to Figure 51 of the auxilliary material of the publication.
Scan of the likelihood function for the search for a resonance ($\phi$) with a mass of $500\text{ GeV}$, produced via gluon-fusion ($gg\phi$) or in association with b quarks ($bb\phi$). The scan is performed in the $gg\phi$ and $bb\phi$ production cross-sections, both multiplied with the branching fraction for the $\phi\rightarrow\tau\tau$ decay process. Numerical values provided in this table correspond to Figure 11f of the publication.
Scan of the likelihood function for the search for a resonance ($\phi$) with a mass of $600\text{ GeV}$, produced via gluon-fusion ($gg\phi$) or in association with b quarks ($bb\phi$). The scan is performed in the $gg\phi$ and $bb\phi$ production cross-sections, both multiplied with the branching fraction for the $\phi\rightarrow\tau\tau$ decay process. Numerical values provided in this table correspond to Figure 52 of the auxilliary material of the publication.
Scan of the likelihood function for the search for a resonance ($\phi$) with a mass of $700\text{ GeV}$, produced via gluon-fusion ($gg\phi$) or in association with b quarks ($bb\phi$). The scan is performed in the $gg\phi$ and $bb\phi$ production cross-sections, both multiplied with the branching fraction for the $\phi\rightarrow\tau\tau$ decay process. Numerical values provided in this table correspond to Figure 53 of the auxilliary material of the publication.
Scan of the likelihood function for the search for a resonance ($\phi$) with a mass of $800\text{ GeV}$, produced via gluon-fusion ($gg\phi$) or in association with b quarks ($bb\phi$). The scan is performed in the $gg\phi$ and $bb\phi$ production cross-sections, both multiplied with the branching fraction for the $\phi\rightarrow\tau\tau$ decay process. Numerical values provided in this table correspond to Figure 54 of the auxilliary material of the publication.
Scan of the likelihood function for the search for a resonance ($\phi$) with a mass of $900\text{ GeV}$, produced via gluon-fusion ($gg\phi$) or in association with b quarks ($bb\phi$). The scan is performed in the $gg\phi$ and $bb\phi$ production cross-sections, both multiplied with the branching fraction for the $\phi\rightarrow\tau\tau$ decay process. Numerical values provided in this table correspond to Figure 55 of the auxilliary material of the publication.
Scan of the likelihood function for the search for a resonance ($\phi$) with a mass of $1000\text{ GeV}$, produced via gluon-fusion ($gg\phi$) or in association with b quarks ($bb\phi$). The scan is performed in the $gg\phi$ and $bb\phi$ production cross-sections, both multiplied with the branching fraction for the $\phi\rightarrow\tau\tau$ decay process. Numerical values provided in this table correspond to Figure 11g of the publication.
Scan of the likelihood function for the search for a resonance ($\phi$) with a mass of $1200\text{ GeV}$, produced via gluon-fusion ($gg\phi$) or in association with b quarks ($bb\phi$). The scan is performed in the $gg\phi$ and $bb\phi$ production cross-sections, both multiplied with the branching fraction for the $\phi\rightarrow\tau\tau$ decay process. Numerical values provided in this table correspond to Figure 11h of the publication.
Scan of the likelihood function for the search for a resonance ($\phi$) with a mass of $1400\text{ GeV}$, produced via gluon-fusion ($gg\phi$) or in association with b quarks ($bb\phi$). The scan is performed in the $gg\phi$ and $bb\phi$ production cross-sections, both multiplied with the branching fraction for the $\phi\rightarrow\tau\tau$ decay process. Numerical values provided in this table correspond to Figure 56 of the auxilliary material of the publication.
Scan of the likelihood function for the search for a resonance ($\phi$) with a mass of $1600\text{ GeV}$, produced via gluon-fusion ($gg\phi$) or in association with b quarks ($bb\phi$). The scan is performed in the $gg\phi$ and $bb\phi$ production cross-sections, both multiplied with the branching fraction for the $\phi\rightarrow\tau\tau$ decay process. Numerical values provided in this table correspond to Figure 57 of the auxilliary material of the publication.
Scan of the likelihood function for the search for a resonance ($\phi$) with a mass of $1800\text{ GeV}$, produced via gluon-fusion ($gg\phi$) or in association with b quarks ($bb\phi$). The scan is performed in the $gg\phi$ and $bb\phi$ production cross-sections, both multiplied with the branching fraction for the $\phi\rightarrow\tau\tau$ decay process. Numerical values provided in this table correspond to Figure 58 of the auxilliary material of the publication.
Scan of the likelihood function for the search for a resonance ($\phi$) with a mass of $2000\text{ GeV}$, produced via gluon-fusion ($gg\phi$) or in association with b quarks ($bb\phi$). The scan is performed in the $gg\phi$ and $bb\phi$ production cross-sections, both multiplied with the branching fraction for the $\phi\rightarrow\tau\tau$ decay process. Numerical values provided in this table correspond to Figure 59 of the auxilliary material of the publication.
Scan of the likelihood function for the search for a resonance ($\phi$) with a mass of $2300\text{ GeV}$, produced via gluon-fusion ($gg\phi$) or in association with b quarks ($bb\phi$). The scan is performed in the $gg\phi$ and $bb\phi$ production cross-sections, both multiplied with the branching fraction for the $\phi\rightarrow\tau\tau$ decay process. Numerical values provided in this table correspond to Figure 60 of the auxilliary material of the publication.
Scan of the likelihood function for the search for a resonance ($\phi$) with a mass of $2600\text{ GeV}$, produced via gluon-fusion ($gg\phi$) or in association with b quarks ($bb\phi$). The scan is performed in the $gg\phi$ and $bb\phi$ production cross-sections, both multiplied with the branching fraction for the $\phi\rightarrow\tau\tau$ decay process. Numerical values provided in this table correspond to Figure 61 of the auxilliary material of the publication.
Scan of the likelihood function for the search for a resonance ($\phi$) with a mass of $2900\text{ GeV}$, produced via gluon-fusion ($gg\phi$) or in association with b quarks ($bb\phi$). The scan is performed in the $gg\phi$ and $bb\phi$ production cross-sections, both multiplied with the branching fraction for the $\phi\rightarrow\tau\tau$ decay process. Numerical values provided in this table correspond to Figure 62 of the auxilliary material of the publication.
Scan of the likelihood function for the search for a resonance ($\phi$) with a mass of $3200\text{ GeV}$, produced via gluon-fusion ($gg\phi$) or in association with b quarks ($bb\phi$). The scan is performed in the $gg\phi$ and $bb\phi$ production cross-sections, both multiplied with the branching fraction for the $\phi\rightarrow\tau\tau$ decay process. Numerical values provided in this table correspond to Figure 63 of the auxilliary material of the publication.
Scan of the likelihood function for the search for a resonance ($\phi$) with a mass of $3500\text{ GeV}$, produced via gluon-fusion ($gg\phi$) or in association with b quarks ($bb\phi$). The scan is performed in the $gg\phi$ and $bb\phi$ production cross-sections, both multiplied with the branching fraction for the $\phi\rightarrow\tau\tau$ decay process. Numerical values provided in this table correspond to Figure 11i of the publication.
Scan of the likelihood function for the search for a resonance ($\phi$) with a mass of $60\text{ GeV}$, produced via gluon-fusion ($gg\phi$) or in association with b quarks ($bb\phi$). The scan is performed in the $gg\phi$ and $bb\phi$ production cross-sections, both multiplied with the branching fraction for the $\phi\rightarrow\tau\tau$ decay process. Numerical values provided in this table correspond to Figure 11a of the publication, but evaluated on Asimov pseudodata.
Scan of the likelihood function for the search for a resonance ($\phi$) with a mass of $80\text{ GeV}$, produced via gluon-fusion ($gg\phi$) or in association with b quarks ($bb\phi$). The scan is performed in the $gg\phi$ and $bb\phi$ production cross-sections, both multiplied with the branching fraction for the $\phi\rightarrow\tau\tau$ decay process. Numerical values provided in this table correspond to Figure 41 of the auxilliary material of the publication, but evaluated on Asimov pseudodata.
Scan of the likelihood function for the search for a resonance ($\phi$) with a mass of $95\text{ GeV}$, produced via gluon-fusion ($gg\phi$) or in association with b quarks ($bb\phi$). The scan is performed in the $gg\phi$ and $bb\phi$ production cross-sections, both multiplied with the branching fraction for the $\phi\rightarrow\tau\tau$ decay process. Numerical values provided in this table correspond to Figure 42 of the auxilliary material of the publication, but evaluated on Asimov pseudodata.
Scan of the likelihood function for the search for a resonance ($\phi$) with a mass of $100\text{ GeV}$, produced via gluon-fusion ($gg\phi$) or in association with b quarks ($bb\phi$). The scan is performed in the $gg\phi$ and $bb\phi$ production cross-sections, both multiplied with the branching fraction for the $\phi\rightarrow\tau\tau$ decay process. Numerical values provided in this table correspond to Figure 11b of the publication, but evaluated on Asimov pseudodata.
Scan of the likelihood function for the search for a resonance ($\phi$) with a mass of $120\text{ GeV}$, produced via gluon-fusion ($gg\phi$) or in association with b quarks ($bb\phi$). The scan is performed in the $gg\phi$ and $bb\phi$ production cross-sections, both multiplied with the branching fraction for the $\phi\rightarrow\tau\tau$ decay process. Numerical values provided in this table correspond to Figure 43 of the auxilliary material of the publication, but evaluated on Asimov pseudodata.
Scan of the likelihood function for the search for a resonance ($\phi$) with a mass of $125\text{ GeV}$, produced via gluon-fusion ($gg\phi$) or in association with b quarks ($bb\phi$). The scan is performed in the $gg\phi$ and $bb\phi$ production cross-sections, both multiplied with the branching fraction for the $\phi\rightarrow\tau\tau$ decay process. Numerical values provided in this table correspond to Figure 11c of the publication, but evaluated on Asimov pseudodata.
Scan of the likelihood function for the search for a resonance ($\phi$) with a mass of $130\text{ GeV}$, produced via gluon-fusion ($gg\phi$) or in association with b quarks ($bb\phi$). The scan is performed in the $gg\phi$ and $bb\phi$ production cross-sections, both multiplied with the branching fraction for the $\phi\rightarrow\tau\tau$ decay process. Numerical values provided in this table correspond to Figure 44 of the auxilliary material of the publication, but evaluated on Asimov pseudodata.
Scan of the likelihood function for the search for a resonance ($\phi$) with a mass of $140\text{ GeV}$, produced via gluon-fusion ($gg\phi$) or in association with b quarks ($bb\phi$). The scan is performed in the $gg\phi$ and $bb\phi$ production cross-sections, both multiplied with the branching fraction for the $\phi\rightarrow\tau\tau$ decay process. Numerical values provided in this table correspond to Figure 45 of the auxilliary material of the publication, but evaluated on Asimov pseudodata.
Scan of the likelihood function for the search for a resonance ($\phi$) with a mass of $160\text{ GeV}$, produced via gluon-fusion ($gg\phi$) or in association with b quarks ($bb\phi$). The scan is performed in the $gg\phi$ and $bb\phi$ production cross-sections, both multiplied with the branching fraction for the $\phi\rightarrow\tau\tau$ decay process. Numerical values provided in this table correspond to Figure 11d of the publication, but evaluated on Asimov pseudodata.
Scan of the likelihood function for the search for a resonance ($\phi$) with a mass of $180\text{ GeV}$, produced via gluon-fusion ($gg\phi$) or in association with b quarks ($bb\phi$). The scan is performed in the $gg\phi$ and $bb\phi$ production cross-sections, both multiplied with the branching fraction for the $\phi\rightarrow\tau\tau$ decay process. Numerical values provided in this table correspond to Figure 46 of the auxilliary material of the publication, but evaluated on Asimov pseudodata.
Scan of the likelihood function for the search for a resonance ($\phi$) with a mass of $200\text{ GeV}$, produced via gluon-fusion ($gg\phi$) or in association with b quarks ($bb\phi$). The scan is performed in the $gg\phi$ and $bb\phi$ production cross-sections, both multiplied with the branching fraction for the $\phi\rightarrow\tau\tau$ decay process. Numerical values provided in this table correspond to Figure 47 of the auxilliary material of the publication, but evaluated on Asimov pseudodata.
Scan of the likelihood function for the search for a resonance ($\phi$) with a mass of $250\text{ GeV}$, produced via gluon-fusion ($gg\phi$) or in association with b quarks ($bb\phi$). The scan is performed in the $gg\phi$ and $bb\phi$ production cross-sections, both multiplied with the branching fraction for the $\phi\rightarrow\tau\tau$ decay process. Numerical values provided in this table correspond to Figure 11e of the publication, but evaluated on Asimov pseudodata.
Scan of the likelihood function for the search for a resonance ($\phi$) with a mass of $300\text{ GeV}$, produced via gluon-fusion ($gg\phi$) or in association with b quarks ($bb\phi$). The scan is performed in the $gg\phi$ and $bb\phi$ production cross-sections, both multiplied with the branching fraction for the $\phi\rightarrow\tau\tau$ decay process. Numerical values provided in this table correspond to Figure 48 of the auxilliary material of the publication, but evaluated on Asimov pseudodata.
Scan of the likelihood function for the search for a resonance ($\phi$) with a mass of $350\text{ GeV}$, produced via gluon-fusion ($gg\phi$) or in association with b quarks ($bb\phi$). The scan is performed in the $gg\phi$ and $bb\phi$ production cross-sections, both multiplied with the branching fraction for the $\phi\rightarrow\tau\tau$ decay process. Numerical values provided in this table correspond to Figure 49 of the auxilliary material of the publication, but evaluated on Asimov pseudodata.
Scan of the likelihood function for the search for a resonance ($\phi$) with a mass of $400\text{ GeV}$, produced via gluon-fusion ($gg\phi$) or in association with b quarks ($bb\phi$). The scan is performed in the $gg\phi$ and $bb\phi$ production cross-sections, both multiplied with the branching fraction for the $\phi\rightarrow\tau\tau$ decay process. Numerical values provided in this table correspond to Figure 50 of the auxilliary material of the publication, but evaluated on Asimov pseudodata.
Scan of the likelihood function for the search for a resonance ($\phi$) with a mass of $450\text{ GeV}$, produced via gluon-fusion ($gg\phi$) or in association with b quarks ($bb\phi$). The scan is performed in the $gg\phi$ and $bb\phi$ production cross-sections, both multiplied with the branching fraction for the $\phi\rightarrow\tau\tau$ decay process. Numerical values provided in this table correspond to Figure 51 of the auxilliary material of the publication, but evaluated on Asimov pseudodata.
Scan of the likelihood function for the search for a resonance ($\phi$) with a mass of $500\text{ GeV}$, produced via gluon-fusion ($gg\phi$) or in association with b quarks ($bb\phi$). The scan is performed in the $gg\phi$ and $bb\phi$ production cross-sections, both multiplied with the branching fraction for the $\phi\rightarrow\tau\tau$ decay process. Numerical values provided in this table correspond to Figure 11f of the publication, but evaluated on Asimov pseudodata.
Scan of the likelihood function for the search for a resonance ($\phi$) with a mass of $600\text{ GeV}$, produced via gluon-fusion ($gg\phi$) or in association with b quarks ($bb\phi$). The scan is performed in the $gg\phi$ and $bb\phi$ production cross-sections, both multiplied with the branching fraction for the $\phi\rightarrow\tau\tau$ decay process. Numerical values provided in this table correspond to Figure 52 of the auxilliary material of the publication, but evaluated on Asimov pseudodata.
Scan of the likelihood function for the search for a resonance ($\phi$) with a mass of $700\text{ GeV}$, produced via gluon-fusion ($gg\phi$) or in association with b quarks ($bb\phi$). The scan is performed in the $gg\phi$ and $bb\phi$ production cross-sections, both multiplied with the branching fraction for the $\phi\rightarrow\tau\tau$ decay process. Numerical values provided in this table correspond to Figure 53 of the auxilliary material of the publication, but evaluated on Asimov pseudodata.
Scan of the likelihood function for the search for a resonance ($\phi$) with a mass of $800\text{ GeV}$, produced via gluon-fusion ($gg\phi$) or in association with b quarks ($bb\phi$). The scan is performed in the $gg\phi$ and $bb\phi$ production cross-sections, both multiplied with the branching fraction for the $\phi\rightarrow\tau\tau$ decay process. Numerical values provided in this table correspond to Figure 54 of the auxilliary material of the publication, but evaluated on Asimov pseudodata.
Scan of the likelihood function for the search for a resonance ($\phi$) with a mass of $900\text{ GeV}$, produced via gluon-fusion ($gg\phi$) or in association with b quarks ($bb\phi$). The scan is performed in the $gg\phi$ and $bb\phi$ production cross-sections, both multiplied with the branching fraction for the $\phi\rightarrow\tau\tau$ decay process. Numerical values provided in this table correspond to Figure 55 of the auxilliary material of the publication, but evaluated on Asimov pseudodata.
Scan of the likelihood function for the search for a resonance ($\phi$) with a mass of $1000\text{ GeV}$, produced via gluon-fusion ($gg\phi$) or in association with b quarks ($bb\phi$). The scan is performed in the $gg\phi$ and $bb\phi$ production cross-sections, both multiplied with the branching fraction for the $\phi\rightarrow\tau\tau$ decay process. Numerical values provided in this table correspond to Figure 11g of the publication, but evaluated on Asimov pseudodata.
Scan of the likelihood function for the search for a resonance ($\phi$) with a mass of $1200\text{ GeV}$, produced via gluon-fusion ($gg\phi$) or in association with b quarks ($bb\phi$). The scan is performed in the $gg\phi$ and $bb\phi$ production cross-sections, both multiplied with the branching fraction for the $\phi\rightarrow\tau\tau$ decay process. Numerical values provided in this table correspond to Figure 11h of the publication, but evaluated on Asimov pseudodata.
Scan of the likelihood function for the search for a resonance ($\phi$) with a mass of $1400\text{ GeV}$, produced via gluon-fusion ($gg\phi$) or in association with b quarks ($bb\phi$). The scan is performed in the $gg\phi$ and $bb\phi$ production cross-sections, both multiplied with the branching fraction for the $\phi\rightarrow\tau\tau$ decay process. Numerical values provided in this table correspond to Figure 56 of the auxilliary material of the publication, but evaluated on Asimov pseudodata.
Scan of the likelihood function for the search for a resonance ($\phi$) with a mass of $1600\text{ GeV}$, produced via gluon-fusion ($gg\phi$) or in association with b quarks ($bb\phi$). The scan is performed in the $gg\phi$ and $bb\phi$ production cross-sections, both multiplied with the branching fraction for the $\phi\rightarrow\tau\tau$ decay process. Numerical values provided in this table correspond to Figure 57 of the auxilliary material of the publication, but evaluated on Asimov pseudodata.
Scan of the likelihood function for the search for a resonance ($\phi$) with a mass of $1800\text{ GeV}$, produced via gluon-fusion ($gg\phi$) or in association with b quarks ($bb\phi$). The scan is performed in the $gg\phi$ and $bb\phi$ production cross-sections, both multiplied with the branching fraction for the $\phi\rightarrow\tau\tau$ decay process. Numerical values provided in this table correspond to Figure 58 of the auxilliary material of the publication, but evaluated on Asimov pseudodata.
Scan of the likelihood function for the search for a resonance ($\phi$) with a mass of $2000\text{ GeV}$, produced via gluon-fusion ($gg\phi$) or in association with b quarks ($bb\phi$). The scan is performed in the $gg\phi$ and $bb\phi$ production cross-sections, both multiplied with the branching fraction for the $\phi\rightarrow\tau\tau$ decay process. Numerical values provided in this table correspond to Figure 59 of the auxilliary material of the publication, but evaluated on Asimov pseudodata.
Scan of the likelihood function for the search for a resonance ($\phi$) with a mass of $2300\text{ GeV}$, produced via gluon-fusion ($gg\phi$) or in association with b quarks ($bb\phi$). The scan is performed in the $gg\phi$ and $bb\phi$ production cross-sections, both multiplied with the branching fraction for the $\phi\rightarrow\tau\tau$ decay process. Numerical values provided in this table correspond to Figure 60 of the auxilliary material of the publication, but evaluated on Asimov pseudodata.
Scan of the likelihood function for the search for a resonance ($\phi$) with a mass of $2600\text{ GeV}$, produced via gluon-fusion ($gg\phi$) or in association with b quarks ($bb\phi$). The scan is performed in the $gg\phi$ and $bb\phi$ production cross-sections, both multiplied with the branching fraction for the $\phi\rightarrow\tau\tau$ decay process. Numerical values provided in this table correspond to Figure 61 of the auxilliary material of the publication, but evaluated on Asimov pseudodata.
Scan of the likelihood function for the search for a resonance ($\phi$) with a mass of $2900\text{ GeV}$, produced via gluon-fusion ($gg\phi$) or in association with b quarks ($bb\phi$). The scan is performed in the $gg\phi$ and $bb\phi$ production cross-sections, both multiplied with the branching fraction for the $\phi\rightarrow\tau\tau$ decay process. Numerical values provided in this table correspond to Figure 62 of the auxilliary material of the publication, but evaluated on Asimov pseudodata.
Scan of the likelihood function for the search for a resonance ($\phi$) with a mass of $3200\text{ GeV}$, produced via gluon-fusion ($gg\phi$) or in association with b quarks ($bb\phi$). The scan is performed in the $gg\phi$ and $bb\phi$ production cross-sections, both multiplied with the branching fraction for the $\phi\rightarrow\tau\tau$ decay process. Numerical values provided in this table correspond to Figure 63 of the auxilliary material of the publication, but evaluated on Asimov pseudodata.
Scan of the likelihood function for the search for a resonance ($\phi$) with a mass of $3500\text{ GeV}$, produced via gluon-fusion ($gg\phi$) or in association with b quarks ($bb\phi$). The scan is performed in the $gg\phi$ and $bb\phi$ production cross-sections, both multiplied with the branching fraction for the $\phi\rightarrow\tau\tau$ decay process. Numerical values provided in this table correspond to Figure 11i of the publication, but evaluated on Asimov pseudodata.
Scan of the likelihood function for the search for a vector leptoquark with $m_{U} = 1\text{ TeV}$, in the VLQ BM 1 scenario. The scan is performed in the $g_{U}$ coupling, for three different categorization strategies, combining only "No b tag" categories, only "b tag" categories, and all categories. Numerical values provided in this table correspond to Figure 99 of the auxilliary material of the publication.
Scan of the likelihood function for the search for a vector leptoquark with $m_{U} = 2\text{ TeV}$, in the VLQ BM 1 scenario. The scan is performed in the $g_{U}$ coupling, for three different categorization strategies, combining only "No b tag" categories, only "b tag" categories, and all categories. Numerical values provided in this table correspond to Figure 100 of the auxilliary material of the publication.
Scan of the likelihood function for the search for a vector leptoquark with $m_{U} = 3\text{ TeV}$, in the VLQ BM 1 scenario. The scan is performed in the $g_{U}$ coupling, for three different categorization strategies, combining only "No b tag" categories, only "b tag" categories, and all categories. Numerical values provided in this table correspond to Figure 101 of the auxilliary material of the publication.
Scan of the likelihood function for the search for a vector leptoquark with $m_{U} = 4\text{ TeV}$, in the VLQ BM 1 scenario. The scan is performed in the $g_{U}$ coupling, for three different categorization strategies, combining only "No b tag" categories, only "b tag" categories, and all categories. Numerical values provided in this table correspond to Figure 102 of the auxilliary material of the publication.
Scan of the likelihood function for the search for a vector leptoquark with $m_{U} = 5\text{ TeV}$, in the VLQ BM 1 scenario. The scan is performed in the $g_{U}$ coupling, for three different categorization strategies, combining only "No b tag" categories, only "b tag" categories, and all categories. Numerical values provided in this table correspond to Figure 103 of the auxilliary material of the publication.
Scan of the likelihood function for the search for a vector leptoquark with $m_{U} = 1\text{ TeV}$, in the VLQ BM 2 scenario. The scan is performed in the $g_{U}$ coupling, for three different categorization strategies, combining only "No b tag" categories, only "b tag" categories, and all categories. Numerical values provided in this table correspond to Figure 104 of the auxilliary material of the publication.
Scan of the likelihood function for the search for a vector leptoquark with $m_{U} = 2\text{ TeV}$, in the VLQ BM 2 scenario. The scan is performed in the $g_{U}$ coupling, for three different categorization strategies, combining only "No b tag" categories, only "b tag" categories, and all categories. Numerical values provided in this table correspond to Figure 105 of the auxilliary material of the publication.
Scan of the likelihood function for the search for a vector leptoquark with $m_{U} = 3\text{ TeV}$, in the VLQ BM 2 scenario. The scan is performed in the $g_{U}$ coupling, for three different categorization strategies, combining only "No b tag" categories, only "b tag" categories, and all categories. Numerical values provided in this table correspond to Figure 106 of the auxilliary material of the publication.
Scan of the likelihood function for the search for a vector leptoquark with $m_{U} = 4\text{ TeV}$, in the VLQ BM 2 scenario. The scan is performed in the $g_{U}$ coupling, for three different categorization strategies, combining only "No b tag" categories, only "b tag" categories, and all categories. Numerical values provided in this table correspond to Figure 107 of the auxilliary material of the publication.
Scan of the likelihood function for the search for a vector leptoquark with $m_{U} = 5\text{ TeV}$, in the VLQ BM 2 scenario. The scan is performed in the $g_{U}$ coupling, for three different categorization strategies, combining only "No b tag" categories, only "b tag" categories, and all categories. Numerical values provided in this table correspond to Figure 108 of the auxilliary material of the publication.
Scan of the likelihood function for the search for a vector leptoquark with $m_{U} = 1\text{ TeV}$, in the VLQ BM 3 scenario. The scan is performed in the $g_{U}$ coupling, for three different categorization strategies, combining only "No b tag" categories, only "b tag" categories, and all categories. Numerical values provided in this table correspond to Figure 109 of the auxilliary material of the publication.
Scan of the likelihood function for the search for a vector leptoquark with $m_{U} = 2\text{ TeV}$, in the VLQ BM 3 scenario. The scan is performed in the $g_{U}$ coupling, for three different categorization strategies, combining only "No b tag" categories, only "b tag" categories, and all categories. Numerical values provided in this table correspond to Figure 110 of the auxilliary material of the publication.
Scan of the likelihood function for the search for a vector leptoquark with $m_{U} = 3\text{ TeV}$, in the VLQ BM 3 scenario. The scan is performed in the $g_{U}$ coupling, for three different categorization strategies, combining only "No b tag" categories, only "b tag" categories, and all categories. Numerical values provided in this table correspond to Figure 111 of the auxilliary material of the publication.
Scan of the likelihood function for the search for a vector leptoquark with $m_{U} = 4\text{ TeV}$, in the VLQ BM 3 scenario. The scan is performed in the $g_{U}$ coupling, for three different categorization strategies, combining only "No b tag" categories, only "b tag" categories, and all categories. Numerical values provided in this table correspond to Figure 112 of the auxilliary material of the publication.
Scan of the likelihood function for the search for a vector leptoquark with $m_{U} = 5\text{ TeV}$, in the VLQ BM 3 scenario. The scan is performed in the $g_{U}$ coupling, for three different categorization strategies, combining only "No b tag" categories, only "b tag" categories, and all categories. Numerical values provided in this table correspond to Figure 113 of the auxilliary material of the publication.
Observed $95\%\text{ CL}$ exclusion contour in the MSSM $M_{h}^{125}$ scenario. Numerical values provided in this table correspond to the observed contour of Figure 13a of the publication.
Expected $95\%\text{ CL}$ exclusion contour in the MSSM $M_{h}^{125}$ scenario, evaluated at the median of the test-statistic distribution $f(\tilde{q}_\mu|\text{SM})$ under SM hypothesis. Numerical values provided in this table correspond to the expected median contour of Figure 13a of the publication.
Expected $95\%\text{ CL}$ exclusion contour in the MSSM $M_{h}^{125}$ scenario, evaluated at the $16\%$ quantile of the test-statistic distribution $f(\tilde{q}_\mu|\text{SM})$ under SM hypothesis. This contour is part of the $68\%$ confidence interval band. Numerical values provided in this table correspond to the expected $16\%$ quantile contour of Figure 13a of the publication.
Expected $95\%\text{ CL}$ exclusion contour in the MSSM $M_{h}^{125}$ scenario, evaluated at the $84\%$ quantile of the test-statistic distribution $f(\tilde{q}_\mu|\text{SM})$ under SM hypothesis. This contour is part of the $68\%$ confidence interval band. Numerical values provided in this table correspond to the expected $84\%$ quantile contour of Figure 13a of the publication.
Expected $95\%\text{ CL}$ exclusion contour in the MSSM $M_{h}^{125}$ scenario, evaluated at the $2.5\%$ quantile of the test-statistic distribution $f(\tilde{q}_\mu|\text{SM})$ under SM hypothesis. This contour is part of the $95\%$ confidence interval band. Numerical values provided in this table correspond to the expected $2.5\%$ quantile contour of Figure 13a of the publication.
Expected $95\%\text{ CL}$ exclusion contour in the MSSM $M_{h}^{125}$ scenario, evaluated at the $97.5\%$ quantile of the test-statistic distribution $f(\tilde{q}_\mu|\text{SM})$ under SM hypothesis. This contour is part of the $95\%$ confidence interval band. Numerical values provided in this table correspond to the expected $97.5\%$ quantile contour of Figure 13a of the publication.
Observed $95\%\text{ CL}$ exclusion contour in the MSSM $M_{h,\,\text{EFT}}^{125}$ scenario. Numerical values provided in this table correspond to the observed contour of Figure 13b of the publication.
Expected $95\%\text{ CL}$ exclusion contour in the MSSM $M_{h,\,\text{EFT}}^{125}$ scenario, evaluated at the median of the test-statistic distribution $f(\tilde{q}_\mu|\text{SM})$ under SM hypothesis. Numerical values provided in this table correspond to the expected median contour of Figure 13b of the publication.
Expected $95\%\text{ CL}$ exclusion contour in the MSSM $M_{h,\,\text{EFT}}^{125}$ scenario, evaluated at the $16\%$ quantile of the test-statistic distribution $f(\tilde{q}_\mu|\text{SM})$ under SM hypothesis. This contour is part of the $68\%$ confidence interval band. Numerical values provided in this table correspond to the expected $16\%$ quantile contour of Figure 13b of the publication.
Expected $95\%\text{ CL}$ exclusion contour in the MSSM $M_{h,\,\text{EFT}}^{125}$ scenario, evaluated at the $84\%$ quantile of the test-statistic distribution $f(\tilde{q}_\mu|\text{SM})$ under SM hypothesis. This contour is part of the $68\%$ confidence interval band. Numerical values provided in this table correspond to the expected $84\%$ quantile contour of Figure 13b of the publication.
Expected $95\%\text{ CL}$ exclusion contour in the MSSM $M_{h,\,\text{EFT}}^{125}$ scenario, evaluated at the $2.5\%$ quantile of the test-statistic distribution $f(\tilde{q}_\mu|\text{SM})$ under SM hypothesis. This contour is part of the $95\%$ confidence interval band. Numerical values provided in this table correspond to the expected $2.5\%$ quantile contour of Figure 13b of the publication.
Expected $95\%\text{ CL}$ exclusion contour in the MSSM $M_{h,\,\text{EFT}}^{125}$ scenario, evaluated at the $97.5\%$ quantile of the test-statistic distribution $f(\tilde{q}_\mu|\text{SM})$ under SM hypothesis. This contour is part of the $95\%$ confidence interval band. Numerical values provided in this table correspond to the expected $97.5\%$ quantile contour of Figure 13b of the publication.
Observed $95\%\text{ CL}$ exclusion contour in the MSSM $M_{h}^{125}(\tilde{\tau})$ scenario. Numerical values provided in this table correspond to the observed contour of Figure 114 of the auxilliary material of the publication.
Expected $95\%\text{ CL}$ exclusion contour in the MSSM $M_{h}^{125}(\tilde{\tau})$ scenario, evaluated at the median of the test-statistic distribution $f(\tilde{q}_\mu|\text{SM})$ under SM hypothesis. Numerical values provided in this table correspond to the expected median contour of Figure 114 of the auxilliary material of the publication.
Expected $95\%\text{ CL}$ exclusion contour in the MSSM $M_{h}^{125}(\tilde{\tau})$ scenario, evaluated at the $16\%$ quantile of the test-statistic distribution $f(\tilde{q}_\mu|\text{SM})$ under SM hypothesis. This contour is part of the $68\%$ confidence interval band. Numerical values provided in this table correspond to the expected $16\%$ contour of Figure 114 of the auxilliary material of the publication.
Expected $95\%\text{ CL}$ exclusion contour in the MSSM $M_{h}^{125}(\tilde{\tau})$ scenario, evaluated at the $84\%$ quantile of the test-statistic distribution $f(\tilde{q}_\mu|\text{SM})$ under SM hypothesis. This contour is part of the $68\%$ confidence interval band. Numerical values provided in this table correspond to the expected $84\%$ contour of Figure 114 of the auxilliary material of the publication.
Expected $95\%\text{ CL}$ exclusion contour in the MSSM $M_{h}^{125}(\tilde{\tau})$ scenario, evaluated at the $2.5\%$ quantile of the test-statistic distribution $f(\tilde{q}_\mu|\text{SM})$ under SM hypothesis. This contour is part of the $95\%$ confidence interval band. Numerical values provided in this table correspond to the expected $2.5\%$ contour of Figure 114 of the auxilliary material of the publication.
Expected $95\%\text{ CL}$ exclusion contour in the MSSM $M_{h}^{125}(\tilde{\tau})$ scenario, evaluated at the $97.5\%$ quantile of the test-statistic distribution $f(\tilde{q}_\mu|\text{SM})$ under SM hypothesis. This contour is part of the $95\%$ confidence interval band. Numerical values provided in this table correspond to the expected $97.5\%$ contour of Figure 114 of the auxilliary material of the publication.
Observed $95\%\text{ CL}$ exclusion contour in the MSSM $M_{h}^{125}(\tilde{\chi})$ scenario. Numerical values provided in this table correspond to the observed contour of Figure 115 of the auxilliary material of the publication.
Expected $95\%\text{ CL}$ exclusion contour in the MSSM $M_{h}^{125}(\tilde{\chi})$ scenario, evaluated at the median of the test-statistic distribution $f(\tilde{q}_\mu|\text{SM})$ under SM hypothesis. Numerical values provided in this table correspond to the expected median contour of Figure 115 of the auxilliary material of the publication.
Expected $95\%\text{ CL}$ exclusion contour in the MSSM $M_{h}^{125}(\tilde{\chi})$ scenario, evaluated at the $16\%$ quantile of the test-statistic distribution $f(\tilde{q}_\mu|\text{SM})$ under SM hypothesis. This contour is part of the $68\%$ confidence interval band. Numerical values provided in this table correspond to the expected $16\%$ contour of Figure 115 of the auxilliary material of the publication.
Expected $95\%\text{ CL}$ exclusion contour in the MSSM $M_{h}^{125}(\tilde{\chi})$ scenario, evaluated at the $84\%$ quantile of the test-statistic distribution $f(\tilde{q}_\mu|\text{SM})$ under SM hypothesis. This contour is part of the $68\%$ confidence interval band. Numerical values provided in this table correspond to the expected $84\%$ contour of Figure 115 of the auxilliary material of the publication.
Expected $95\%\text{ CL}$ exclusion contour in the MSSM $M_{h}^{125}(\tilde{\chi})$ scenario, evaluated at the $2.5\%$ quantile of the test-statistic distribution $f(\tilde{q}_\mu|\text{SM})$ under SM hypothesis. This contour is part of the $95\%$ confidence interval band. Numerical values provided in this table correspond to the expected $2.5\%$ contour of Figure 115 of the auxilliary material of the publication.
Expected $95\%\text{ CL}$ exclusion contour in the MSSM $M_{h}^{125}(\tilde{\chi})$ scenario, evaluated at the $97.5\%$ quantile of the test-statistic distribution $f(\tilde{q}_\mu|\text{SM})$ under SM hypothesis. This contour is part of the $95\%$ confidence interval band. Numerical values provided in this table correspond to the expected $97.5\%$ contour of Figure 115 of the auxilliary material of the publication.
Observed $95\%\text{ CL}$ exclusion contour in the MSSM $M_h^{125\,\mu_{1}-}$ scenario. Numerical values provided in this table correspond to the observed contour of Figure 116 of the auxilliary material of the publication.
Expected $95\%\text{ CL}$ exclusion contour in the MSSM $M_h^{125\,\mu_{1}-}$ scenario, evaluated at the median of the test-statistic distribution $f(\tilde{q}_\mu|\text{SM})$ under SM hypothesis. Numerical values provided in this table correspond to the expected median contour of Figure 116 of the auxilliary material of the publication.
Expected $95\%\text{ CL}$ exclusion contour in the MSSM $M_h^{125\,\mu_{1}-}$ scenario, evaluated at the $16\%$ quantile of the test-statistic distribution $f(\tilde{q}_\mu|\text{SM})$ under SM hypothesis. This contour is part of the $68\%$ confidence interval band. Numerical values provided in this table correspond to the expected $16\%$ contour of Figure 116 of the auxilliary material of the publication.
Expected $95\%\text{ CL}$ exclusion contour in the MSSM $M_h^{125\,\mu_{1}-}$ scenario, evaluated at the $84\%$ quantile of the test-statistic distribution $f(\tilde{q}_\mu|\text{SM})$ under SM hypothesis. This contour is part of the $68\%$ confidence interval band. Numerical values provided in this table correspond to the expected $84\%$ contour of Figure 116 of the auxilliary material of the publication.
Expected $95\%\text{ CL}$ exclusion contour in the MSSM $M_h^{125\,\mu_{1}-}$ scenario, evaluated at the $2.5\%$ quantile of the test-statistic distribution $f(\tilde{q}_\mu|\text{SM})$ under SM hypothesis. This contour is part of the $95\%$ confidence interval band. Numerical values provided in this table correspond to the expected $2.5\%$ contour of Figure 116 of the auxilliary material of the publication.
Expected $95\%\text{ CL}$ exclusion contour in the MSSM $M_h^{125\,\mu_{1}-}$ scenario, evaluated at the $97.5\%$ quantile of the test-statistic distribution $f(\tilde{q}_\mu|\text{SM})$ under SM hypothesis. This contour is part of the $95\%$ confidence interval band. Numerical values provided in this table correspond to the expected $97.5\%$ contour of Figure 116 of the auxilliary material of the publication.
Observed $95\%\text{ CL}$ exclusion contour in the MSSM $M_h^{125\,\mu_{2}-}$ scenario. Numerical values provided in this table correspond to the observed contour of Figure 117 of the auxilliary material of the publication.
Expected $95\%\text{ CL}$ exclusion contour in the MSSM $M_h^{125\,\mu_{2}-}$ scenario, evaluated at the median of the test-statistic distribution $f(\tilde{q}_\mu|\text{SM})$ under SM hypothesis. Numerical values provided in this table correspond to the expected median contour of Figure 117 of the auxilliary material of the publication.
Expected $95\%\text{ CL}$ exclusion contour in the MSSM $M_h^{125\,\mu_{2}-}$ scenario, evaluated at the $16\%$ quantile of the test-statistic distribution $f(\tilde{q}_\mu|\text{SM})$ under SM hypothesis. This contour is part of the $68\%$ confidence interval band. Numerical values provided in this table correspond to the expected $16\%$ contour of Figure 117 of the auxilliary material of the publication.
Expected $95\%\text{ CL}$ exclusion contour in the MSSM $M_h^{125\,\mu_{2}-}$ scenario, evaluated at the $84\%$ quantile of the test-statistic distribution $f(\tilde{q}_\mu|\text{SM})$ under SM hypothesis. This contour is part of the $68\%$ confidence interval band. Numerical values provided in this table correspond to the expected $84\%$ contour of Figure 117 of the auxilliary material of the publication.
Expected $95\%\text{ CL}$ exclusion contour in the MSSM $M_h^{125\,\mu_{2}-}$ scenario, evaluated at the $2.5\%$ quantile of the test-statistic distribution $f(\tilde{q}_\mu|\text{SM})$ under SM hypothesis. This contour is part of the $95\%$ confidence interval band. Numerical values provided in this table correspond to the expected $2.5\%$ contour of Figure 117 of the auxilliary material of the publication.
Expected $95\%\text{ CL}$ exclusion contour in the MSSM $M_h^{125\,\mu_{2}-}$ scenario, evaluated at the $97.5\%$ quantile of the test-statistic distribution $f(\tilde{q}_\mu|\text{SM})$ under SM hypothesis. This contour is part of the $95\%$ confidence interval band. Numerical values provided in this table correspond to the expected $97.5\%$ contour of Figure 117 of the auxilliary material of the publication.
Observed $95\%\text{ CL}$ exclusion contour in the MSSM $M_h^{125\,\mu_{3}-}$ scenario. Numerical values provided in this table correspond to the observed contour of Figure 118 of the auxilliary material of the publication.
Expected $95\%\text{ CL}$ exclusion contour in the MSSM $M_h^{125\,\mu_{3}-}$ scenario, evaluated at the median of the test-statistic distribution $f(\tilde{q}_\mu|\text{SM})$ under SM hypothesis. Numerical values provided in this table correspond to the expected median contour of Figure 118 of the auxilliary material of the publication.
Expected $95\%\text{ CL}$ exclusion contour in the MSSM $M_h^{125\,\mu_{3}-}$ scenario, evaluated at the $16\%$ quantile of the test-statistic distribution $f(\tilde{q}_\mu|\text{SM})$ under SM hypothesis. This contour is part of the $68\%$ confidence interval band. Numerical values provided in this table correspond to the expected $16\%$ contour of Figure 118 of the auxilliary material of the publication.
Expected $95\%\text{ CL}$ exclusion contour in the MSSM $M_h^{125\,\mu_{3}-}$ scenario, evaluated at the $84\%$ quantile of the test-statistic distribution $f(\tilde{q}_\mu|\text{SM})$ under SM hypothesis. This contour is part of the $68\%$ confidence interval band. Numerical values provided in this table correspond to the expected $84\%$ contour of Figure 118 of the auxilliary material of the publication.
Expected $95\%\text{ CL}$ exclusion contour in the MSSM $M_h^{125\,\mu_{3}-}$ scenario, evaluated at the $2.5\%$ quantile of the test-statistic distribution $f(\tilde{q}_\mu|\text{SM})$ under SM hypothesis. This contour is part of the $95\%$ confidence interval band. Numerical values provided in this table correspond to the expected $2.5\%$ contour of Figure 118 of the auxilliary material of the publication.
Expected $95\%\text{ CL}$ exclusion contour in the MSSM $M_h^{125\,\mu_{3}-}$ scenario, evaluated at the $97.5\%$ quantile of the test-statistic distribution $f(\tilde{q}_\mu|\text{SM})$ under SM hypothesis. This contour is part of the $95\%$ confidence interval band. Numerical values provided in this table correspond to the expected $97.5\%$ contour of Figure 118 of the auxilliary material of the publication.
Observed $95\%\text{ CL}$ exclusion contour in the MSSM $M_{h_{1}}^{125}(CPV)$ scenario. Numerical values provided in this table correspond to the observed contour of Figure 119 of the auxilliary material of the publication.
Expected $95\%\text{ CL}$ exclusion contour in the MSSM $M_{h_{1}}^{125}(CPV)$ scenario, evaluated at the median of the test-statistic distribution $f(\tilde{q}_\mu|\text{SM})$ under SM hypothesis. Numerical values provided in this table correspond to the expected median contour of Figure 119 of the auxilliary material of the publication.
Expected $95\%\text{ CL}$ exclusion contour in the MSSM $M_{h_{1}}^{125}(CPV)$ scenario, evaluated at the $16\%$ quantile of the test-statistic distribution $f(\tilde{q}_\mu|\text{SM})$ under SM hypothesis. This contour is part of the $68\%$ confidence interval band. Numerical values provided in this table correspond to the expected $16\%$ contour of Figure 119 of the auxilliary material of the publication.
Expected $95\%\text{ CL}$ exclusion contour in the MSSM $M_{h_{1}}^{125}(CPV)$ scenario, evaluated at the $84\%$ quantile of the test-statistic distribution $f(\tilde{q}_\mu|\text{SM})$ under SM hypothesis. This contour is part of the $68\%$ confidence interval band. Numerical values provided in this table correspond to the expected $84\%$ contour of Figure 119 of the auxilliary material of the publication.
Expected $95\%\text{ CL}$ exclusion contour in the MSSM $M_{h_{1}}^{125}(CPV)$ scenario, evaluated at the $2.5\%$ quantile of the test-statistic distribution $f(\tilde{q}_\mu|\text{SM})$ under SM hypothesis. This contour is part of the $95\%$ confidence interval band. Numerical values provided in this table correspond to the expected $2.5\%$ contour of Figure 119 of the auxilliary material of the publication.
Expected $95\%\text{ CL}$ exclusion contour in the MSSM $M_{h_{1}}^{125}(CPV)$ scenario, evaluated at the $97.5\%$ quantile of the test-statistic distribution $f(\tilde{q}_\mu|\text{SM})$ under SM hypothesis. This contour is part of the $95\%$ confidence interval band. Numerical values provided in this table correspond to the expected $97.5\%$ contour of Figure 119 of the auxilliary material of the publication.
Observed $95\%\text{ CL}$ exclusion contour in the MSSM hMSSM scenario. Numerical values provided in this table correspond to the observed contour of Figure 120 of the auxilliary material of the publication.
Expected $95\%\text{ CL}$ exclusion contour in the MSSM hMSSM scenario, evaluated at the median of the test-statistic distribution $f(\tilde{q}_\mu|\text{SM})$ under SM hypothesis. Numerical values provided in this table correspond to the expected median contour of Figure 120 of the auxilliary material of the publication.
Expected $95\%\text{ CL}$ exclusion contour in the MSSM hMSSM scenario, evaluated at the $16\%$ quantile of the test-statistic distribution $f(\tilde{q}_\mu|\text{SM})$ under SM hypothesis. This contour is part of the $68\%$ confidence interval band. Numerical values provided in this table correspond to the expected $16\%$ contour of Figure 120 of the auxilliary material of the publication.
Expected $95\%\text{ CL}$ exclusion contour in the MSSM hMSSM scenario, evaluated at the $84\%$ quantile of the test-statistic distribution $f(\tilde{q}_\mu|\text{SM})$ under SM hypothesis. This contour is part of the $68\%$ confidence interval band. Numerical values provided in this table correspond to the expected $84\%$ contour of Figure 120 of the auxilliary material of the publication.
Expected $95\%\text{ CL}$ exclusion contour in the MSSM hMSSM scenario, evaluated at the $2.5\%$ quantile of the test-statistic distribution $f(\tilde{q}_\mu|\text{SM})$ under SM hypothesis. This contour is part of the $95\%$ confidence interval band. Numerical values provided in this table correspond to the expected $2.5\%$ contour of Figure 120 of the auxilliary material of the publication.
Expected $95\%\text{ CL}$ exclusion contour in the MSSM hMSSM scenario, evaluated at the $97.5\%$ quantile of the test-statistic distribution $f(\tilde{q}_\mu|\text{SM})$ under SM hypothesis. This contour is part of the $95\%$ confidence interval band. Numerical values provided in this table correspond to the expected $97.5\%$ contour of Figure 120 of the auxilliary material of the publication.
Observed $95\%\text{ CL}$ exclusion contour in the MSSM $M_{h,\,\text{EFT}}^{125}(\tilde{\chi})$ scenario. Numerical values provided in this table correspond to the observed contour of Figure 122 of the auxilliary material of the publication.
Expected $95\%\text{ CL}$ exclusion contour in the MSSM $M_{h,\,\text{EFT}}^{125}(\tilde{\chi})$ scenario, evaluated at the median of the test-statistic distribution $f(\tilde{q}_\mu|\text{SM})$ under SM hypothesis. Numerical values provided in this table correspond to the expected median contour of Figure 122 of the auxilliary material of the publication.
Expected $95\%\text{ CL}$ exclusion contour in the MSSM $M_{h,\,\text{EFT}}^{125}(\tilde{\chi})$ scenario, evaluated at the $16\%$ quantile of the test-statistic distribution $f(\tilde{q}_\mu|\text{SM})$ under SM hypothesis. This contour is part of the $68\%$ confidence interval band. Numerical values provided in this table correspond to the expected $16\%$ contour of Figure 122 of the auxilliary material of the publication.
Expected $95\%\text{ CL}$ exclusion contour in the MSSM $M_{h,\,\text{EFT}}^{125}(\tilde{\chi})$ scenario, evaluated at the $84\%$ quantile of the test-statistic distribution $f(\tilde{q}_\mu|\text{SM})$ under SM hypothesis. This contour is part of the $68\%$ confidence interval band. Numerical values provided in this table correspond to the expected $84\%$ contour of Figure 122 of the auxilliary material of the publication.
Expected $95\%\text{ CL}$ exclusion contour in the MSSM $M_{h,\,\text{EFT}}^{125}(\tilde{\chi})$ scenario, evaluated at the $2.5\%$ quantile of the test-statistic distribution $f(\tilde{q}_\mu|\text{SM})$ under SM hypothesis. This contour is part of the $95\%$ confidence interval band. Numerical values provided in this table correspond to the expected $2.5\%$ contour of Figure 122 of the auxilliary material of the publication.
Expected $95\%\text{ CL}$ exclusion contour in the MSSM $M_{h,\,\text{EFT}}^{125}(\tilde{\chi})$ scenario, evaluated at the $97.5\%$ quantile of the test-statistic distribution $f(\tilde{q}_\mu|\text{SM})$ under SM hypothesis. This contour is part of the $95\%$ confidence interval band. Numerical values provided in this table correspond to the expected $97.5\%$ contour of Figure 122 of the auxilliary material of the publication.
Observed $95\%\text{ CL}$ exclusion contour in the MSSM $M_{h}^{125}(\text{alignment})$ scenario. Numerical values provided in this table correspond to the observed contour of Figure 123 of the auxilliary material of the publication.
Expected $95\%\text{ CL}$ exclusion contour in the MSSM $M_{h}^{125}(\text{alignment})$ scenario, evaluated at the median of the test-statistic distribution $f(\tilde{q}_\mu|\text{SM})$ under SM hypothesis. Numerical values provided in this table correspond to the expected median contour of Figure 123 of the auxilliary material of the publication.
Expected $95\%\text{ CL}$ exclusion contour in the MSSM $M_{h}^{125}(\text{alignment})$ scenario, evaluated at the $16\%$ quantile of the test-statistic distribution $f(\tilde{q}_\mu|\text{SM})$ under SM hypothesis. This contour is part of the $68\%$ confidence interval band. Numerical values provided in this table correspond to the expected $16\%$ contour of Figure 123 of the auxilliary material of the publication.
Expected $95\%\text{ CL}$ exclusion contour in the MSSM $M_{h}^{125}(\text{alignment})$ scenario, evaluated at the $84\%$ quantile of the test-statistic distribution $f(\tilde{q}_\mu|\text{SM})$ under SM hypothesis. This contour is part of the $68\%$ confidence interval band. Numerical values provided in this table correspond to the expected $84\%$ contour of Figure 123 of the auxilliary material of the publication.
Expected $95\%\text{ CL}$ exclusion contour in the MSSM $M_{h}^{125}(\text{alignment})$ scenario, evaluated at the $2.5\%$ quantile of the test-statistic distribution $f(\tilde{q}_\mu|\text{SM})$ under SM hypothesis. This contour is part of the $95\%$ confidence interval band. Numerical values provided in this table correspond to the expected $2.5\%$ contour of Figure 123 of the auxilliary material of the publication.
Expected $95\%\text{ CL}$ exclusion contour in the MSSM $M_{h}^{125}(\text{alignment})$ scenario, evaluated at the $97.5\%$ quantile of the test-statistic distribution $f(\tilde{q}_\mu|\text{SM})$ under SM hypothesis. This contour is part of the $95\%$ confidence interval band. Numerical values provided in this table correspond to the expected $97.5\%$ contour of Figure 123 of the auxilliary material of the publication.
Fractions of the cross-section $\sigma(gg\phi)$ as expected from SM for the loop contributions with only top quarks, only bottom quarks and from the top-bottom interference. These values are used to scale the corresponding signal components for a given mass $m_\phi$.
Observed and expected distributions of the variable chosen for statistical inference in the $t\bar{t}$ control region $m_{T}^{tot}$ for high-mass analysis. Numerical values provided in this table correspond to the $t\bar{t}$ control region of the publication, restricted to 2016 data-taking year. All distributions are considered after a fit to data is performed using a background-only model, which includes the $\text{H}(125)$ boson. Some details on how the distributions should be used: 1) All given uncertainties correspond to systematic variations of $\pm1\sigma$. 2) Upper values ('plus' in the yaml file) correspond to an upward systematic variation of the parameter ($+1\sigma$). 3) Lower values ('minus' in the yaml file) correspond to a downward systematic variation of the parameter ($-1\sigma$). 4) These variations can have both positive and negative values, depending on the modelled effect. 5) Uncertainties with the same name should be treated as correlated, consistently across the upper and lower variations. 6) Systematic uncertainties with 'prop_' in the name treat limited background statistics per histogram bin, and are deployed with 'Barlow-Beeston-lite' approach. Details in https://arxiv.org/abs/1103.0354 section 5 7) Remaining systematic uncertainties alter the normalization, the shape, or both for a distribution. The nuisance parameter for such an uncertainty is mapped separately on the normalization and the shape variation components of the uncertainty. For normalization, $\ln$ mapping is used, for shape a spline. Details in https://cms-analysis.github.io/HiggsAnalysis-CombinedLimit/part2/settinguptheanalysis/#binned-shape-analysis 8) All nuisance parameters for the systematic uncertainties are modelled with a Gaussian pdf. 9) Gluon fusion contributions are all scaled to 1 pb. Please combine them using either the scale factors from 'Table SM Gluon Fusion Fractions', or using your own composition.
Observed and expected distributions of the variable chosen for statistical inference in the $t\bar{t}$ control region $m_{T}^{tot}$ for high-mass analysis. Numerical values provided in this table correspond to the $t\bar{t}$ control region of the publication, restricted to 2017 data-taking year. All distributions are considered after a fit to data is performed using a background-only model, which includes the $\text{H}(125)$ boson. Some details on how the distributions should be used: 1) All given uncertainties correspond to systematic variations of $\pm1\sigma$. 2) Upper values ('plus' in the yaml file) correspond to an upward systematic variation of the parameter ($+1\sigma$). 3) Lower values ('minus' in the yaml file) correspond to a downward systematic variation of the parameter ($-1\sigma$). 4) These variations can have both positive and negative values, depending on the modelled effect. 5) Uncertainties with the same name should be treated as correlated, consistently across the upper and lower variations. 6) Systematic uncertainties with 'prop_' in the name treat limited background statistics per histogram bin, and are deployed with 'Barlow-Beeston-lite' approach. Details in https://arxiv.org/abs/1103.0354 section 5 7) Remaining systematic uncertainties alter the normalization, the shape, or both for a distribution. The nuisance parameter for such an uncertainty is mapped separately on the normalization and the shape variation components of the uncertainty. For normalization, $\ln$ mapping is used, for shape a spline. Details in https://cms-analysis.github.io/HiggsAnalysis-CombinedLimit/part2/settinguptheanalysis/#binned-shape-analysis 8) All nuisance parameters for the systematic uncertainties are modelled with a Gaussian pdf. 9) Gluon fusion contributions are all scaled to 1 pb. Please combine them using either the scale factors from 'Table SM Gluon Fusion Fractions', or using your own composition.
Observed and expected distributions of the variable chosen for statistical inference in the $t\bar{t}$ control region $m_{T}^{tot}$ for high-mass analysis. Numerical values provided in this table correspond to the $t\bar{t}$ control region of the publication, restricted to 2018 data-taking year. All distributions are considered after a fit to data is performed using a background-only model, which includes the $\text{H}(125)$ boson. Some details on how the distributions should be used: 1) All given uncertainties correspond to systematic variations of $\pm1\sigma$. 2) Upper values ('plus' in the yaml file) correspond to an upward systematic variation of the parameter ($+1\sigma$). 3) Lower values ('minus' in the yaml file) correspond to a downward systematic variation of the parameter ($-1\sigma$). 4) These variations can have both positive and negative values, depending on the modelled effect. 5) Uncertainties with the same name should be treated as correlated, consistently across the upper and lower variations. 6) Systematic uncertainties with 'prop_' in the name treat limited background statistics per histogram bin, and are deployed with 'Barlow-Beeston-lite' approach. Details in https://arxiv.org/abs/1103.0354 section 5 7) Remaining systematic uncertainties alter the normalization, the shape, or both for a distribution. The nuisance parameter for such an uncertainty is mapped separately on the normalization and the shape variation components of the uncertainty. For normalization, $\ln$ mapping is used, for shape a spline. Details in https://cms-analysis.github.io/HiggsAnalysis-CombinedLimit/part2/settinguptheanalysis/#binned-shape-analysis 8) All nuisance parameters for the systematic uncertainties are modelled with a Gaussian pdf. 9) Gluon fusion contributions are all scaled to 1 pb. Please combine them using either the scale factors from 'Table SM Gluon Fusion Fractions', or using your own composition.
Observed and expected distributions of the variable chosen for statistical inference in the high-mass analysis $m_{T}^{tot}$. Numerical values provided in this table correspond to Figure 25 of the auxilliary material of the publication, but restricted to 2016 data-taking year. All distributions are considered after a fit to data is performed using a background-only model, which includes the $\text{H}(125)$ boson. Some details on how the distributions should be used: 1) All given uncertainties correspond to systematic variations of $\pm1\sigma$. 2) Upper values ('plus' in the yaml file) correspond to an upward systematic variation of the parameter ($+1\sigma$). 3) Lower values ('minus' in the yaml file) correspond to a downward systematic variation of the parameter ($-1\sigma$). 4) These variations can have both positive and negative values, depending on the modelled effect. 5) Uncertainties with the same name should be treated as correlated, consistently across the upper and lower variations. 6) Systematic uncertainties with 'prop_' in the name treat limited background statistics per histogram bin, and are deployed with 'Barlow-Beeston-lite' approach. Details in https://arxiv.org/abs/1103.0354 section 5 7) Remaining systematic uncertainties alter the normalization, the shape, or both for a distribution. The nuisance parameter for such an uncertainty is mapped separately on the normalization and the shape variation components of the uncertainty. For normalization, $\ln$ mapping is used, for shape a spline. Details in https://cms-analysis.github.io/HiggsAnalysis-CombinedLimit/part2/settinguptheanalysis/#binned-shape-analysis 8) All nuisance parameters for the systematic uncertainties are modelled with a Gaussian pdf. 9) Gluon fusion contributions are all scaled to 1 pb. Please combine them using either the scale factors from 'Table SM Gluon Fusion Fractions', or using your own composition.
Observed and expected distributions of the variable chosen for statistical inference in the high-mass analysis $m_{T}^{tot}$. Numerical values provided in this table correspond to Figure 25 of the auxilliary material of the publication, but restricted to and 2017 data-taking year. All distributions are considered after a fit to data is performed using a background-only model, which includes the $\text{H}(125)$ boson. Some details on how the distributions should be used: 1) All given uncertainties correspond to systematic variations of $\pm1\sigma$. 2) Upper values ('plus' in the yaml file) correspond to an upward systematic variation of the parameter ($+1\sigma$). 3) Lower values ('minus' in the yaml file) correspond to a downward systematic variation of the parameter ($-1\sigma$). 4) These variations can have both positive and negative values, depending on the modelled effect. 5) Uncertainties with the same name should be treated as correlated, consistently across the upper and lower variations. 6) Systematic uncertainties with 'prop_' in the name treat limited background statistics per histogram bin, and are deployed with 'Barlow-Beeston-lite' approach. Details in https://arxiv.org/abs/1103.0354 section 5 7) Remaining systematic uncertainties alter the normalization, the shape, or both for a distribution. The nuisance parameter for such an uncertainty is mapped separately on the normalization and the shape variation components of the uncertainty. For normalization, $\ln$ mapping is used, for shape a spline. Details in https://cms-analysis.github.io/HiggsAnalysis-CombinedLimit/part2/settinguptheanalysis/#binned-shape-analysis 8) All nuisance parameters for the systematic uncertainties are modelled with a Gaussian pdf. 9) Gluon fusion contributions are all scaled to 1 pb. Please combine them using either the scale factors from 'Table SM Gluon Fusion Fractions', or using your own composition.
Observed and expected distributions of the variable chosen for statistical inference in the high-mass analysis $m_{T}^{tot}$. Numerical values provided in this table correspond to Figure 25 of the auxilliary material of the publication, but restricted to and 2018 data-taking year. All distributions are considered after a fit to data is performed using a background-only model, which includes the $\text{H}(125)$ boson. Some details on how the distributions should be used: 1) All given uncertainties correspond to systematic variations of $\pm1\sigma$. 2) Upper values ('plus' in the yaml file) correspond to an upward systematic variation of the parameter ($+1\sigma$). 3) Lower values ('minus' in the yaml file) correspond to a downward systematic variation of the parameter ($-1\sigma$). 4) These variations can have both positive and negative values, depending on the modelled effect. 5) Uncertainties with the same name should be treated as correlated, consistently across the upper and lower variations. 6) Systematic uncertainties with 'prop_' in the name treat limited background statistics per histogram bin, and are deployed with 'Barlow-Beeston-lite' approach. Details in https://arxiv.org/abs/1103.0354 section 5 7) Remaining systematic uncertainties alter the normalization, the shape, or both for a distribution. The nuisance parameter for such an uncertainty is mapped separately on the normalization and the shape variation components of the uncertainty. For normalization, $\ln$ mapping is used, for shape a spline. Details in https://cms-analysis.github.io/HiggsAnalysis-CombinedLimit/part2/settinguptheanalysis/#binned-shape-analysis 8) All nuisance parameters for the systematic uncertainties are modelled with a Gaussian pdf. 9) Gluon fusion contributions are all scaled to 1 pb. Please combine them using either the scale factors from 'Table SM Gluon Fusion Fractions', or using your own composition.
Observed and expected distributions of the variable chosen for statistical inference in the high-mass analysis $m_{T}^{tot}$. Numerical values provided in this table correspond to Figure 8a of the publication, but restricted to 2016 data-taking year. All distributions are considered after a fit to data is performed using a background-only model, which includes the $\text{H}(125)$ boson. Some details on how the distributions should be used: 1) All given uncertainties correspond to systematic variations of $\pm1\sigma$. 2) Upper values ('plus' in the yaml file) correspond to an upward systematic variation of the parameter ($+1\sigma$). 3) Lower values ('minus' in the yaml file) correspond to a downward systematic variation of the parameter ($-1\sigma$). 4) These variations can have both positive and negative values, depending on the modelled effect. 5) Uncertainties with the same name should be treated as correlated, consistently across the upper and lower variations. 6) Systematic uncertainties with 'prop_' in the name treat limited background statistics per histogram bin, and are deployed with 'Barlow-Beeston-lite' approach. Details in https://arxiv.org/abs/1103.0354 section 5 7) Remaining systematic uncertainties alter the normalization, the shape, or both for a distribution. The nuisance parameter for such an uncertainty is mapped separately on the normalization and the shape variation components of the uncertainty. For normalization, $\ln$ mapping is used, for shape a spline. Details in https://cms-analysis.github.io/HiggsAnalysis-CombinedLimit/part2/settinguptheanalysis/#binned-shape-analysis 8) All nuisance parameters for the systematic uncertainties are modelled with a Gaussian pdf. 9) Gluon fusion contributions are all scaled to 1 pb. Please combine them using either the scale factors from 'Table SM Gluon Fusion Fractions', or using your own composition.
Observed and expected distributions of the variable chosen for statistical inference in the high-mass analysis $m_{T}^{tot}$. Numerical values provided in this table correspond to Figure 8a of the publication, but restricted to and 2017 data-taking year. All distributions are considered after a fit to data is performed using a background-only model, which includes the $\text{H}(125)$ boson. Some details on how the distributions should be used: 1) All given uncertainties correspond to systematic variations of $\pm1\sigma$. 2) Upper values ('plus' in the yaml file) correspond to an upward systematic variation of the parameter ($+1\sigma$). 3) Lower values ('minus' in the yaml file) correspond to a downward systematic variation of the parameter ($-1\sigma$). 4) These variations can have both positive and negative values, depending on the modelled effect. 5) Uncertainties with the same name should be treated as correlated, consistently across the upper and lower variations. 6) Systematic uncertainties with 'prop_' in the name treat limited background statistics per histogram bin, and are deployed with 'Barlow-Beeston-lite' approach. Details in https://arxiv.org/abs/1103.0354 section 5 7) Remaining systematic uncertainties alter the normalization, the shape, or both for a distribution. The nuisance parameter for such an uncertainty is mapped separately on the normalization and the shape variation components of the uncertainty. For normalization, $\ln$ mapping is used, for shape a spline. Details in https://cms-analysis.github.io/HiggsAnalysis-CombinedLimit/part2/settinguptheanalysis/#binned-shape-analysis 8) All nuisance parameters for the systematic uncertainties are modelled with a Gaussian pdf. 9) Gluon fusion contributions are all scaled to 1 pb. Please combine them using either the scale factors from 'Table SM Gluon Fusion Fractions', or using your own composition.
Observed and expected distributions of the variable chosen for statistical inference in the high-mass analysis $m_{T}^{tot}$. Numerical values provided in this table correspond to Figure 8a of the publication, but restricted to and 2018 data-taking year. All distributions are considered after a fit to data is performed using a background-only model, which includes the $\text{H}(125)$ boson. Some details on how the distributions should be used: 1) All given uncertainties correspond to systematic variations of $\pm1\sigma$. 2) Upper values ('plus' in the yaml file) correspond to an upward systematic variation of the parameter ($+1\sigma$). 3) Lower values ('minus' in the yaml file) correspond to a downward systematic variation of the parameter ($-1\sigma$). 4) These variations can have both positive and negative values, depending on the modelled effect. 5) Uncertainties with the same name should be treated as correlated, consistently across the upper and lower variations. 6) Systematic uncertainties with 'prop_' in the name treat limited background statistics per histogram bin, and are deployed with 'Barlow-Beeston-lite' approach. Details in https://arxiv.org/abs/1103.0354 section 5 7) Remaining systematic uncertainties alter the normalization, the shape, or both for a distribution. The nuisance parameter for such an uncertainty is mapped separately on the normalization and the shape variation components of the uncertainty. For normalization, $\ln$ mapping is used, for shape a spline. Details in https://cms-analysis.github.io/HiggsAnalysis-CombinedLimit/part2/settinguptheanalysis/#binned-shape-analysis 8) All nuisance parameters for the systematic uncertainties are modelled with a Gaussian pdf. 9) Gluon fusion contributions are all scaled to 1 pb. Please combine them using either the scale factors from 'Table SM Gluon Fusion Fractions', or using your own composition.
Observed and expected distributions of the variable chosen for statistical inference in the high-mass analysis $m_{T}^{tot}$. Numerical values provided in this table correspond to Figure 26 of the auxilliary material of the publication, but restricted to 2016 data-taking year. All distributions are considered after a fit to data is performed using a background-only model, which includes the $\text{H}(125)$ boson. Some details on how the distributions should be used: 1) All given uncertainties correspond to systematic variations of $\pm1\sigma$. 2) Upper values ('plus' in the yaml file) correspond to an upward systematic variation of the parameter ($+1\sigma$). 3) Lower values ('minus' in the yaml file) correspond to a downward systematic variation of the parameter ($-1\sigma$). 4) These variations can have both positive and negative values, depending on the modelled effect. 5) Uncertainties with the same name should be treated as correlated, consistently across the upper and lower variations. 6) Systematic uncertainties with 'prop_' in the name treat limited background statistics per histogram bin, and are deployed with 'Barlow-Beeston-lite' approach. Details in https://arxiv.org/abs/1103.0354 section 5 7) Remaining systematic uncertainties alter the normalization, the shape, or both for a distribution. The nuisance parameter for such an uncertainty is mapped separately on the normalization and the shape variation components of the uncertainty. For normalization, $\ln$ mapping is used, for shape a spline. Details in https://cms-analysis.github.io/HiggsAnalysis-CombinedLimit/part2/settinguptheanalysis/#binned-shape-analysis 8) All nuisance parameters for the systematic uncertainties are modelled with a Gaussian pdf. 9) Gluon fusion contributions are all scaled to 1 pb. Please combine them using either the scale factors from 'Table SM Gluon Fusion Fractions', or using your own composition.
Observed and expected distributions of the variable chosen for statistical inference in the high-mass analysis $m_{T}^{tot}$. Numerical values provided in this table correspond to Figure 26 of the auxilliary material of the publication, but restricted to and 2017 data-taking year. All distributions are considered after a fit to data is performed using a background-only model, which includes the $\text{H}(125)$ boson. Some details on how the distributions should be used: 1) All given uncertainties correspond to systematic variations of $\pm1\sigma$. 2) Upper values ('plus' in the yaml file) correspond to an upward systematic variation of the parameter ($+1\sigma$). 3) Lower values ('minus' in the yaml file) correspond to a downward systematic variation of the parameter ($-1\sigma$). 4) These variations can have both positive and negative values, depending on the modelled effect. 5) Uncertainties with the same name should be treated as correlated, consistently across the upper and lower variations. 6) Systematic uncertainties with 'prop_' in the name treat limited background statistics per histogram bin, and are deployed with 'Barlow-Beeston-lite' approach. Details in https://arxiv.org/abs/1103.0354 section 5 7) Remaining systematic uncertainties alter the normalization, the shape, or both for a distribution. The nuisance parameter for such an uncertainty is mapped separately on the normalization and the shape variation components of the uncertainty. For normalization, $\ln$ mapping is used, for shape a spline. Details in https://cms-analysis.github.io/HiggsAnalysis-CombinedLimit/part2/settinguptheanalysis/#binned-shape-analysis 8) All nuisance parameters for the systematic uncertainties are modelled with a Gaussian pdf. 9) Gluon fusion contributions are all scaled to 1 pb. Please combine them using either the scale factors from 'Table SM Gluon Fusion Fractions', or using your own composition.
Observed and expected distributions of the variable chosen for statistical inference in the high-mass analysis $m_{T}^{tot}$. Numerical values provided in this table correspond to Figure 26 of the auxilliary material of the publication, but restricted to and 2018 data-taking year. All distributions are considered after a fit to data is performed using a background-only model, which includes the $\text{H}(125)$ boson. Some details on how the distributions should be used: 1) All given uncertainties correspond to systematic variations of $\pm1\sigma$. 2) Upper values ('plus' in the yaml file) correspond to an upward systematic variation of the parameter ($+1\sigma$). 3) Lower values ('minus' in the yaml file) correspond to a downward systematic variation of the parameter ($-1\sigma$). 4) These variations can have both positive and negative values, depending on the modelled effect. 5) Uncertainties with the same name should be treated as correlated, consistently across the upper and lower variations. 6) Systematic uncertainties with 'prop_' in the name treat limited background statistics per histogram bin, and are deployed with 'Barlow-Beeston-lite' approach. Details in https://arxiv.org/abs/1103.0354 section 5 7) Remaining systematic uncertainties alter the normalization, the shape, or both for a distribution. The nuisance parameter for such an uncertainty is mapped separately on the normalization and the shape variation components of the uncertainty. For normalization, $\ln$ mapping is used, for shape a spline. Details in https://cms-analysis.github.io/HiggsAnalysis-CombinedLimit/part2/settinguptheanalysis/#binned-shape-analysis 8) All nuisance parameters for the systematic uncertainties are modelled with a Gaussian pdf. 9) Gluon fusion contributions are all scaled to 1 pb. Please combine them using either the scale factors from 'Table SM Gluon Fusion Fractions', or using your own composition.
Observed and expected distributions of the variable chosen for statistical inference in the high-mass analysis $m_{T}^{tot}$. Numerical values provided in this table correspond to Figure 8b of the publication, but restricted to 2016 data-taking year. All distributions are considered after a fit to data is performed using a background-only model, which includes the $\text{H}(125)$ boson. Some details on how the distributions should be used: 1) All given uncertainties correspond to systematic variations of $\pm1\sigma$. 2) Upper values ('plus' in the yaml file) correspond to an upward systematic variation of the parameter ($+1\sigma$). 3) Lower values ('minus' in the yaml file) correspond to a downward systematic variation of the parameter ($-1\sigma$). 4) These variations can have both positive and negative values, depending on the modelled effect. 5) Uncertainties with the same name should be treated as correlated, consistently across the upper and lower variations. 6) Systematic uncertainties with 'prop_' in the name treat limited background statistics per histogram bin, and are deployed with 'Barlow-Beeston-lite' approach. Details in https://arxiv.org/abs/1103.0354 section 5 7) Remaining systematic uncertainties alter the normalization, the shape, or both for a distribution. The nuisance parameter for such an uncertainty is mapped separately on the normalization and the shape variation components of the uncertainty. For normalization, $\ln$ mapping is used, for shape a spline. Details in https://cms-analysis.github.io/HiggsAnalysis-CombinedLimit/part2/settinguptheanalysis/#binned-shape-analysis 8) All nuisance parameters for the systematic uncertainties are modelled with a Gaussian pdf. 9) Gluon fusion contributions are all scaled to 1 pb. Please combine them using either the scale factors from 'Table SM Gluon Fusion Fractions', or using your own composition.
Observed and expected distributions of the variable chosen for statistical inference in the high-mass analysis $m_{T}^{tot}$. Numerical values provided in this table correspond to Figure 8b of the publication, but restricted to and 2017 data-taking year. All distributions are considered after a fit to data is performed using a background-only model, which includes the $\text{H}(125)$ boson. Some details on how the distributions should be used: 1) All given uncertainties correspond to systematic variations of $\pm1\sigma$. 2) Upper values ('plus' in the yaml file) correspond to an upward systematic variation of the parameter ($+1\sigma$). 3) Lower values ('minus' in the yaml file) correspond to a downward systematic variation of the parameter ($-1\sigma$). 4) These variations can have both positive and negative values, depending on the modelled effect. 5) Uncertainties with the same name should be treated as correlated, consistently across the upper and lower variations. 6) Systematic uncertainties with 'prop_' in the name treat limited background statistics per histogram bin, and are deployed with 'Barlow-Beeston-lite' approach. Details in https://arxiv.org/abs/1103.0354 section 5 7) Remaining systematic uncertainties alter the normalization, the shape, or both for a distribution. The nuisance parameter for such an uncertainty is mapped separately on the normalization and the shape variation components of the uncertainty. For normalization, $\ln$ mapping is used, for shape a spline. Details in https://cms-analysis.github.io/HiggsAnalysis-CombinedLimit/part2/settinguptheanalysis/#binned-shape-analysis 8) All nuisance parameters for the systematic uncertainties are modelled with a Gaussian pdf. 9) Gluon fusion contributions are all scaled to 1 pb. Please combine them using either the scale factors from 'Table SM Gluon Fusion Fractions', or using your own composition.
Observed and expected distributions of the variable chosen for statistical inference in the high-mass analysis $m_{T}^{tot}$. Numerical values provided in this table correspond to Figure 8b of the publication, but restricted to and 2018 data-taking year. All distributions are considered after a fit to data is performed using a background-only model, which includes the $\text{H}(125)$ boson. Some details on how the distributions should be used: 1) All given uncertainties correspond to systematic variations of $\pm1\sigma$. 2) Upper values ('plus' in the yaml file) correspond to an upward systematic variation of the parameter ($+1\sigma$). 3) Lower values ('minus' in the yaml file) correspond to a downward systematic variation of the parameter ($-1\sigma$). 4) These variations can have both positive and negative values, depending on the modelled effect. 5) Uncertainties with the same name should be treated as correlated, consistently across the upper and lower variations. 6) Systematic uncertainties with 'prop_' in the name treat limited background statistics per histogram bin, and are deployed with 'Barlow-Beeston-lite' approach. Details in https://arxiv.org/abs/1103.0354 section 5 7) Remaining systematic uncertainties alter the normalization, the shape, or both for a distribution. The nuisance parameter for such an uncertainty is mapped separately on the normalization and the shape variation components of the uncertainty. For normalization, $\ln$ mapping is used, for shape a spline. Details in https://cms-analysis.github.io/HiggsAnalysis-CombinedLimit/part2/settinguptheanalysis/#binned-shape-analysis 8) All nuisance parameters for the systematic uncertainties are modelled with a Gaussian pdf. 9) Gluon fusion contributions are all scaled to 1 pb. Please combine them using either the scale factors from 'Table SM Gluon Fusion Fractions', or using your own composition.
Observed and expected distributions of the variable chosen for statistical inference in the high-mass analysis $m_{T}^{tot}$. Numerical values provided in this table correspond to Figure 27 of the auxilliary material of the publication, but restricted to 2016 data-taking year. All distributions are considered after a fit to data is performed using a background-only model, which includes the $\text{H}(125)$ boson. Some details on how the distributions should be used: 1) All given uncertainties correspond to systematic variations of $\pm1\sigma$. 2) Upper values ('plus' in the yaml file) correspond to an upward systematic variation of the parameter ($+1\sigma$). 3) Lower values ('minus' in the yaml file) correspond to a downward systematic variation of the parameter ($-1\sigma$). 4) These variations can have both positive and negative values, depending on the modelled effect. 5) Uncertainties with the same name should be treated as correlated, consistently across the upper and lower variations. 6) Systematic uncertainties with 'prop_' in the name treat limited background statistics per histogram bin, and are deployed with 'Barlow-Beeston-lite' approach. Details in https://arxiv.org/abs/1103.0354 section 5 7) Remaining systematic uncertainties alter the normalization, the shape, or both for a distribution. The nuisance parameter for such an uncertainty is mapped separately on the normalization and the shape variation components of the uncertainty. For normalization, $\ln$ mapping is used, for shape a spline. Details in https://cms-analysis.github.io/HiggsAnalysis-CombinedLimit/part2/settinguptheanalysis/#binned-shape-analysis 8) All nuisance parameters for the systematic uncertainties are modelled with a Gaussian pdf. 9) Gluon fusion contributions are all scaled to 1 pb. Please combine them using either the scale factors from 'Table SM Gluon Fusion Fractions', or using your own composition.
Observed and expected distributions of the variable chosen for statistical inference in the high-mass analysis $m_{T}^{tot}$. Numerical values provided in this table correspond to Figure 27 of the auxilliary material of the publication, but restricted to and 2017 data-taking year. All distributions are considered after a fit to data is performed using a background-only model, which includes the $\text{H}(125)$ boson. Some details on how the distributions should be used: 1) All given uncertainties correspond to systematic variations of $\pm1\sigma$. 2) Upper values ('plus' in the yaml file) correspond to an upward systematic variation of the parameter ($+1\sigma$). 3) Lower values ('minus' in the yaml file) correspond to a downward systematic variation of the parameter ($-1\sigma$). 4) These variations can have both positive and negative values, depending on the modelled effect. 5) Uncertainties with the same name should be treated as correlated, consistently across the upper and lower variations. 6) Systematic uncertainties with 'prop_' in the name treat limited background statistics per histogram bin, and are deployed with 'Barlow-Beeston-lite' approach. Details in https://arxiv.org/abs/1103.0354 section 5 7) Remaining systematic uncertainties alter the normalization, the shape, or both for a distribution. The nuisance parameter for such an uncertainty is mapped separately on the normalization and the shape variation components of the uncertainty. For normalization, $\ln$ mapping is used, for shape a spline. Details in https://cms-analysis.github.io/HiggsAnalysis-CombinedLimit/part2/settinguptheanalysis/#binned-shape-analysis 8) All nuisance parameters for the systematic uncertainties are modelled with a Gaussian pdf. 9) Gluon fusion contributions are all scaled to 1 pb. Please combine them using either the scale factors from 'Table SM Gluon Fusion Fractions', or using your own composition.
Observed and expected distributions of the variable chosen for statistical inference in the high-mass analysis $m_{T}^{tot}$. Numerical values provided in this table correspond to Figure 27 of the auxilliary material of the publication, but restricted to and 2018 data-taking year. All distributions are considered after a fit to data is performed using a background-only model, which includes the $\text{H}(125)$ boson. Some details on how the distributions should be used: 1) All given uncertainties correspond to systematic variations of $\pm1\sigma$. 2) Upper values ('plus' in the yaml file) correspond to an upward systematic variation of the parameter ($+1\sigma$). 3) Lower values ('minus' in the yaml file) correspond to a downward systematic variation of the parameter ($-1\sigma$). 4) These variations can have both positive and negative values, depending on the modelled effect. 5) Uncertainties with the same name should be treated as correlated, consistently across the upper and lower variations. 6) Systematic uncertainties with 'prop_' in the name treat limited background statistics per histogram bin, and are deployed with 'Barlow-Beeston-lite' approach. Details in https://arxiv.org/abs/1103.0354 section 5 7) Remaining systematic uncertainties alter the normalization, the shape, or both for a distribution. The nuisance parameter for such an uncertainty is mapped separately on the normalization and the shape variation components of the uncertainty. For normalization, $\ln$ mapping is used, for shape a spline. Details in https://cms-analysis.github.io/HiggsAnalysis-CombinedLimit/part2/settinguptheanalysis/#binned-shape-analysis 8) All nuisance parameters for the systematic uncertainties are modelled with a Gaussian pdf. 9) Gluon fusion contributions are all scaled to 1 pb. Please combine them using either the scale factors from 'Table SM Gluon Fusion Fractions', or using your own composition.
Observed and expected distributions of the variable chosen for statistical inference in the high-mass analysis $m_{T}^{tot}$. Numerical values provided in this table correspond to Figure 28 of the auxilliary material of the publication, but restricted to 2016 data-taking year. All distributions are considered after a fit to data is performed using a background-only model, which includes the $\text{H}(125)$ boson. Some details on how the distributions should be used: 1) All given uncertainties correspond to systematic variations of $\pm1\sigma$. 2) Upper values ('plus' in the yaml file) correspond to an upward systematic variation of the parameter ($+1\sigma$). 3) Lower values ('minus' in the yaml file) correspond to a downward systematic variation of the parameter ($-1\sigma$). 4) These variations can have both positive and negative values, depending on the modelled effect. 5) Uncertainties with the same name should be treated as correlated, consistently across the upper and lower variations. 6) Systematic uncertainties with 'prop_' in the name treat limited background statistics per histogram bin, and are deployed with 'Barlow-Beeston-lite' approach. Details in https://arxiv.org/abs/1103.0354 section 5 7) Remaining systematic uncertainties alter the normalization, the shape, or both for a distribution. The nuisance parameter for such an uncertainty is mapped separately on the normalization and the shape variation components of the uncertainty. For normalization, $\ln$ mapping is used, for shape a spline. Details in https://cms-analysis.github.io/HiggsAnalysis-CombinedLimit/part2/settinguptheanalysis/#binned-shape-analysis 8) All nuisance parameters for the systematic uncertainties are modelled with a Gaussian pdf. 9) Gluon fusion contributions are all scaled to 1 pb. Please combine them using either the scale factors from 'Table SM Gluon Fusion Fractions', or using your own composition.
Observed and expected distributions of the variable chosen for statistical inference in the high-mass analysis $m_{T}^{tot}$. Numerical values provided in this table correspond to Figure 28 of the auxilliary material of the publication, but restricted to and 2017 data-taking year. All distributions are considered after a fit to data is performed using a background-only model, which includes the $\text{H}(125)$ boson. Some details on how the distributions should be used: 1) All given uncertainties correspond to systematic variations of $\pm1\sigma$. 2) Upper values ('plus' in the yaml file) correspond to an upward systematic variation of the parameter ($+1\sigma$). 3) Lower values ('minus' in the yaml file) correspond to a downward systematic variation of the parameter ($-1\sigma$). 4) These variations can have both positive and negative values, depending on the modelled effect. 5) Uncertainties with the same name should be treated as correlated, consistently across the upper and lower variations. 6) Systematic uncertainties with 'prop_' in the name treat limited background statistics per histogram bin, and are deployed with 'Barlow-Beeston-lite' approach. Details in https://arxiv.org/abs/1103.0354 section 5 7) Remaining systematic uncertainties alter the normalization, the shape, or both for a distribution. The nuisance parameter for such an uncertainty is mapped separately on the normalization and the shape variation components of the uncertainty. For normalization, $\ln$ mapping is used, for shape a spline. Details in https://cms-analysis.github.io/HiggsAnalysis-CombinedLimit/part2/settinguptheanalysis/#binned-shape-analysis 8) All nuisance parameters for the systematic uncertainties are modelled with a Gaussian pdf. 9) Gluon fusion contributions are all scaled to 1 pb. Please combine them using either the scale factors from 'Table SM Gluon Fusion Fractions', or using your own composition.
Observed and expected distributions of the variable chosen for statistical inference in the high-mass analysis $m_{T}^{tot}$. Numerical values provided in this table correspond to Figure 28 of the auxilliary material of the publication, but restricted to and 2018 data-taking year. All distributions are considered after a fit to data is performed using a background-only model, which includes the $\text{H}(125)$ boson. Some details on how the distributions should be used: 1) All given uncertainties correspond to systematic variations of $\pm1\sigma$. 2) Upper values ('plus' in the yaml file) correspond to an upward systematic variation of the parameter ($+1\sigma$). 3) Lower values ('minus' in the yaml file) correspond to a downward systematic variation of the parameter ($-1\sigma$). 4) These variations can have both positive and negative values, depending on the modelled effect. 5) Uncertainties with the same name should be treated as correlated, consistently across the upper and lower variations. 6) Systematic uncertainties with 'prop_' in the name treat limited background statistics per histogram bin, and are deployed with 'Barlow-Beeston-lite' approach. Details in https://arxiv.org/abs/1103.0354 section 5 7) Remaining systematic uncertainties alter the normalization, the shape, or both for a distribution. The nuisance parameter for such an uncertainty is mapped separately on the normalization and the shape variation components of the uncertainty. For normalization, $\ln$ mapping is used, for shape a spline. Details in https://cms-analysis.github.io/HiggsAnalysis-CombinedLimit/part2/settinguptheanalysis/#binned-shape-analysis 8) All nuisance parameters for the systematic uncertainties are modelled with a Gaussian pdf. 9) Gluon fusion contributions are all scaled to 1 pb. Please combine them using either the scale factors from 'Table SM Gluon Fusion Fractions', or using your own composition.
Observed and expected distributions of the variable chosen for statistical inference in the high-mass analysis $m_{T}^{tot}$. Numerical values provided in this table correspond to Figure 8c of the publication, but restricted to $e\tau_{h}$ final state and 2016 data-taking year. All distributions are considered after a fit to data is performed using a background-only model, which includes the $\text{H}(125)$ boson. Some details on how the distributions should be used: 1) All given uncertainties correspond to systematic variations of $\pm1\sigma$. 2) Upper values ('plus' in the yaml file) correspond to an upward systematic variation of the parameter ($+1\sigma$). 3) Lower values ('minus' in the yaml file) correspond to a downward systematic variation of the parameter ($-1\sigma$). 4) These variations can have both positive and negative values, depending on the modelled effect. 5) Uncertainties with the same name should be treated as correlated, consistently across the upper and lower variations. 6) Systematic uncertainties with 'prop_' in the name treat limited background statistics per histogram bin, and are deployed with 'Barlow-Beeston-lite' approach. Details in https://arxiv.org/abs/1103.0354 section 5 7) Remaining systematic uncertainties alter the normalization, the shape, or both for a distribution. The nuisance parameter for such an uncertainty is mapped separately on the normalization and the shape variation components of the uncertainty. For normalization, $\ln$ mapping is used, for shape a spline. Details in https://cms-analysis.github.io/HiggsAnalysis-CombinedLimit/part2/settinguptheanalysis/#binned-shape-analysis 8) All nuisance parameters for the systematic uncertainties are modelled with a Gaussian pdf. 9) Gluon fusion contributions are all scaled to 1 pb. Please combine them using either the scale factors from 'Table SM Gluon Fusion Fractions', or using your own composition.
Observed and expected distributions of the variable chosen for statistical inference in the high-mass analysis $m_{T}^{tot}$. Numerical values provided in this table correspond to Figure 8c of the publication, but restricted to $e\tau_{h}$ final state and 2017 data-taking year. All distributions are considered after a fit to data is performed using a background-only model, which includes the $\text{H}(125)$ boson. Some details on how the distributions should be used: 1) All given uncertainties correspond to systematic variations of $\pm1\sigma$. 2) Upper values ('plus' in the yaml file) correspond to an upward systematic variation of the parameter ($+1\sigma$). 3) Lower values ('minus' in the yaml file) correspond to a downward systematic variation of the parameter ($-1\sigma$). 4) These variations can have both positive and negative values, depending on the modelled effect. 5) Uncertainties with the same name should be treated as correlated, consistently across the upper and lower variations. 6) Systematic uncertainties with 'prop_' in the name treat limited background statistics per histogram bin, and are deployed with 'Barlow-Beeston-lite' approach. Details in https://arxiv.org/abs/1103.0354 section 5 7) Remaining systematic uncertainties alter the normalization, the shape, or both for a distribution. The nuisance parameter for such an uncertainty is mapped separately on the normalization and the shape variation components of the uncertainty. For normalization, $\ln$ mapping is used, for shape a spline. Details in https://cms-analysis.github.io/HiggsAnalysis-CombinedLimit/part2/settinguptheanalysis/#binned-shape-analysis 8) All nuisance parameters for the systematic uncertainties are modelled with a Gaussian pdf. 9) Gluon fusion contributions are all scaled to 1 pb. Please combine them using either the scale factors from 'Table SM Gluon Fusion Fractions', or using your own composition.
Observed and expected distributions of the variable chosen for statistical inference in the high-mass analysis $m_{T}^{tot}$. Numerical values provided in this table correspond to Figure 8c of the publication, but restricted to $e\tau_{h}$ final state and 2018 data-taking year. All distributions are considered after a fit to data is performed using a background-only model, which includes the $\text{H}(125)$ boson. Some details on how the distributions should be used: 1) All given uncertainties correspond to systematic variations of $\pm1\sigma$. 2) Upper values ('plus' in the yaml file) correspond to an upward systematic variation of the parameter ($+1\sigma$). 3) Lower values ('minus' in the yaml file) correspond to a downward systematic variation of the parameter ($-1\sigma$). 4) These variations can have both positive and negative values, depending on the modelled effect. 5) Uncertainties with the same name should be treated as correlated, consistently across the upper and lower variations. 6) Systematic uncertainties with 'prop_' in the name treat limited background statistics per histogram bin, and are deployed with 'Barlow-Beeston-lite' approach. Details in https://arxiv.org/abs/1103.0354 section 5 7) Remaining systematic uncertainties alter the normalization, the shape, or both for a distribution. The nuisance parameter for such an uncertainty is mapped separately on the normalization and the shape variation components of the uncertainty. For normalization, $\ln$ mapping is used, for shape a spline. Details in https://cms-analysis.github.io/HiggsAnalysis-CombinedLimit/part2/settinguptheanalysis/#binned-shape-analysis 8) All nuisance parameters for the systematic uncertainties are modelled with a Gaussian pdf. 9) Gluon fusion contributions are all scaled to 1 pb. Please combine them using either the scale factors from 'Table SM Gluon Fusion Fractions', or using your own composition.
Observed and expected distributions of the variable chosen for statistical inference in the high-mass analysis $m_{T}^{tot}$. Numerical values provided in this table correspond to Figure 29 of the auxilliary material of the publication, but restricted to $e\tau_{h}$ final state and 2016 data-taking year. All distributions are considered after a fit to data is performed using a background-only model, which includes the $\text{H}(125)$ boson. Some details on how the distributions should be used: 1) All given uncertainties correspond to systematic variations of $\pm1\sigma$. 2) Upper values ('plus' in the yaml file) correspond to an upward systematic variation of the parameter ($+1\sigma$). 3) Lower values ('minus' in the yaml file) correspond to a downward systematic variation of the parameter ($-1\sigma$). 4) These variations can have both positive and negative values, depending on the modelled effect. 5) Uncertainties with the same name should be treated as correlated, consistently across the upper and lower variations. 6) Systematic uncertainties with 'prop_' in the name treat limited background statistics per histogram bin, and are deployed with 'Barlow-Beeston-lite' approach. Details in https://arxiv.org/abs/1103.0354 section 5 7) Remaining systematic uncertainties alter the normalization, the shape, or both for a distribution. The nuisance parameter for such an uncertainty is mapped separately on the normalization and the shape variation components of the uncertainty. For normalization, $\ln$ mapping is used, for shape a spline. Details in https://cms-analysis.github.io/HiggsAnalysis-CombinedLimit/part2/settinguptheanalysis/#binned-shape-analysis 8) All nuisance parameters for the systematic uncertainties are modelled with a Gaussian pdf. 9) Gluon fusion contributions are all scaled to 1 pb. Please combine them using either the scale factors from 'Table SM Gluon Fusion Fractions', or using your own composition.
Observed and expected distributions of the variable chosen for statistical inference in the high-mass analysis $m_{T}^{tot}$. Numerical values provided in this table correspond to Figure 29 of the auxilliary material of the publication, but restricted to $e\tau_{h}$ final state and 2017 data-taking year. All distributions are considered after a fit to data is performed using a background-only model, which includes the $\text{H}(125)$ boson. Some details on how the distributions should be used: 1) All given uncertainties correspond to systematic variations of $\pm1\sigma$. 2) Upper values ('plus' in the yaml file) correspond to an upward systematic variation of the parameter ($+1\sigma$). 3) Lower values ('minus' in the yaml file) correspond to a downward systematic variation of the parameter ($-1\sigma$). 4) These variations can have both positive and negative values, depending on the modelled effect. 5) Uncertainties with the same name should be treated as correlated, consistently across the upper and lower variations. 6) Systematic uncertainties with 'prop_' in the name treat limited background statistics per histogram bin, and are deployed with 'Barlow-Beeston-lite' approach. Details in https://arxiv.org/abs/1103.0354 section 5 7) Remaining systematic uncertainties alter the normalization, the shape, or both for a distribution. The nuisance parameter for such an uncertainty is mapped separately on the normalization and the shape variation components of the uncertainty. For normalization, $\ln$ mapping is used, for shape a spline. Details in https://cms-analysis.github.io/HiggsAnalysis-CombinedLimit/part2/settinguptheanalysis/#binned-shape-analysis 8) All nuisance parameters for the systematic uncertainties are modelled with a Gaussian pdf. 9) Gluon fusion contributions are all scaled to 1 pb. Please combine them using either the scale factors from 'Table SM Gluon Fusion Fractions', or using your own composition.
Observed and expected distributions of the variable chosen for statistical inference in the high-mass analysis $m_{T}^{tot}$. Numerical values provided in this table correspond to Figure 29 of the auxilliary material of the publication, but restricted to $e\tau_{h}$ final state and 2018 data-taking year. All distributions are considered after a fit to data is performed using a background-only model, which includes the $\text{H}(125)$ boson. Some details on how the distributions should be used: 1) All given uncertainties correspond to systematic variations of $\pm1\sigma$. 2) Upper values ('plus' in the yaml file) correspond to an upward systematic variation of the parameter ($+1\sigma$). 3) Lower values ('minus' in the yaml file) correspond to a downward systematic variation of the parameter ($-1\sigma$). 4) These variations can have both positive and negative values, depending on the modelled effect. 5) Uncertainties with the same name should be treated as correlated, consistently across the upper and lower variations. 6) Systematic uncertainties with 'prop_' in the name treat limited background statistics per histogram bin, and are deployed with 'Barlow-Beeston-lite' approach. Details in https://arxiv.org/abs/1103.0354 section 5 7) Remaining systematic uncertainties alter the normalization, the shape, or both for a distribution. The nuisance parameter for such an uncertainty is mapped separately on the normalization and the shape variation components of the uncertainty. For normalization, $\ln$ mapping is used, for shape a spline. Details in https://cms-analysis.github.io/HiggsAnalysis-CombinedLimit/part2/settinguptheanalysis/#binned-shape-analysis 8) All nuisance parameters for the systematic uncertainties are modelled with a Gaussian pdf. 9) Gluon fusion contributions are all scaled to 1 pb. Please combine them using either the scale factors from 'Table SM Gluon Fusion Fractions', or using your own composition.
Observed and expected distributions of the variable chosen for statistical inference in the high-mass analysis $m_{T}^{tot}$. Numerical values provided in this table correspond to Figure 8d of the publication, but restricted to $e\tau_{h}$ final state and 2016 data-taking year. All distributions are considered after a fit to data is performed using a background-only model, which includes the $\text{H}(125)$ boson. Some details on how the distributions should be used: 1) All given uncertainties correspond to systematic variations of $\pm1\sigma$. 2) Upper values ('plus' in the yaml file) correspond to an upward systematic variation of the parameter ($+1\sigma$). 3) Lower values ('minus' in the yaml file) correspond to a downward systematic variation of the parameter ($-1\sigma$). 4) These variations can have both positive and negative values, depending on the modelled effect. 5) Uncertainties with the same name should be treated as correlated, consistently across the upper and lower variations. 6) Systematic uncertainties with 'prop_' in the name treat limited background statistics per histogram bin, and are deployed with 'Barlow-Beeston-lite' approach. Details in https://arxiv.org/abs/1103.0354 section 5 7) Remaining systematic uncertainties alter the normalization, the shape, or both for a distribution. The nuisance parameter for such an uncertainty is mapped separately on the normalization and the shape variation components of the uncertainty. For normalization, $\ln$ mapping is used, for shape a spline. Details in https://cms-analysis.github.io/HiggsAnalysis-CombinedLimit/part2/settinguptheanalysis/#binned-shape-analysis 8) All nuisance parameters for the systematic uncertainties are modelled with a Gaussian pdf. 9) Gluon fusion contributions are all scaled to 1 pb. Please combine them using either the scale factors from 'Table SM Gluon Fusion Fractions', or using your own composition.
Observed and expected distributions of the variable chosen for statistical inference in the high-mass analysis $m_{T}^{tot}$. Numerical values provided in this table correspond to Figure 8d of the publication, but restricted to $e\tau_{h}$ final state and 2017 data-taking year. All distributions are considered after a fit to data is performed using a background-only model, which includes the $\text{H}(125)$ boson. Some details on how the distributions should be used: 1) All given uncertainties correspond to systematic variations of $\pm1\sigma$. 2) Upper values ('plus' in the yaml file) correspond to an upward systematic variation of the parameter ($+1\sigma$). 3) Lower values ('minus' in the yaml file) correspond to a downward systematic variation of the parameter ($-1\sigma$). 4) These variations can have both positive and negative values, depending on the modelled effect. 5) Uncertainties with the same name should be treated as correlated, consistently across the upper and lower variations. 6) Systematic uncertainties with 'prop_' in the name treat limited background statistics per histogram bin, and are deployed with 'Barlow-Beeston-lite' approach. Details in https://arxiv.org/abs/1103.0354 section 5 7) Remaining systematic uncertainties alter the normalization, the shape, or both for a distribution. The nuisance parameter for such an uncertainty is mapped separately on the normalization and the shape variation components of the uncertainty. For normalization, $\ln$ mapping is used, for shape a spline. Details in https://cms-analysis.github.io/HiggsAnalysis-CombinedLimit/part2/settinguptheanalysis/#binned-shape-analysis 8) All nuisance parameters for the systematic uncertainties are modelled with a Gaussian pdf. 9) Gluon fusion contributions are all scaled to 1 pb. Please combine them using either the scale factors from 'Table SM Gluon Fusion Fractions', or using your own composition.
Observed and expected distributions of the variable chosen for statistical inference in the high-mass analysis $m_{T}^{tot}$. Numerical values provided in this table correspond to Figure 8d of the publication, but restricted to $e\tau_{h}$ final state and 2018 data-taking year. All distributions are considered after a fit to data is performed using a background-only model, which includes the $\text{H}(125)$ boson. Some details on how the distributions should be used: 1) All given uncertainties correspond to systematic variations of $\pm1\sigma$. 2) Upper values ('plus' in the yaml file) correspond to an upward systematic variation of the parameter ($+1\sigma$). 3) Lower values ('minus' in the yaml file) correspond to a downward systematic variation of the parameter ($-1\sigma$). 4) These variations can have both positive and negative values, depending on the modelled effect. 5) Uncertainties with the same name should be treated as correlated, consistently across the upper and lower variations. 6) Systematic uncertainties with 'prop_' in the name treat limited background statistics per histogram bin, and are deployed with 'Barlow-Beeston-lite' approach. Details in https://arxiv.org/abs/1103.0354 section 5 7) Remaining systematic uncertainties alter the normalization, the shape, or both for a distribution. The nuisance parameter for such an uncertainty is mapped separately on the normalization and the shape variation components of the uncertainty. For normalization, $\ln$ mapping is used, for shape a spline. Details in https://cms-analysis.github.io/HiggsAnalysis-CombinedLimit/part2/settinguptheanalysis/#binned-shape-analysis 8) All nuisance parameters for the systematic uncertainties are modelled with a Gaussian pdf. 9) Gluon fusion contributions are all scaled to 1 pb. Please combine them using either the scale factors from 'Table SM Gluon Fusion Fractions', or using your own composition.
Observed and expected distributions of the variable chosen for statistical inference in the high-mass analysis $m_{T}^{tot}$. Numerical values provided in this table correspond to Figure 30 of the auxilliary material of the publication, but restricted to $e\tau_{h}$ final state and 2016 data-taking year. All distributions are considered after a fit to data is performed using a background-only model, which includes the $\text{H}(125)$ boson. Some details on how the distributions should be used: 1) All given uncertainties correspond to systematic variations of $\pm1\sigma$. 2) Upper values ('plus' in the yaml file) correspond to an upward systematic variation of the parameter ($+1\sigma$). 3) Lower values ('minus' in the yaml file) correspond to a downward systematic variation of the parameter ($-1\sigma$). 4) These variations can have both positive and negative values, depending on the modelled effect. 5) Uncertainties with the same name should be treated as correlated, consistently across the upper and lower variations. 6) Systematic uncertainties with 'prop_' in the name treat limited background statistics per histogram bin, and are deployed with 'Barlow-Beeston-lite' approach. Details in https://arxiv.org/abs/1103.0354 section 5 7) Remaining systematic uncertainties alter the normalization, the shape, or both for a distribution. The nuisance parameter for such an uncertainty is mapped separately on the normalization and the shape variation components of the uncertainty. For normalization, $\ln$ mapping is used, for shape a spline. Details in https://cms-analysis.github.io/HiggsAnalysis-CombinedLimit/part2/settinguptheanalysis/#binned-shape-analysis 8) All nuisance parameters for the systematic uncertainties are modelled with a Gaussian pdf. 9) Gluon fusion contributions are all scaled to 1 pb. Please combine them using either the scale factors from 'Table SM Gluon Fusion Fractions', or using your own composition.
Observed and expected distributions of the variable chosen for statistical inference in the high-mass analysis $m_{T}^{tot}$. Numerical values provided in this table correspond to Figure 30 of the auxilliary material of the publication, but restricted to $e\tau_{h}$ final state and 2017 data-taking year. All distributions are considered after a fit to data is performed using a background-only model, which includes the $\text{H}(125)$ boson. Some details on how the distributions should be used: 1) All given uncertainties correspond to systematic variations of $\pm1\sigma$. 2) Upper values ('plus' in the yaml file) correspond to an upward systematic variation of the parameter ($+1\sigma$). 3) Lower values ('minus' in the yaml file) correspond to a downward systematic variation of the parameter ($-1\sigma$). 4) These variations can have both positive and negative values, depending on the modelled effect. 5) Uncertainties with the same name should be treated as correlated, consistently across the upper and lower variations. 6) Systematic uncertainties with 'prop_' in the name treat limited background statistics per histogram bin, and are deployed with 'Barlow-Beeston-lite' approach. Details in https://arxiv.org/abs/1103.0354 section 5 7) Remaining systematic uncertainties alter the normalization, the shape, or both for a distribution. The nuisance parameter for such an uncertainty is mapped separately on the normalization and the shape variation components of the uncertainty. For normalization, $\ln$ mapping is used, for shape a spline. Details in https://cms-analysis.github.io/HiggsAnalysis-CombinedLimit/part2/settinguptheanalysis/#binned-shape-analysis 8) All nuisance parameters for the systematic uncertainties are modelled with a Gaussian pdf. 9) Gluon fusion contributions are all scaled to 1 pb. Please combine them using either the scale factors from 'Table SM Gluon Fusion Fractions', or using your own composition.
Observed and expected distributions of the variable chosen for statistical inference in the high-mass analysis $m_{T}^{tot}$. Numerical values provided in this table correspond to Figure 30 of the auxilliary material of the publication, but restricted to $e\tau_{h}$ final state and 2018 data-taking year. All distributions are considered after a fit to data is performed using a background-only model, which includes the $\text{H}(125)$ boson. Some details on how the distributions should be used: 1) All given uncertainties correspond to systematic variations of $\pm1\sigma$. 2) Upper values ('plus' in the yaml file) correspond to an upward systematic variation of the parameter ($+1\sigma$). 3) Lower values ('minus' in the yaml file) correspond to a downward systematic variation of the parameter ($-1\sigma$). 4) These variations can have both positive and negative values, depending on the modelled effect. 5) Uncertainties with the same name should be treated as correlated, consistently across the upper and lower variations. 6) Systematic uncertainties with 'prop_' in the name treat limited background statistics per histogram bin, and are deployed with 'Barlow-Beeston-lite' approach. Details in https://arxiv.org/abs/1103.0354 section 5 7) Remaining systematic uncertainties alter the normalization, the shape, or both for a distribution. The nuisance parameter for such an uncertainty is mapped separately on the normalization and the shape variation components of the uncertainty. For normalization, $\ln$ mapping is used, for shape a spline. Details in https://cms-analysis.github.io/HiggsAnalysis-CombinedLimit/part2/settinguptheanalysis/#binned-shape-analysis 8) All nuisance parameters for the systematic uncertainties are modelled with a Gaussian pdf. 9) Gluon fusion contributions are all scaled to 1 pb. Please combine them using either the scale factors from 'Table SM Gluon Fusion Fractions', or using your own composition.
Observed and expected distributions of the variable chosen for statistical inference in the high-mass analysis $m_{T}^{tot}$. Numerical values provided in this table correspond to Figure 8c of the publication, but restricted to $\mu\tau_{h}$ final state and 2016 data-taking year. All distributions are considered after a fit to data is performed using a background-only model, which includes the $\text{H}(125)$ boson. Some details on how the distributions should be used: 1) All given uncertainties correspond to systematic variations of $\pm1\sigma$. 2) Upper values ('plus' in the yaml file) correspond to an upward systematic variation of the parameter ($+1\sigma$). 3) Lower values ('minus' in the yaml file) correspond to a downward systematic variation of the parameter ($-1\sigma$). 4) These variations can have both positive and negative values, depending on the modelled effect. 5) Uncertainties with the same name should be treated as correlated, consistently across the upper and lower variations. 6) Systematic uncertainties with 'prop_' in the name treat limited background statistics per histogram bin, and are deployed with 'Barlow-Beeston-lite' approach. Details in https://arxiv.org/abs/1103.0354 section 5 7) Remaining systematic uncertainties alter the normalization, the shape, or both for a distribution. The nuisance parameter for such an uncertainty is mapped separately on the normalization and the shape variation components of the uncertainty. For normalization, $\ln$ mapping is used, for shape a spline. Details in https://cms-analysis.github.io/HiggsAnalysis-CombinedLimit/part2/settinguptheanalysis/#binned-shape-analysis 8) All nuisance parameters for the systematic uncertainties are modelled with a Gaussian pdf. 9) Gluon fusion contributions are all scaled to 1 pb. Please combine them using either the scale factors from 'Table SM Gluon Fusion Fractions', or using your own composition.
Observed and expected distributions of the variable chosen for statistical inference in the high-mass analysis $m_{T}^{tot}$. Numerical values provided in this table correspond to Figure 8c of the publication, but restricted to $\mu\tau_{h}$ final state and 2017 data-taking year. All distributions are considered after a fit to data is performed using a background-only model, which includes the $\text{H}(125)$ boson. Some details on how the distributions should be used: 1) All given uncertainties correspond to systematic variations of $\pm1\sigma$. 2) Upper values ('plus' in the yaml file) correspond to an upward systematic variation of the parameter ($+1\sigma$). 3) Lower values ('minus' in the yaml file) correspond to a downward systematic variation of the parameter ($-1\sigma$). 4) These variations can have both positive and negative values, depending on the modelled effect. 5) Uncertainties with the same name should be treated as correlated, consistently across the upper and lower variations. 6) Systematic uncertainties with 'prop_' in the name treat limited background statistics per histogram bin, and are deployed with 'Barlow-Beeston-lite' approach. Details in https://arxiv.org/abs/1103.0354 section 5 7) Remaining systematic uncertainties alter the normalization, the shape, or both for a distribution. The nuisance parameter for such an uncertainty is mapped separately on the normalization and the shape variation components of the uncertainty. For normalization, $\ln$ mapping is used, for shape a spline. Details in https://cms-analysis.github.io/HiggsAnalysis-CombinedLimit/part2/settinguptheanalysis/#binned-shape-analysis 8) All nuisance parameters for the systematic uncertainties are modelled with a Gaussian pdf. 9) Gluon fusion contributions are all scaled to 1 pb. Please combine them using either the scale factors from 'Table SM Gluon Fusion Fractions', or using your own composition.
Observed and expected distributions of the variable chosen for statistical inference in the high-mass analysis $m_{T}^{tot}$. Numerical values provided in this table correspond to Figure 8c of the publication, but restricted to $\mu\tau_{h}$ final state and 2018 data-taking year. All distributions are considered after a fit to data is performed using a background-only model, which includes the $\text{H}(125)$ boson. Some details on how the distributions should be used: 1) All given uncertainties correspond to systematic variations of $\pm1\sigma$. 2) Upper values ('plus' in the yaml file) correspond to an upward systematic variation of the parameter ($+1\sigma$). 3) Lower values ('minus' in the yaml file) correspond to a downward systematic variation of the parameter ($-1\sigma$). 4) These variations can have both positive and negative values, depending on the modelled effect. 5) Uncertainties with the same name should be treated as correlated, consistently across the upper and lower variations. 6) Systematic uncertainties with 'prop_' in the name treat limited background statistics per histogram bin, and are deployed with 'Barlow-Beeston-lite' approach. Details in https://arxiv.org/abs/1103.0354 section 5 7) Remaining systematic uncertainties alter the normalization, the shape, or both for a distribution. The nuisance parameter for such an uncertainty is mapped separately on the normalization and the shape variation components of the uncertainty. For normalization, $\ln$ mapping is used, for shape a spline. Details in https://cms-analysis.github.io/HiggsAnalysis-CombinedLimit/part2/settinguptheanalysis/#binned-shape-analysis 8) All nuisance parameters for the systematic uncertainties are modelled with a Gaussian pdf. 9) Gluon fusion contributions are all scaled to 1 pb. Please combine them using either the scale factors from 'Table SM Gluon Fusion Fractions', or using your own composition.
Observed and expected distributions of the variable chosen for statistical inference in the high-mass analysis $m_{T}^{tot}$. Numerical values provided in this table correspond to Figure 29 of the auxilliary material of the publication, but restricted to $\mu\tau_{h}$ final state and 2016 data-taking year. All distributions are considered after a fit to data is performed using a background-only model, which includes the $\text{H}(125)$ boson. Some details on how the distributions should be used: 1) All given uncertainties correspond to systematic variations of $\pm1\sigma$. 2) Upper values ('plus' in the yaml file) correspond to an upward systematic variation of the parameter ($+1\sigma$). 3) Lower values ('minus' in the yaml file) correspond to a downward systematic variation of the parameter ($-1\sigma$). 4) These variations can have both positive and negative values, depending on the modelled effect. 5) Uncertainties with the same name should be treated as correlated, consistently across the upper and lower variations. 6) Systematic uncertainties with 'prop_' in the name treat limited background statistics per histogram bin, and are deployed with 'Barlow-Beeston-lite' approach. Details in https://arxiv.org/abs/1103.0354 section 5 7) Remaining systematic uncertainties alter the normalization, the shape, or both for a distribution. The nuisance parameter for such an uncertainty is mapped separately on the normalization and the shape variation components of the uncertainty. For normalization, $\ln$ mapping is used, for shape a spline. Details in https://cms-analysis.github.io/HiggsAnalysis-CombinedLimit/part2/settinguptheanalysis/#binned-shape-analysis 8) All nuisance parameters for the systematic uncertainties are modelled with a Gaussian pdf. 9) Gluon fusion contributions are all scaled to 1 pb. Please combine them using either the scale factors from 'Table SM Gluon Fusion Fractions', or using your own composition.
Observed and expected distributions of the variable chosen for statistical inference in the high-mass analysis $m_{T}^{tot}$. Numerical values provided in this table correspond to Figure 29 of the auxilliary material of the publication, but restricted to $\mu\tau_{h}$ final state and 2017 data-taking year. All distributions are considered after a fit to data is performed using a background-only model, which includes the $\text{H}(125)$ boson. Some details on how the distributions should be used: 1) All given uncertainties correspond to systematic variations of $\pm1\sigma$. 2) Upper values ('plus' in the yaml file) correspond to an upward systematic variation of the parameter ($+1\sigma$). 3) Lower values ('minus' in the yaml file) correspond to a downward systematic variation of the parameter ($-1\sigma$). 4) These variations can have both positive and negative values, depending on the modelled effect. 5) Uncertainties with the same name should be treated as correlated, consistently across the upper and lower variations. 6) Systematic uncertainties with 'prop_' in the name treat limited background statistics per histogram bin, and are deployed with 'Barlow-Beeston-lite' approach. Details in https://arxiv.org/abs/1103.0354 section 5 7) Remaining systematic uncertainties alter the normalization, the shape, or both for a distribution. The nuisance parameter for such an uncertainty is mapped separately on the normalization and the shape variation components of the uncertainty. For normalization, $\ln$ mapping is used, for shape a spline. Details in https://cms-analysis.github.io/HiggsAnalysis-CombinedLimit/part2/settinguptheanalysis/#binned-shape-analysis 8) All nuisance parameters for the systematic uncertainties are modelled with a Gaussian pdf. 9) Gluon fusion contributions are all scaled to 1 pb. Please combine them using either the scale factors from 'Table SM Gluon Fusion Fractions', or using your own composition.
Observed and expected distributions of the variable chosen for statistical inference in the high-mass analysis $m_{T}^{tot}$. Numerical values provided in this table correspond to Figure 29 of the auxilliary material of the publication, but restricted to $\mu\tau_{h}$ final state and 2018 data-taking year. All distributions are considered after a fit to data is performed using a background-only model, which includes the $\text{H}(125)$ boson. Some details on how the distributions should be used: 1) All given uncertainties correspond to systematic variations of $\pm1\sigma$. 2) Upper values ('plus' in the yaml file) correspond to an upward systematic variation of the parameter ($+1\sigma$). 3) Lower values ('minus' in the yaml file) correspond to a downward systematic variation of the parameter ($-1\sigma$). 4) These variations can have both positive and negative values, depending on the modelled effect. 5) Uncertainties with the same name should be treated as correlated, consistently across the upper and lower variations. 6) Systematic uncertainties with 'prop_' in the name treat limited background statistics per histogram bin, and are deployed with 'Barlow-Beeston-lite' approach. Details in https://arxiv.org/abs/1103.0354 section 5 7) Remaining systematic uncertainties alter the normalization, the shape, or both for a distribution. The nuisance parameter for such an uncertainty is mapped separately on the normalization and the shape variation components of the uncertainty. For normalization, $\ln$ mapping is used, for shape a spline. Details in https://cms-analysis.github.io/HiggsAnalysis-CombinedLimit/part2/settinguptheanalysis/#binned-shape-analysis 8) All nuisance parameters for the systematic uncertainties are modelled with a Gaussian pdf. 9) Gluon fusion contributions are all scaled to 1 pb. Please combine them using either the scale factors from 'Table SM Gluon Fusion Fractions', or using your own composition.
Observed and expected distributions of the variable chosen for statistical inference in the high-mass analysis $m_{T}^{tot}$. Numerical values provided in this table correspond to Figure 8d of the publication, but restricted to $\mu\tau_{h}$ final state and 2016 data-taking year. All distributions are considered after a fit to data is performed using a background-only model, which includes the $\text{H}(125)$ boson. Some details on how the distributions should be used: 1) All given uncertainties correspond to systematic variations of $\pm1\sigma$. 2) Upper values ('plus' in the yaml file) correspond to an upward systematic variation of the parameter ($+1\sigma$). 3) Lower values ('minus' in the yaml file) correspond to a downward systematic variation of the parameter ($-1\sigma$). 4) These variations can have both positive and negative values, depending on the modelled effect. 5) Uncertainties with the same name should be treated as correlated, consistently across the upper and lower variations. 6) Systematic uncertainties with 'prop_' in the name treat limited background statistics per histogram bin, and are deployed with 'Barlow-Beeston-lite' approach. Details in https://arxiv.org/abs/1103.0354 section 5 7) Remaining systematic uncertainties alter the normalization, the shape, or both for a distribution. The nuisance parameter for such an uncertainty is mapped separately on the normalization and the shape variation components of the uncertainty. For normalization, $\ln$ mapping is used, for shape a spline. Details in https://cms-analysis.github.io/HiggsAnalysis-CombinedLimit/part2/settinguptheanalysis/#binned-shape-analysis 8) All nuisance parameters for the systematic uncertainties are modelled with a Gaussian pdf. 9) Gluon fusion contributions are all scaled to 1 pb. Please combine them using either the scale factors from 'Table SM Gluon Fusion Fractions', or using your own composition.
Observed and expected distributions of the variable chosen for statistical inference in the high-mass analysis $m_{T}^{tot}$. Numerical values provided in this table correspond to Figure 8d of the publication, but restricted to $\mu\tau_{h}$ final state and 2017 data-taking year. All distributions are considered after a fit to data is performed using a background-only model, which includes the $\text{H}(125)$ boson. Some details on how the distributions should be used: 1) All given uncertainties correspond to systematic variations of $\pm1\sigma$. 2) Upper values ('plus' in the yaml file) correspond to an upward systematic variation of the parameter ($+1\sigma$). 3) Lower values ('minus' in the yaml file) correspond to a downward systematic variation of the parameter ($-1\sigma$). 4) These variations can have both positive and negative values, depending on the modelled effect. 5) Uncertainties with the same name should be treated as correlated, consistently across the upper and lower variations. 6) Systematic uncertainties with 'prop_' in the name treat limited background statistics per histogram bin, and are deployed with 'Barlow-Beeston-lite' approach. Details in https://arxiv.org/abs/1103.0354 section 5 7) Remaining systematic uncertainties alter the normalization, the shape, or both for a distribution. The nuisance parameter for such an uncertainty is mapped separately on the normalization and the shape variation components of the uncertainty. For normalization, $\ln$ mapping is used, for shape a spline. Details in https://cms-analysis.github.io/HiggsAnalysis-CombinedLimit/part2/settinguptheanalysis/#binned-shape-analysis 8) All nuisance parameters for the systematic uncertainties are modelled with a Gaussian pdf. 9) Gluon fusion contributions are all scaled to 1 pb. Please combine them using either the scale factors from 'Table SM Gluon Fusion Fractions', or using your own composition.
Observed and expected distributions of the variable chosen for statistical inference in the high-mass analysis $m_{T}^{tot}$. Numerical values provided in this table correspond to Figure 8d of the publication, but restricted to $\mu\tau_{h}$ final state and 2018 data-taking year. All distributions are considered after a fit to data is performed using a background-only model, which includes the $\text{H}(125)$ boson. Some details on how the distributions should be used: 1) All given uncertainties correspond to systematic variations of $\pm1\sigma$. 2) Upper values ('plus' in the yaml file) correspond to an upward systematic variation of the parameter ($+1\sigma$). 3) Lower values ('minus' in the yaml file) correspond to a downward systematic variation of the parameter ($-1\sigma$). 4) These variations can have both positive and negative values, depending on the modelled effect. 5) Uncertainties with the same name should be treated as correlated, consistently across the upper and lower variations. 6) Systematic uncertainties with 'prop_' in the name treat limited background statistics per histogram bin, and are deployed with 'Barlow-Beeston-lite' approach. Details in https://arxiv.org/abs/1103.0354 section 5 7) Remaining systematic uncertainties alter the normalization, the shape, or both for a distribution. The nuisance parameter for such an uncertainty is mapped separately on the normalization and the shape variation components of the uncertainty. For normalization, $\ln$ mapping is used, for shape a spline. Details in https://cms-analysis.github.io/HiggsAnalysis-CombinedLimit/part2/settinguptheanalysis/#binned-shape-analysis 8) All nuisance parameters for the systematic uncertainties are modelled with a Gaussian pdf. 9) Gluon fusion contributions are all scaled to 1 pb. Please combine them using either the scale factors from 'Table SM Gluon Fusion Fractions', or using your own composition.
Observed and expected distributions of the variable chosen for statistical inference in the high-mass analysis $m_{T}^{tot}$. Numerical values provided in this table correspond to Figure 30 of the auxilliary material of the publication, but restricted to $\mu\tau_{h}$ final state and 2016 data-taking year. All distributions are considered after a fit to data is performed using a background-only model, which includes the $\text{H}(125)$ boson. Some details on how the distributions should be used: 1) All given uncertainties correspond to systematic variations of $\pm1\sigma$. 2) Upper values ('plus' in the yaml file) correspond to an upward systematic variation of the parameter ($+1\sigma$). 3) Lower values ('minus' in the yaml file) correspond to a downward systematic variation of the parameter ($-1\sigma$). 4) These variations can have both positive and negative values, depending on the modelled effect. 5) Uncertainties with the same name should be treated as correlated, consistently across the upper and lower variations. 6) Systematic uncertainties with 'prop_' in the name treat limited background statistics per histogram bin, and are deployed with 'Barlow-Beeston-lite' approach. Details in https://arxiv.org/abs/1103.0354 section 5 7) Remaining systematic uncertainties alter the normalization, the shape, or both for a distribution. The nuisance parameter for such an uncertainty is mapped separately on the normalization and the shape variation components of the uncertainty. For normalization, $\ln$ mapping is used, for shape a spline. Details in https://cms-analysis.github.io/HiggsAnalysis-CombinedLimit/part2/settinguptheanalysis/#binned-shape-analysis 8) All nuisance parameters for the systematic uncertainties are modelled with a Gaussian pdf. 9) Gluon fusion contributions are all scaled to 1 pb. Please combine them using either the scale factors from 'Table SM Gluon Fusion Fractions', or using your own composition.
Observed and expected distributions of the variable chosen for statistical inference in the high-mass analysis $m_{T}^{tot}$. Numerical values provided in this table correspond to Figure 30 of the auxilliary material of the publication, but restricted to $\mu\tau_{h}$ final state and 2017 data-taking year. All distributions are considered after a fit to data is performed using a background-only model, which includes the $\text{H}(125)$ boson. Some details on how the distributions should be used: 1) All given uncertainties correspond to systematic variations of $\pm1\sigma$. 2) Upper values ('plus' in the yaml file) correspond to an upward systematic variation of the parameter ($+1\sigma$). 3) Lower values ('minus' in the yaml file) correspond to a downward systematic variation of the parameter ($-1\sigma$). 4) These variations can have both positive and negative values, depending on the modelled effect. 5) Uncertainties with the same name should be treated as correlated, consistently across the upper and lower variations. 6) Systematic uncertainties with 'prop_' in the name treat limited background statistics per histogram bin, and are deployed with 'Barlow-Beeston-lite' approach. Details in https://arxiv.org/abs/1103.0354 section 5 7) Remaining systematic uncertainties alter the normalization, the shape, or both for a distribution. The nuisance parameter for such an uncertainty is mapped separately on the normalization and the shape variation components of the uncertainty. For normalization, $\ln$ mapping is used, for shape a spline. Details in https://cms-analysis.github.io/HiggsAnalysis-CombinedLimit/part2/settinguptheanalysis/#binned-shape-analysis 8) All nuisance parameters for the systematic uncertainties are modelled with a Gaussian pdf. 9) Gluon fusion contributions are all scaled to 1 pb. Please combine them using either the scale factors from 'Table SM Gluon Fusion Fractions', or using your own composition.
Observed and expected distributions of the variable chosen for statistical inference in the high-mass analysis $m_{T}^{tot}$. Numerical values provided in this table correspond to Figure 30 of the auxilliary material of the publication, but restricted to $\mu\tau_{h}$ final state and 2018 data-taking year. All distributions are considered after a fit to data is performed using a background-only model, which includes the $\text{H}(125)$ boson. Some details on how the distributions should be used: 1) All given uncertainties correspond to systematic variations of $\pm1\sigma$. 2) Upper values ('plus' in the yaml file) correspond to an upward systematic variation of the parameter ($+1\sigma$). 3) Lower values ('minus' in the yaml file) correspond to a downward systematic variation of the parameter ($-1\sigma$). 4) These variations can have both positive and negative values, depending on the modelled effect. 5) Uncertainties with the same name should be treated as correlated, consistently across the upper and lower variations. 6) Systematic uncertainties with 'prop_' in the name treat limited background statistics per histogram bin, and are deployed with 'Barlow-Beeston-lite' approach. Details in https://arxiv.org/abs/1103.0354 section 5 7) Remaining systematic uncertainties alter the normalization, the shape, or both for a distribution. The nuisance parameter for such an uncertainty is mapped separately on the normalization and the shape variation components of the uncertainty. For normalization, $\ln$ mapping is used, for shape a spline. Details in https://cms-analysis.github.io/HiggsAnalysis-CombinedLimit/part2/settinguptheanalysis/#binned-shape-analysis 8) All nuisance parameters for the systematic uncertainties are modelled with a Gaussian pdf. 9) Gluon fusion contributions are all scaled to 1 pb. Please combine them using either the scale factors from 'Table SM Gluon Fusion Fractions', or using your own composition.
Observed and expected distributions of the variable chosen for statistical inference in the high-mass analysis $m_{T}^{tot}$. Numerical values provided in this table correspond to Figure 8e of the publication, but restricted to 2016 data-taking year. All distributions are considered after a fit to data is performed using a background-only model, which includes the $\text{H}(125)$ boson. Some details on how the distributions should be used: 1) All given uncertainties correspond to systematic variations of $\pm1\sigma$. 2) Upper values ('plus' in the yaml file) correspond to an upward systematic variation of the parameter ($+1\sigma$). 3) Lower values ('minus' in the yaml file) correspond to a downward systematic variation of the parameter ($-1\sigma$). 4) These variations can have both positive and negative values, depending on the modelled effect. 5) Uncertainties with the same name should be treated as correlated, consistently across the upper and lower variations. 6) Systematic uncertainties with 'prop_' in the name treat limited background statistics per histogram bin, and are deployed with 'Barlow-Beeston-lite' approach. Details in https://arxiv.org/abs/1103.0354 section 5 7) Remaining systematic uncertainties alter the normalization, the shape, or both for a distribution. The nuisance parameter for such an uncertainty is mapped separately on the normalization and the shape variation components of the uncertainty. For normalization, $\ln$ mapping is used, for shape a spline. Details in https://cms-analysis.github.io/HiggsAnalysis-CombinedLimit/part2/settinguptheanalysis/#binned-shape-analysis 8) All nuisance parameters for the systematic uncertainties are modelled with a Gaussian pdf. 9) Gluon fusion contributions are all scaled to 1 pb. Please combine them using either the scale factors from 'Table SM Gluon Fusion Fractions', or using your own composition.
Observed and expected distributions of the variable chosen for statistical inference in the high-mass analysis $m_{T}^{tot}$. Numerical values provided in this table correspond to Figure 8e of the publication, but restricted to 2017 data-taking year. All distributions are considered after a fit to data is performed using a background-only model, which includes the $\text{H}(125)$ boson. Some details on how the distributions should be used: 1) All given uncertainties correspond to systematic variations of $\pm1\sigma$. 2) Upper values ('plus' in the yaml file) correspond to an upward systematic variation of the parameter ($+1\sigma$). 3) Lower values ('minus' in the yaml file) correspond to a downward systematic variation of the parameter ($-1\sigma$). 4) These variations can have both positive and negative values, depending on the modelled effect. 5) Uncertainties with the same name should be treated as correlated, consistently across the upper and lower variations. 6) Systematic uncertainties with 'prop_' in the name treat limited background statistics per histogram bin, and are deployed with 'Barlow-Beeston-lite' approach. Details in https://arxiv.org/abs/1103.0354 section 5 7) Remaining systematic uncertainties alter the normalization, the shape, or both for a distribution. The nuisance parameter for such an uncertainty is mapped separately on the normalization and the shape variation components of the uncertainty. For normalization, $\ln$ mapping is used, for shape a spline. Details in https://cms-analysis.github.io/HiggsAnalysis-CombinedLimit/part2/settinguptheanalysis/#binned-shape-analysis 8) All nuisance parameters for the systematic uncertainties are modelled with a Gaussian pdf. 9) Gluon fusion contributions are all scaled to 1 pb. Please combine them using either the scale factors from 'Table SM Gluon Fusion Fractions', or using your own composition.
Observed and expected distributions of the variable chosen for statistical inference in the high-mass analysis $m_{T}^{tot}$. Numerical values provided in this table correspond to Figure 8e of the publication, but restricted to 2018 data-taking year. All distributions are considered after a fit to data is performed using a background-only model, which includes the $\text{H}(125)$ boson. Some details on how the distributions should be used: 1) All given uncertainties correspond to systematic variations of $\pm1\sigma$. 2) Upper values ('plus' in the yaml file) correspond to an upward systematic variation of the parameter ($+1\sigma$). 3) Lower values ('minus' in the yaml file) correspond to a downward systematic variation of the parameter ($-1\sigma$). 4) These variations can have both positive and negative values, depending on the modelled effect. 5) Uncertainties with the same name should be treated as correlated, consistently across the upper and lower variations. 6) Systematic uncertainties with 'prop_' in the name treat limited background statistics per histogram bin, and are deployed with 'Barlow-Beeston-lite' approach. Details in https://arxiv.org/abs/1103.0354 section 5 7) Remaining systematic uncertainties alter the normalization, the shape, or both for a distribution. The nuisance parameter for such an uncertainty is mapped separately on the normalization and the shape variation components of the uncertainty. For normalization, $\ln$ mapping is used, for shape a spline. Details in https://cms-analysis.github.io/HiggsAnalysis-CombinedLimit/part2/settinguptheanalysis/#binned-shape-analysis 8) All nuisance parameters for the systematic uncertainties are modelled with a Gaussian pdf. 9) Gluon fusion contributions are all scaled to 1 pb. Please combine them using either the scale factors from 'Table SM Gluon Fusion Fractions', or using your own composition.
Observed and expected distributions of the variable chosen for statistical inference in the high-mass analysis $m_{T}^{tot}$. Numerical values provided in this table correspond to Figure 8f of the publication, but restricted to 2016 data-taking year. All distributions are considered after a fit to data is performed using a background-only model, which includes the $\text{H}(125)$ boson. Some details on how the distributions should be used: 1) All given uncertainties correspond to systematic variations of $\pm1\sigma$. 2) Upper values ('plus' in the yaml file) correspond to an upward systematic variation of the parameter ($+1\sigma$). 3) Lower values ('minus' in the yaml file) correspond to a downward systematic variation of the parameter ($-1\sigma$). 4) These variations can have both positive and negative values, depending on the modelled effect. 5) Uncertainties with the same name should be treated as correlated, consistently across the upper and lower variations. 6) Systematic uncertainties with 'prop_' in the name treat limited background statistics per histogram bin, and are deployed with 'Barlow-Beeston-lite' approach. Details in https://arxiv.org/abs/1103.0354 section 5 7) Remaining systematic uncertainties alter the normalization, the shape, or both for a distribution. The nuisance parameter for such an uncertainty is mapped separately on the normalization and the shape variation components of the uncertainty. For normalization, $\ln$ mapping is used, for shape a spline. Details in https://cms-analysis.github.io/HiggsAnalysis-CombinedLimit/part2/settinguptheanalysis/#binned-shape-analysis 8) All nuisance parameters for the systematic uncertainties are modelled with a Gaussian pdf. 9) Gluon fusion contributions are all scaled to 1 pb. Please combine them using either the scale factors from 'Table SM Gluon Fusion Fractions', or using your own composition.
Observed and expected distributions of the variable chosen for statistical inference in the high-mass analysis $m_{T}^{tot}$. Numerical values provided in this table correspond to Figure 8f of the publication, but restricted to 2017 data-taking year. All distributions are considered after a fit to data is performed using a background-only model, which includes the $\text{H}(125)$ boson. Some details on how the distributions should be used: 1) All given uncertainties correspond to systematic variations of $\pm1\sigma$. 2) Upper values ('plus' in the yaml file) correspond to an upward systematic variation of the parameter ($+1\sigma$). 3) Lower values ('minus' in the yaml file) correspond to a downward systematic variation of the parameter ($-1\sigma$). 4) These variations can have both positive and negative values, depending on the modelled effect. 5) Uncertainties with the same name should be treated as correlated, consistently across the upper and lower variations. 6) Systematic uncertainties with 'prop_' in the name treat limited background statistics per histogram bin, and are deployed with 'Barlow-Beeston-lite' approach. Details in https://arxiv.org/abs/1103.0354 section 5 7) Remaining systematic uncertainties alter the normalization, the shape, or both for a distribution. The nuisance parameter for such an uncertainty is mapped separately on the normalization and the shape variation components of the uncertainty. For normalization, $\ln$ mapping is used, for shape a spline. Details in https://cms-analysis.github.io/HiggsAnalysis-CombinedLimit/part2/settinguptheanalysis/#binned-shape-analysis 8) All nuisance parameters for the systematic uncertainties are modelled with a Gaussian pdf. 9) Gluon fusion contributions are all scaled to 1 pb. Please combine them using either the scale factors from 'Table SM Gluon Fusion Fractions', or using your own composition.
Observed and expected distributions of the variable chosen for statistical inference in the high-mass analysis $m_{T}^{tot}$. Numerical values provided in this table correspond to Figure 8f of the publication, but restricted to 2018 data-taking year. All distributions are considered after a fit to data is performed using a background-only model, which includes the $\text{H}(125)$ boson. Some details on how the distributions should be used: 1) All given uncertainties correspond to systematic variations of $\pm1\sigma$. 2) Upper values ('plus' in the yaml file) correspond to an upward systematic variation of the parameter ($+1\sigma$). 3) Lower values ('minus' in the yaml file) correspond to a downward systematic variation of the parameter ($-1\sigma$). 4) These variations can have both positive and negative values, depending on the modelled effect. 5) Uncertainties with the same name should be treated as correlated, consistently across the upper and lower variations. 6) Systematic uncertainties with 'prop_' in the name treat limited background statistics per histogram bin, and are deployed with 'Barlow-Beeston-lite' approach. Details in https://arxiv.org/abs/1103.0354 section 5 7) Remaining systematic uncertainties alter the normalization, the shape, or both for a distribution. The nuisance parameter for such an uncertainty is mapped separately on the normalization and the shape variation components of the uncertainty. For normalization, $\ln$ mapping is used, for shape a spline. Details in https://cms-analysis.github.io/HiggsAnalysis-CombinedLimit/part2/settinguptheanalysis/#binned-shape-analysis 8) All nuisance parameters for the systematic uncertainties are modelled with a Gaussian pdf. 9) Gluon fusion contributions are all scaled to 1 pb. Please combine them using either the scale factors from 'Table SM Gluon Fusion Fractions', or using your own composition.
Observed and expected distributions of the variable chosen for statistical inference in the $t\bar{t}$ control region $m_{T}^{tot}$ for low-mass analysis. Numerical values provided in this table correspond to the $t\bar{t}$ control region of the publication, restricted to 2016 data-taking year. All distributions are considered after a fit to data is performed using a background-only model, which includes the $\text{H}(125)$ boson. Some details on how the distributions should be used: 1) All given uncertainties correspond to systematic variations of $\pm1\sigma$. 2) Upper values ('plus' in the yaml file) correspond to an upward systematic variation of the parameter ($+1\sigma$). 3) Lower values ('minus' in the yaml file) correspond to a downward systematic variation of the parameter ($-1\sigma$). 4) These variations can have both positive and negative values, depending on the modelled effect. 5) Uncertainties with the same name should be treated as correlated, consistently across the upper and lower variations. 6) Systematic uncertainties with 'prop_' in the name treat limited background statistics per histogram bin, and are deployed with 'Barlow-Beeston-lite' approach. Details in https://arxiv.org/abs/1103.0354 section 5 7) Remaining systematic uncertainties alter the normalization, the shape, or both for a distribution. The nuisance parameter for such an uncertainty is mapped separately on the normalization and the shape variation components of the uncertainty. For normalization, $\ln$ mapping is used, for shape a spline. Details in https://cms-analysis.github.io/HiggsAnalysis-CombinedLimit/part2/settinguptheanalysis/#binned-shape-analysis 8) All nuisance parameters for the systematic uncertainties are modelled with a Gaussian pdf. 9) Gluon fusion contributions are all scaled to 1 pb. Please combine them using either the scale factors from 'Table SM Gluon Fusion Fractions', or using your own composition.
Observed and expected distributions of the variable chosen for statistical inference in the $t\bar{t}$ control region $m_{T}^{tot}$ for low-mass analysis. Numerical values provided in this table correspond to the $t\bar{t}$ control region of the publication, restricted to 2017 data-taking year. All distributions are considered after a fit to data is performed using a background-only model, which includes the $\text{H}(125)$ boson. Some details on how the distributions should be used: 1) All given uncertainties correspond to systematic variations of $\pm1\sigma$. 2) Upper values ('plus' in the yaml file) correspond to an upward systematic variation of the parameter ($+1\sigma$). 3) Lower values ('minus' in the yaml file) correspond to a downward systematic variation of the parameter ($-1\sigma$). 4) These variations can have both positive and negative values, depending on the modelled effect. 5) Uncertainties with the same name should be treated as correlated, consistently across the upper and lower variations. 6) Systematic uncertainties with 'prop_' in the name treat limited background statistics per histogram bin, and are deployed with 'Barlow-Beeston-lite' approach. Details in https://arxiv.org/abs/1103.0354 section 5 7) Remaining systematic uncertainties alter the normalization, the shape, or both for a distribution. The nuisance parameter for such an uncertainty is mapped separately on the normalization and the shape variation components of the uncertainty. For normalization, $\ln$ mapping is used, for shape a spline. Details in https://cms-analysis.github.io/HiggsAnalysis-CombinedLimit/part2/settinguptheanalysis/#binned-shape-analysis 8) All nuisance parameters for the systematic uncertainties are modelled with a Gaussian pdf. 9) Gluon fusion contributions are all scaled to 1 pb. Please combine them using either the scale factors from 'Table SM Gluon Fusion Fractions', or using your own composition.
Observed and expected distributions of the variable chosen for statistical inference in the $t\bar{t}$ control region $m_{T}^{tot}$ for low-mass analysis. Numerical values provided in this table correspond to the $t\bar{t}$ control region of the publication, restricted to 2018 data-taking year. All distributions are considered after a fit to data is performed using a background-only model, which includes the $\text{H}(125)$ boson. Some details on how the distributions should be used: 1) All given uncertainties correspond to systematic variations of $\pm1\sigma$. 2) Upper values ('plus' in the yaml file) correspond to an upward systematic variation of the parameter ($+1\sigma$). 3) Lower values ('minus' in the yaml file) correspond to a downward systematic variation of the parameter ($-1\sigma$). 4) These variations can have both positive and negative values, depending on the modelled effect. 5) Uncertainties with the same name should be treated as correlated, consistently across the upper and lower variations. 6) Systematic uncertainties with 'prop_' in the name treat limited background statistics per histogram bin, and are deployed with 'Barlow-Beeston-lite' approach. Details in https://arxiv.org/abs/1103.0354 section 5 7) Remaining systematic uncertainties alter the normalization, the shape, or both for a distribution. The nuisance parameter for such an uncertainty is mapped separately on the normalization and the shape variation components of the uncertainty. For normalization, $\ln$ mapping is used, for shape a spline. Details in https://cms-analysis.github.io/HiggsAnalysis-CombinedLimit/part2/settinguptheanalysis/#binned-shape-analysis 8) All nuisance parameters for the systematic uncertainties are modelled with a Gaussian pdf. 9) Gluon fusion contributions are all scaled to 1 pb. Please combine them using either the scale factors from 'Table SM Gluon Fusion Fractions', or using your own composition.
Observed and expected distributions of the variable chosen for statistical inference in the low-mass analysis $m_{\tau\tau}$. Numerical values provided in this table correspond to Figure 11 of the auxilliary material of the publication, but restricted to High-$D_\zeta$ category and 2016 data-taking year. All distributions are considered after a fit to data is performed using a background-only model, which includes the $\text{H}(125)$ boson. Some details on how the distributions should be used: 1) All given uncertainties correspond to systematic variations of $\pm1\sigma$. 2) Upper values ('plus' in the yaml file) correspond to an upward systematic variation of the parameter ($+1\sigma$). 3) Lower values ('minus' in the yaml file) correspond to a downward systematic variation of the parameter ($-1\sigma$). 4) These variations can have both positive and negative values, depending on the modelled effect. 5) Uncertainties with the same name should be treated as correlated, consistently across the upper and lower variations. 6) Systematic uncertainties with 'prop_' in the name treat limited background statistics per histogram bin, and are deployed with 'Barlow-Beeston-lite' approach. Details in https://arxiv.org/abs/1103.0354 section 5 7) Remaining systematic uncertainties alter the normalization, the shape, or both for a distribution. The nuisance parameter for such an uncertainty is mapped separately on the normalization and the shape variation components of the uncertainty. For normalization, $\ln$ mapping is used, for shape a spline. Details in https://cms-analysis.github.io/HiggsAnalysis-CombinedLimit/part2/settinguptheanalysis/#binned-shape-analysis 8) All nuisance parameters for the systematic uncertainties are modelled with a Gaussian pdf. 9) Gluon fusion contributions are all scaled to 1 pb. Please combine them using either the scale factors from 'Table SM Gluon Fusion Fractions', or using your own composition.
Observed and expected distributions of the variable chosen for statistical inference in the low-mass analysis $m_{\tau\tau}$. Numerical values provided in this table correspond to Figure 11 of the auxilliary material of the publication, but restricted to High-$D_\zeta$ category and 2017 data-taking year. All distributions are considered after a fit to data is performed using a background-only model, which includes the $\text{H}(125)$ boson. Some details on how the distributions should be used: 1) All given uncertainties correspond to systematic variations of $\pm1\sigma$. 2) Upper values ('plus' in the yaml file) correspond to an upward systematic variation of the parameter ($+1\sigma$). 3) Lower values ('minus' in the yaml file) correspond to a downward systematic variation of the parameter ($-1\sigma$). 4) These variations can have both positive and negative values, depending on the modelled effect. 5) Uncertainties with the same name should be treated as correlated, consistently across the upper and lower variations. 6) Systematic uncertainties with 'prop_' in the name treat limited background statistics per histogram bin, and are deployed with 'Barlow-Beeston-lite' approach. Details in https://arxiv.org/abs/1103.0354 section 5 7) Remaining systematic uncertainties alter the normalization, the shape, or both for a distribution. The nuisance parameter for such an uncertainty is mapped separately on the normalization and the shape variation components of the uncertainty. For normalization, $\ln$ mapping is used, for shape a spline. Details in https://cms-analysis.github.io/HiggsAnalysis-CombinedLimit/part2/settinguptheanalysis/#binned-shape-analysis 8) All nuisance parameters for the systematic uncertainties are modelled with a Gaussian pdf. 9) Gluon fusion contributions are all scaled to 1 pb. Please combine them using either the scale factors from 'Table SM Gluon Fusion Fractions', or using your own composition.
Observed and expected distributions of the variable chosen for statistical inference in the low-mass analysis $m_{\tau\tau}$. Numerical values provided in this table correspond to Figure 11 of the auxilliary material of the publication, but restricted to High-$D_\zeta$ category and 2018 data-taking year. All distributions are considered after a fit to data is performed using a background-only model, which includes the $\text{H}(125)$ boson. Some details on how the distributions should be used: 1) All given uncertainties correspond to systematic variations of $\pm1\sigma$. 2) Upper values ('plus' in the yaml file) correspond to an upward systematic variation of the parameter ($+1\sigma$). 3) Lower values ('minus' in the yaml file) correspond to a downward systematic variation of the parameter ($-1\sigma$). 4) These variations can have both positive and negative values, depending on the modelled effect. 5) Uncertainties with the same name should be treated as correlated, consistently across the upper and lower variations. 6) Systematic uncertainties with 'prop_' in the name treat limited background statistics per histogram bin, and are deployed with 'Barlow-Beeston-lite' approach. Details in https://arxiv.org/abs/1103.0354 section 5 7) Remaining systematic uncertainties alter the normalization, the shape, or both for a distribution. The nuisance parameter for such an uncertainty is mapped separately on the normalization and the shape variation components of the uncertainty. For normalization, $\ln$ mapping is used, for shape a spline. Details in https://cms-analysis.github.io/HiggsAnalysis-CombinedLimit/part2/settinguptheanalysis/#binned-shape-analysis 8) All nuisance parameters for the systematic uncertainties are modelled with a Gaussian pdf. 9) Gluon fusion contributions are all scaled to 1 pb. Please combine them using either the scale factors from 'Table SM Gluon Fusion Fractions', or using your own composition.
Observed and expected distributions of the variable chosen for statistical inference in the low-mass analysis $m_{\tau\tau}$. Numerical values provided in this table correspond to Figure 11 of the auxilliary material of the publication, but restricted to Medium-$D_\zeta$ category and 2016 data-taking year. All distributions are considered after a fit to data is performed using a background-only model, which includes the $\text{H}(125)$ boson. Some details on how the distributions should be used: 1) All given uncertainties correspond to systematic variations of $\pm1\sigma$. 2) Upper values ('plus' in the yaml file) correspond to an upward systematic variation of the parameter ($+1\sigma$). 3) Lower values ('minus' in the yaml file) correspond to a downward systematic variation of the parameter ($-1\sigma$). 4) These variations can have both positive and negative values, depending on the modelled effect. 5) Uncertainties with the same name should be treated as correlated, consistently across the upper and lower variations. 6) Systematic uncertainties with 'prop_' in the name treat limited background statistics per histogram bin, and are deployed with 'Barlow-Beeston-lite' approach. Details in https://arxiv.org/abs/1103.0354 section 5 7) Remaining systematic uncertainties alter the normalization, the shape, or both for a distribution. The nuisance parameter for such an uncertainty is mapped separately on the normalization and the shape variation components of the uncertainty. For normalization, $\ln$ mapping is used, for shape a spline. Details in https://cms-analysis.github.io/HiggsAnalysis-CombinedLimit/part2/settinguptheanalysis/#binned-shape-analysis 8) All nuisance parameters for the systematic uncertainties are modelled with a Gaussian pdf. 9) Gluon fusion contributions are all scaled to 1 pb. Please combine them using either the scale factors from 'Table SM Gluon Fusion Fractions', or using your own composition.
Observed and expected distributions of the variable chosen for statistical inference in the low-mass analysis $m_{\tau\tau}$. Numerical values provided in this table correspond to Figure 11 of the auxilliary material of the publication, but restricted to Medium-$D_\zeta$ category and 2017 data-taking year. All distributions are considered after a fit to data is performed using a background-only model, which includes the $\text{H}(125)$ boson. Some details on how the distributions should be used: 1) All given uncertainties correspond to systematic variations of $\pm1\sigma$. 2) Upper values ('plus' in the yaml file) correspond to an upward systematic variation of the parameter ($+1\sigma$). 3) Lower values ('minus' in the yaml file) correspond to a downward systematic variation of the parameter ($-1\sigma$). 4) These variations can have both positive and negative values, depending on the modelled effect. 5) Uncertainties with the same name should be treated as correlated, consistently across the upper and lower variations. 6) Systematic uncertainties with 'prop_' in the name treat limited background statistics per histogram bin, and are deployed with 'Barlow-Beeston-lite' approach. Details in https://arxiv.org/abs/1103.0354 section 5 7) Remaining systematic uncertainties alter the normalization, the shape, or both for a distribution. The nuisance parameter for such an uncertainty is mapped separately on the normalization and the shape variation components of the uncertainty. For normalization, $\ln$ mapping is used, for shape a spline. Details in https://cms-analysis.github.io/HiggsAnalysis-CombinedLimit/part2/settinguptheanalysis/#binned-shape-analysis 8) All nuisance parameters for the systematic uncertainties are modelled with a Gaussian pdf. 9) Gluon fusion contributions are all scaled to 1 pb. Please combine them using either the scale factors from 'Table SM Gluon Fusion Fractions', or using your own composition.
Observed and expected distributions of the variable chosen for statistical inference in the low-mass analysis $m_{\tau\tau}$. Numerical values provided in this table correspond to Figure 11 of the auxilliary material of the publication, but restricted to Medium-$D_\zeta$ category and 2018 data-taking year. All distributions are considered after a fit to data is performed using a background-only model, which includes the $\text{H}(125)$ boson. Some details on how the distributions should be used: 1) All given uncertainties correspond to systematic variations of $\pm1\sigma$. 2) Upper values ('plus' in the yaml file) correspond to an upward systematic variation of the parameter ($+1\sigma$). 3) Lower values ('minus' in the yaml file) correspond to a downward systematic variation of the parameter ($-1\sigma$). 4) These variations can have both positive and negative values, depending on the modelled effect. 5) Uncertainties with the same name should be treated as correlated, consistently across the upper and lower variations. 6) Systematic uncertainties with 'prop_' in the name treat limited background statistics per histogram bin, and are deployed with 'Barlow-Beeston-lite' approach. Details in https://arxiv.org/abs/1103.0354 section 5 7) Remaining systematic uncertainties alter the normalization, the shape, or both for a distribution. The nuisance parameter for such an uncertainty is mapped separately on the normalization and the shape variation components of the uncertainty. For normalization, $\ln$ mapping is used, for shape a spline. Details in https://cms-analysis.github.io/HiggsAnalysis-CombinedLimit/part2/settinguptheanalysis/#binned-shape-analysis 8) All nuisance parameters for the systematic uncertainties are modelled with a Gaussian pdf. 9) Gluon fusion contributions are all scaled to 1 pb. Please combine them using either the scale factors from 'Table SM Gluon Fusion Fractions', or using your own composition.
Observed and expected distributions of the variable chosen for statistical inference in the low-mass analysis $m_{\tau\tau}$. Numerical values provided in this table correspond to Figure 12 of the auxilliary material of the publication, but restricted to High-$D_\zeta$ category and 2016 data-taking year. All distributions are considered after a fit to data is performed using a background-only model, which includes the $\text{H}(125)$ boson. Some details on how the distributions should be used: 1) All given uncertainties correspond to systematic variations of $\pm1\sigma$. 2) Upper values ('plus' in the yaml file) correspond to an upward systematic variation of the parameter ($+1\sigma$). 3) Lower values ('minus' in the yaml file) correspond to a downward systematic variation of the parameter ($-1\sigma$). 4) These variations can have both positive and negative values, depending on the modelled effect. 5) Uncertainties with the same name should be treated as correlated, consistently across the upper and lower variations. 6) Systematic uncertainties with 'prop_' in the name treat limited background statistics per histogram bin, and are deployed with 'Barlow-Beeston-lite' approach. Details in https://arxiv.org/abs/1103.0354 section 5 7) Remaining systematic uncertainties alter the normalization, the shape, or both for a distribution. The nuisance parameter for such an uncertainty is mapped separately on the normalization and the shape variation components of the uncertainty. For normalization, $\ln$ mapping is used, for shape a spline. Details in https://cms-analysis.github.io/HiggsAnalysis-CombinedLimit/part2/settinguptheanalysis/#binned-shape-analysis 8) All nuisance parameters for the systematic uncertainties are modelled with a Gaussian pdf. 9) Gluon fusion contributions are all scaled to 1 pb. Please combine them using either the scale factors from 'Table SM Gluon Fusion Fractions', or using your own composition.
Observed and expected distributions of the variable chosen for statistical inference in the low-mass analysis $m_{\tau\tau}$. Numerical values provided in this table correspond to Figure 12 of the auxilliary material of the publication, but restricted to High-$D_\zeta$ category and 2017 data-taking year. All distributions are considered after a fit to data is performed using a background-only model, which includes the $\text{H}(125)$ boson. Some details on how the distributions should be used: 1) All given uncertainties correspond to systematic variations of $\pm1\sigma$. 2) Upper values ('plus' in the yaml file) correspond to an upward systematic variation of the parameter ($+1\sigma$). 3) Lower values ('minus' in the yaml file) correspond to a downward systematic variation of the parameter ($-1\sigma$). 4) These variations can have both positive and negative values, depending on the modelled effect. 5) Uncertainties with the same name should be treated as correlated, consistently across the upper and lower variations. 6) Systematic uncertainties with 'prop_' in the name treat limited background statistics per histogram bin, and are deployed with 'Barlow-Beeston-lite' approach. Details in https://arxiv.org/abs/1103.0354 section 5 7) Remaining systematic uncertainties alter the normalization, the shape, or both for a distribution. The nuisance parameter for such an uncertainty is mapped separately on the normalization and the shape variation components of the uncertainty. For normalization, $\ln$ mapping is used, for shape a spline. Details in https://cms-analysis.github.io/HiggsAnalysis-CombinedLimit/part2/settinguptheanalysis/#binned-shape-analysis 8) All nuisance parameters for the systematic uncertainties are modelled with a Gaussian pdf. 9) Gluon fusion contributions are all scaled to 1 pb. Please combine them using either the scale factors from 'Table SM Gluon Fusion Fractions', or using your own composition.
Observed and expected distributions of the variable chosen for statistical inference in the low-mass analysis $m_{\tau\tau}$. Numerical values provided in this table correspond to Figure 12 of the auxilliary material of the publication, but restricted to High-$D_\zeta$ category and 2018 data-taking year. All distributions are considered after a fit to data is performed using a background-only model, which includes the $\text{H}(125)$ boson. Some details on how the distributions should be used: 1) All given uncertainties correspond to systematic variations of $\pm1\sigma$. 2) Upper values ('plus' in the yaml file) correspond to an upward systematic variation of the parameter ($+1\sigma$). 3) Lower values ('minus' in the yaml file) correspond to a downward systematic variation of the parameter ($-1\sigma$). 4) These variations can have both positive and negative values, depending on the modelled effect. 5) Uncertainties with the same name should be treated as correlated, consistently across the upper and lower variations. 6) Systematic uncertainties with 'prop_' in the name treat limited background statistics per histogram bin, and are deployed with 'Barlow-Beeston-lite' approach. Details in https://arxiv.org/abs/1103.0354 section 5 7) Remaining systematic uncertainties alter the normalization, the shape, or both for a distribution. The nuisance parameter for such an uncertainty is mapped separately on the normalization and the shape variation components of the uncertainty. For normalization, $\ln$ mapping is used, for shape a spline. Details in https://cms-analysis.github.io/HiggsAnalysis-CombinedLimit/part2/settinguptheanalysis/#binned-shape-analysis 8) All nuisance parameters for the systematic uncertainties are modelled with a Gaussian pdf. 9) Gluon fusion contributions are all scaled to 1 pb. Please combine them using either the scale factors from 'Table SM Gluon Fusion Fractions', or using your own composition.
Observed and expected distributions of the variable chosen for statistical inference in the low-mass analysis $m_{\tau\tau}$. Numerical values provided in this table correspond to Figure 12 of the auxilliary material of the publication, but restricted to Medium-$D_\zeta$ category and 2016 data-taking year. All distributions are considered after a fit to data is performed using a background-only model, which includes the $\text{H}(125)$ boson. Some details on how the distributions should be used: 1) All given uncertainties correspond to systematic variations of $\pm1\sigma$. 2) Upper values ('plus' in the yaml file) correspond to an upward systematic variation of the parameter ($+1\sigma$). 3) Lower values ('minus' in the yaml file) correspond to a downward systematic variation of the parameter ($-1\sigma$). 4) These variations can have both positive and negative values, depending on the modelled effect. 5) Uncertainties with the same name should be treated as correlated, consistently across the upper and lower variations. 6) Systematic uncertainties with 'prop_' in the name treat limited background statistics per histogram bin, and are deployed with 'Barlow-Beeston-lite' approach. Details in https://arxiv.org/abs/1103.0354 section 5 7) Remaining systematic uncertainties alter the normalization, the shape, or both for a distribution. The nuisance parameter for such an uncertainty is mapped separately on the normalization and the shape variation components of the uncertainty. For normalization, $\ln$ mapping is used, for shape a spline. Details in https://cms-analysis.github.io/HiggsAnalysis-CombinedLimit/part2/settinguptheanalysis/#binned-shape-analysis 8) All nuisance parameters for the systematic uncertainties are modelled with a Gaussian pdf. 9) Gluon fusion contributions are all scaled to 1 pb. Please combine them using either the scale factors from 'Table SM Gluon Fusion Fractions', or using your own composition.
Observed and expected distributions of the variable chosen for statistical inference in the low-mass analysis $m_{\tau\tau}$. Numerical values provided in this table correspond to Figure 12 of the auxilliary material of the publication, but restricted to Medium-$D_\zeta$ category and 2017 data-taking year. All distributions are considered after a fit to data is performed using a background-only model, which includes the $\text{H}(125)$ boson. Some details on how the distributions should be used: 1) All given uncertainties correspond to systematic variations of $\pm1\sigma$. 2) Upper values ('plus' in the yaml file) correspond to an upward systematic variation of the parameter ($+1\sigma$). 3) Lower values ('minus' in the yaml file) correspond to a downward systematic variation of the parameter ($-1\sigma$). 4) These variations can have both positive and negative values, depending on the modelled effect. 5) Uncertainties with the same name should be treated as correlated, consistently across the upper and lower variations. 6) Systematic uncertainties with 'prop_' in the name treat limited background statistics per histogram bin, and are deployed with 'Barlow-Beeston-lite' approach. Details in https://arxiv.org/abs/1103.0354 section 5 7) Remaining systematic uncertainties alter the normalization, the shape, or both for a distribution. The nuisance parameter for such an uncertainty is mapped separately on the normalization and the shape variation components of the uncertainty. For normalization, $\ln$ mapping is used, for shape a spline. Details in https://cms-analysis.github.io/HiggsAnalysis-CombinedLimit/part2/settinguptheanalysis/#binned-shape-analysis 8) All nuisance parameters for the systematic uncertainties are modelled with a Gaussian pdf. 9) Gluon fusion contributions are all scaled to 1 pb. Please combine them using either the scale factors from 'Table SM Gluon Fusion Fractions', or using your own composition.
Observed and expected distributions of the variable chosen for statistical inference in the low-mass analysis $m_{\tau\tau}$. Numerical values provided in this table correspond to Figure 12 of the auxilliary material of the publication, but restricted to Medium-$D_\zeta$ category and 2018 data-taking year. All distributions are considered after a fit to data is performed using a background-only model, which includes the $\text{H}(125)$ boson. Some details on how the distributions should be used: 1) All given uncertainties correspond to systematic variations of $\pm1\sigma$. 2) Upper values ('plus' in the yaml file) correspond to an upward systematic variation of the parameter ($+1\sigma$). 3) Lower values ('minus' in the yaml file) correspond to a downward systematic variation of the parameter ($-1\sigma$). 4) These variations can have both positive and negative values, depending on the modelled effect. 5) Uncertainties with the same name should be treated as correlated, consistently across the upper and lower variations. 6) Systematic uncertainties with 'prop_' in the name treat limited background statistics per histogram bin, and are deployed with 'Barlow-Beeston-lite' approach. Details in https://arxiv.org/abs/1103.0354 section 5 7) Remaining systematic uncertainties alter the normalization, the shape, or both for a distribution. The nuisance parameter for such an uncertainty is mapped separately on the normalization and the shape variation components of the uncertainty. For normalization, $\ln$ mapping is used, for shape a spline. Details in https://cms-analysis.github.io/HiggsAnalysis-CombinedLimit/part2/settinguptheanalysis/#binned-shape-analysis 8) All nuisance parameters for the systematic uncertainties are modelled with a Gaussian pdf. 9) Gluon fusion contributions are all scaled to 1 pb. Please combine them using either the scale factors from 'Table SM Gluon Fusion Fractions', or using your own composition.
Observed and expected distributions of the variable chosen for statistical inference in the low-mass analysis $m_{\tau\tau}$. Numerical values provided in this table correspond to Figure 13 of the auxilliary material of the publication, but restricted to High-$D_\zeta$ category and 2016 data-taking year. All distributions are considered after a fit to data is performed using a background-only model, which includes the $\text{H}(125)$ boson. Some details on how the distributions should be used: 1) All given uncertainties correspond to systematic variations of $\pm1\sigma$. 2) Upper values ('plus' in the yaml file) correspond to an upward systematic variation of the parameter ($+1\sigma$). 3) Lower values ('minus' in the yaml file) correspond to a downward systematic variation of the parameter ($-1\sigma$). 4) These variations can have both positive and negative values, depending on the modelled effect. 5) Uncertainties with the same name should be treated as correlated, consistently across the upper and lower variations. 6) Systematic uncertainties with 'prop_' in the name treat limited background statistics per histogram bin, and are deployed with 'Barlow-Beeston-lite' approach. Details in https://arxiv.org/abs/1103.0354 section 5 7) Remaining systematic uncertainties alter the normalization, the shape, or both for a distribution. The nuisance parameter for such an uncertainty is mapped separately on the normalization and the shape variation components of the uncertainty. For normalization, $\ln$ mapping is used, for shape a spline. Details in https://cms-analysis.github.io/HiggsAnalysis-CombinedLimit/part2/settinguptheanalysis/#binned-shape-analysis 8) All nuisance parameters for the systematic uncertainties are modelled with a Gaussian pdf. 9) Gluon fusion contributions are all scaled to 1 pb. Please combine them using either the scale factors from 'Table SM Gluon Fusion Fractions', or using your own composition.
Observed and expected distributions of the variable chosen for statistical inference in the low-mass analysis $m_{\tau\tau}$. Numerical values provided in this table correspond to Figure 13 of the auxilliary material of the publication, but restricted to High-$D_\zeta$ category and 2017 data-taking year. All distributions are considered after a fit to data is performed using a background-only model, which includes the $\text{H}(125)$ boson. Some details on how the distributions should be used: 1) All given uncertainties correspond to systematic variations of $\pm1\sigma$. 2) Upper values ('plus' in the yaml file) correspond to an upward systematic variation of the parameter ($+1\sigma$). 3) Lower values ('minus' in the yaml file) correspond to a downward systematic variation of the parameter ($-1\sigma$). 4) These variations can have both positive and negative values, depending on the modelled effect. 5) Uncertainties with the same name should be treated as correlated, consistently across the upper and lower variations. 6) Systematic uncertainties with 'prop_' in the name treat limited background statistics per histogram bin, and are deployed with 'Barlow-Beeston-lite' approach. Details in https://arxiv.org/abs/1103.0354 section 5 7) Remaining systematic uncertainties alter the normalization, the shape, or both for a distribution. The nuisance parameter for such an uncertainty is mapped separately on the normalization and the shape variation components of the uncertainty. For normalization, $\ln$ mapping is used, for shape a spline. Details in https://cms-analysis.github.io/HiggsAnalysis-CombinedLimit/part2/settinguptheanalysis/#binned-shape-analysis 8) All nuisance parameters for the systematic uncertainties are modelled with a Gaussian pdf. 9) Gluon fusion contributions are all scaled to 1 pb. Please combine them using either the scale factors from 'Table SM Gluon Fusion Fractions', or using your own composition.
Observed and expected distributions of the variable chosen for statistical inference in the low-mass analysis $m_{\tau\tau}$. Numerical values provided in this table correspond to Figure 13 of the auxilliary material of the publication, but restricted to High-$D_\zeta$ category and 2018 data-taking year. All distributions are considered after a fit to data is performed using a background-only model, which includes the $\text{H}(125)$ boson. Some details on how the distributions should be used: 1) All given uncertainties correspond to systematic variations of $\pm1\sigma$. 2) Upper values ('plus' in the yaml file) correspond to an upward systematic variation of the parameter ($+1\sigma$). 3) Lower values ('minus' in the yaml file) correspond to a downward systematic variation of the parameter ($-1\sigma$). 4) These variations can have both positive and negative values, depending on the modelled effect. 5) Uncertainties with the same name should be treated as correlated, consistently across the upper and lower variations. 6) Systematic uncertainties with 'prop_' in the name treat limited background statistics per histogram bin, and are deployed with 'Barlow-Beeston-lite' approach. Details in https://arxiv.org/abs/1103.0354 section 5 7) Remaining systematic uncertainties alter the normalization, the shape, or both for a distribution. The nuisance parameter for such an uncertainty is mapped separately on the normalization and the shape variation components of the uncertainty. For normalization, $\ln$ mapping is used, for shape a spline. Details in https://cms-analysis.github.io/HiggsAnalysis-CombinedLimit/part2/settinguptheanalysis/#binned-shape-analysis 8) All nuisance parameters for the systematic uncertainties are modelled with a Gaussian pdf. 9) Gluon fusion contributions are all scaled to 1 pb. Please combine them using either the scale factors from 'Table SM Gluon Fusion Fractions', or using your own composition.
Observed and expected distributions of the variable chosen for statistical inference in the low-mass analysis $m_{\tau\tau}$. Numerical values provided in this table correspond to Figure 13 of the auxilliary material of the publication, but restricted to Medium-$D_\zeta$ category and 2016 data-taking year. All distributions are considered after a fit to data is performed using a background-only model, which includes the $\text{H}(125)$ boson. Some details on how the distributions should be used: 1) All given uncertainties correspond to systematic variations of $\pm1\sigma$. 2) Upper values ('plus' in the yaml file) correspond to an upward systematic variation of the parameter ($+1\sigma$). 3) Lower values ('minus' in the yaml file) correspond to a downward systematic variation of the parameter ($-1\sigma$). 4) These variations can have both positive and negative values, depending on the modelled effect. 5) Uncertainties with the same name should be treated as correlated, consistently across the upper and lower variations. 6) Systematic uncertainties with 'prop_' in the name treat limited background statistics per histogram bin, and are deployed with 'Barlow-Beeston-lite' approach. Details in https://arxiv.org/abs/1103.0354 section 5 7) Remaining systematic uncertainties alter the normalization, the shape, or both for a distribution. The nuisance parameter for such an uncertainty is mapped separately on the normalization and the shape variation components of the uncertainty. For normalization, $\ln$ mapping is used, for shape a spline. Details in https://cms-analysis.github.io/HiggsAnalysis-CombinedLimit/part2/settinguptheanalysis/#binned-shape-analysis 8) All nuisance parameters for the systematic uncertainties are modelled with a Gaussian pdf. 9) Gluon fusion contributions are all scaled to 1 pb. Please combine them using either the scale factors from 'Table SM Gluon Fusion Fractions', or using your own composition.
Observed and expected distributions of the variable chosen for statistical inference in the low-mass analysis $m_{\tau\tau}$. Numerical values provided in this table correspond to Figure 13 of the auxilliary material of the publication, but restricted to Medium-$D_\zeta$ category and 2017 data-taking year. All distributions are considered after a fit to data is performed using a background-only model, which includes the $\text{H}(125)$ boson. Some details on how the distributions should be used: 1) All given uncertainties correspond to systematic variations of $\pm1\sigma$. 2) Upper values ('plus' in the yaml file) correspond to an upward systematic variation of the parameter ($+1\sigma$). 3) Lower values ('minus' in the yaml file) correspond to a downward systematic variation of the parameter ($-1\sigma$). 4) These variations can have both positive and negative values, depending on the modelled effect. 5) Uncertainties with the same name should be treated as correlated, consistently across the upper and lower variations. 6) Systematic uncertainties with 'prop_' in the name treat limited background statistics per histogram bin, and are deployed with 'Barlow-Beeston-lite' approach. Details in https://arxiv.org/abs/1103.0354 section 5 7) Remaining systematic uncertainties alter the normalization, the shape, or both for a distribution. The nuisance parameter for such an uncertainty is mapped separately on the normalization and the shape variation components of the uncertainty. For normalization, $\ln$ mapping is used, for shape a spline. Details in https://cms-analysis.github.io/HiggsAnalysis-CombinedLimit/part2/settinguptheanalysis/#binned-shape-analysis 8) All nuisance parameters for the systematic uncertainties are modelled with a Gaussian pdf. 9) Gluon fusion contributions are all scaled to 1 pb. Please combine them using either the scale factors from 'Table SM Gluon Fusion Fractions', or using your own composition.
Observed and expected distributions of the variable chosen for statistical inference in the low-mass analysis $m_{\tau\tau}$. Numerical values provided in this table correspond to Figure 13 of the auxilliary material of the publication, but restricted to Medium-$D_\zeta$ category and 2018 data-taking year. All distributions are considered after a fit to data is performed using a background-only model, which includes the $\text{H}(125)$ boson. Some details on how the distributions should be used: 1) All given uncertainties correspond to systematic variations of $\pm1\sigma$. 2) Upper values ('plus' in the yaml file) correspond to an upward systematic variation of the parameter ($+1\sigma$). 3) Lower values ('minus' in the yaml file) correspond to a downward systematic variation of the parameter ($-1\sigma$). 4) These variations can have both positive and negative values, depending on the modelled effect. 5) Uncertainties with the same name should be treated as correlated, consistently across the upper and lower variations. 6) Systematic uncertainties with 'prop_' in the name treat limited background statistics per histogram bin, and are deployed with 'Barlow-Beeston-lite' approach. Details in https://arxiv.org/abs/1103.0354 section 5 7) Remaining systematic uncertainties alter the normalization, the shape, or both for a distribution. The nuisance parameter for such an uncertainty is mapped separately on the normalization and the shape variation components of the uncertainty. For normalization, $\ln$ mapping is used, for shape a spline. Details in https://cms-analysis.github.io/HiggsAnalysis-CombinedLimit/part2/settinguptheanalysis/#binned-shape-analysis 8) All nuisance parameters for the systematic uncertainties are modelled with a Gaussian pdf. 9) Gluon fusion contributions are all scaled to 1 pb. Please combine them using either the scale factors from 'Table SM Gluon Fusion Fractions', or using your own composition.
Observed and expected distributions of the variable chosen for statistical inference in the low-mass analysis $m_{\tau\tau}$. Numerical values provided in this table correspond to Figure 14 of the auxilliary material of the publication, but restricted to High-$D_\zeta$ category and 2016 data-taking year. All distributions are considered after a fit to data is performed using a background-only model, which includes the $\text{H}(125)$ boson. Some details on how the distributions should be used: 1) All given uncertainties correspond to systematic variations of $\pm1\sigma$. 2) Upper values ('plus' in the yaml file) correspond to an upward systematic variation of the parameter ($+1\sigma$). 3) Lower values ('minus' in the yaml file) correspond to a downward systematic variation of the parameter ($-1\sigma$). 4) These variations can have both positive and negative values, depending on the modelled effect. 5) Uncertainties with the same name should be treated as correlated, consistently across the upper and lower variations. 6) Systematic uncertainties with 'prop_' in the name treat limited background statistics per histogram bin, and are deployed with 'Barlow-Beeston-lite' approach. Details in https://arxiv.org/abs/1103.0354 section 5 7) Remaining systematic uncertainties alter the normalization, the shape, or both for a distribution. The nuisance parameter for such an uncertainty is mapped separately on the normalization and the shape variation components of the uncertainty. For normalization, $\ln$ mapping is used, for shape a spline. Details in https://cms-analysis.github.io/HiggsAnalysis-CombinedLimit/part2/settinguptheanalysis/#binned-shape-analysis 8) All nuisance parameters for the systematic uncertainties are modelled with a Gaussian pdf. 9) Gluon fusion contributions are all scaled to 1 pb. Please combine them using either the scale factors from 'Table SM Gluon Fusion Fractions', or using your own composition.
Observed and expected distributions of the variable chosen for statistical inference in the low-mass analysis $m_{\tau\tau}$. Numerical values provided in this table correspond to Figure 14 of the auxilliary material of the publication, but restricted to High-$D_\zeta$ category and 2017 data-taking year. All distributions are considered after a fit to data is performed using a background-only model, which includes the $\text{H}(125)$ boson. Some details on how the distributions should be used: 1) All given uncertainties correspond to systematic variations of $\pm1\sigma$. 2) Upper values ('plus' in the yaml file) correspond to an upward systematic variation of the parameter ($+1\sigma$). 3) Lower values ('minus' in the yaml file) correspond to a downward systematic variation of the parameter ($-1\sigma$). 4) These variations can have both positive and negative values, depending on the modelled effect. 5) Uncertainties with the same name should be treated as correlated, consistently across the upper and lower variations. 6) Systematic uncertainties with 'prop_' in the name treat limited background statistics per histogram bin, and are deployed with 'Barlow-Beeston-lite' approach. Details in https://arxiv.org/abs/1103.0354 section 5 7) Remaining systematic uncertainties alter the normalization, the shape, or both for a distribution. The nuisance parameter for such an uncertainty is mapped separately on the normalization and the shape variation components of the uncertainty. For normalization, $\ln$ mapping is used, for shape a spline. Details in https://cms-analysis.github.io/HiggsAnalysis-CombinedLimit/part2/settinguptheanalysis/#binned-shape-analysis 8) All nuisance parameters for the systematic uncertainties are modelled with a Gaussian pdf. 9) Gluon fusion contributions are all scaled to 1 pb. Please combine them using either the scale factors from 'Table SM Gluon Fusion Fractions', or using your own composition.
Observed and expected distributions of the variable chosen for statistical inference in the low-mass analysis $m_{\tau\tau}$. Numerical values provided in this table correspond to Figure 14 of the auxilliary material of the publication, but restricted to High-$D_\zeta$ category and 2018 data-taking year. All distributions are considered after a fit to data is performed using a background-only model, which includes the $\text{H}(125)$ boson. Some details on how the distributions should be used: 1) All given uncertainties correspond to systematic variations of $\pm1\sigma$. 2) Upper values ('plus' in the yaml file) correspond to an upward systematic variation of the parameter ($+1\sigma$). 3) Lower values ('minus' in the yaml file) correspond to a downward systematic variation of the parameter ($-1\sigma$). 4) These variations can have both positive and negative values, depending on the modelled effect. 5) Uncertainties with the same name should be treated as correlated, consistently across the upper and lower variations. 6) Systematic uncertainties with 'prop_' in the name treat limited background statistics per histogram bin, and are deployed with 'Barlow-Beeston-lite' approach. Details in https://arxiv.org/abs/1103.0354 section 5 7) Remaining systematic uncertainties alter the normalization, the shape, or both for a distribution. The nuisance parameter for such an uncertainty is mapped separately on the normalization and the shape variation components of the uncertainty. For normalization, $\ln$ mapping is used, for shape a spline. Details in https://cms-analysis.github.io/HiggsAnalysis-CombinedLimit/part2/settinguptheanalysis/#binned-shape-analysis 8) All nuisance parameters for the systematic uncertainties are modelled with a Gaussian pdf. 9) Gluon fusion contributions are all scaled to 1 pb. Please combine them using either the scale factors from 'Table SM Gluon Fusion Fractions', or using your own composition.
Observed and expected distributions of the variable chosen for statistical inference in the low-mass analysis $m_{\tau\tau}$. Numerical values provided in this table correspond to Figure 14 of the auxilliary material of the publication, but restricted to Medium-$D_\zeta$ category and 2016 data-taking year. All distributions are considered after a fit to data is performed using a background-only model, which includes the $\text{H}(125)$ boson. Some details on how the distributions should be used: 1) All given uncertainties correspond to systematic variations of $\pm1\sigma$. 2) Upper values ('plus' in the yaml file) correspond to an upward systematic variation of the parameter ($+1\sigma$). 3) Lower values ('minus' in the yaml file) correspond to a downward systematic variation of the parameter ($-1\sigma$). 4) These variations can have both positive and negative values, depending on the modelled effect. 5) Uncertainties with the same name should be treated as correlated, consistently across the upper and lower variations. 6) Systematic uncertainties with 'prop_' in the name treat limited background statistics per histogram bin, and are deployed with 'Barlow-Beeston-lite' approach. Details in https://arxiv.org/abs/1103.0354 section 5 7) Remaining systematic uncertainties alter the normalization, the shape, or both for a distribution. The nuisance parameter for such an uncertainty is mapped separately on the normalization and the shape variation components of the uncertainty. For normalization, $\ln$ mapping is used, for shape a spline. Details in https://cms-analysis.github.io/HiggsAnalysis-CombinedLimit/part2/settinguptheanalysis/#binned-shape-analysis 8) All nuisance parameters for the systematic uncertainties are modelled with a Gaussian pdf. 9) Gluon fusion contributions are all scaled to 1 pb. Please combine them using either the scale factors from 'Table SM Gluon Fusion Fractions', or using your own composition.
Observed and expected distributions of the variable chosen for statistical inference in the low-mass analysis $m_{\tau\tau}$. Numerical values provided in this table correspond to Figure 14 of the auxilliary material of the publication, but restricted to Medium-$D_\zeta$ category and 2017 data-taking year. All distributions are considered after a fit to data is performed using a background-only model, which includes the $\text{H}(125)$ boson. Some details on how the distributions should be used: 1) All given uncertainties correspond to systematic variations of $\pm1\sigma$. 2) Upper values ('plus' in the yaml file) correspond to an upward systematic variation of the parameter ($+1\sigma$). 3) Lower values ('minus' in the yaml file) correspond to a downward systematic variation of the parameter ($-1\sigma$). 4) These variations can have both positive and negative values, depending on the modelled effect. 5) Uncertainties with the same name should be treated as correlated, consistently across the upper and lower variations. 6) Systematic uncertainties with 'prop_' in the name treat limited background statistics per histogram bin, and are deployed with 'Barlow-Beeston-lite' approach. Details in https://arxiv.org/abs/1103.0354 section 5 7) Remaining systematic uncertainties alter the normalization, the shape, or both for a distribution. The nuisance parameter for such an uncertainty is mapped separately on the normalization and the shape variation components of the uncertainty. For normalization, $\ln$ mapping is used, for shape a spline. Details in https://cms-analysis.github.io/HiggsAnalysis-CombinedLimit/part2/settinguptheanalysis/#binned-shape-analysis 8) All nuisance parameters for the systematic uncertainties are modelled with a Gaussian pdf. 9) Gluon fusion contributions are all scaled to 1 pb. Please combine them using either the scale factors from 'Table SM Gluon Fusion Fractions', or using your own composition.
Observed and expected distributions of the variable chosen for statistical inference in the low-mass analysis $m_{\tau\tau}$. Numerical values provided in this table correspond to Figure 14 of the auxilliary material of the publication, but restricted to Medium-$D_\zeta$ category and 2018 data-taking year. All distributions are considered after a fit to data is performed using a background-only model, which includes the $\text{H}(125)$ boson. Some details on how the distributions should be used: 1) All given uncertainties correspond to systematic variations of $\pm1\sigma$. 2) Upper values ('plus' in the yaml file) correspond to an upward systematic variation of the parameter ($+1\sigma$). 3) Lower values ('minus' in the yaml file) correspond to a downward systematic variation of the parameter ($-1\sigma$). 4) These variations can have both positive and negative values, depending on the modelled effect. 5) Uncertainties with the same name should be treated as correlated, consistently across the upper and lower variations. 6) Systematic uncertainties with 'prop_' in the name treat limited background statistics per histogram bin, and are deployed with 'Barlow-Beeston-lite' approach. Details in https://arxiv.org/abs/1103.0354 section 5 7) Remaining systematic uncertainties alter the normalization, the shape, or both for a distribution. The nuisance parameter for such an uncertainty is mapped separately on the normalization and the shape variation components of the uncertainty. For normalization, $\ln$ mapping is used, for shape a spline. Details in https://cms-analysis.github.io/HiggsAnalysis-CombinedLimit/part2/settinguptheanalysis/#binned-shape-analysis 8) All nuisance parameters for the systematic uncertainties are modelled with a Gaussian pdf. 9) Gluon fusion contributions are all scaled to 1 pb. Please combine them using either the scale factors from 'Table SM Gluon Fusion Fractions', or using your own composition.
Observed and expected distributions of the variable chosen for statistical inference in the low-mass analysis $m_{\tau\tau}$. Numerical values provided in this table correspond to Figure 10 of the auxilliary material of the publication, but restricted to High-$D_\zeta$ category and 2016 data-taking year. All distributions are considered after a fit to data is performed using a background-only model, which includes the $\text{H}(125)$ boson. Some details on how the distributions should be used: 1) All given uncertainties correspond to systematic variations of $\pm1\sigma$. 2) Upper values ('plus' in the yaml file) correspond to an upward systematic variation of the parameter ($+1\sigma$). 3) Lower values ('minus' in the yaml file) correspond to a downward systematic variation of the parameter ($-1\sigma$). 4) These variations can have both positive and negative values, depending on the modelled effect. 5) Uncertainties with the same name should be treated as correlated, consistently across the upper and lower variations. 6) Systematic uncertainties with 'prop_' in the name treat limited background statistics per histogram bin, and are deployed with 'Barlow-Beeston-lite' approach. Details in https://arxiv.org/abs/1103.0354 section 5 7) Remaining systematic uncertainties alter the normalization, the shape, or both for a distribution. The nuisance parameter for such an uncertainty is mapped separately on the normalization and the shape variation components of the uncertainty. For normalization, $\ln$ mapping is used, for shape a spline. Details in https://cms-analysis.github.io/HiggsAnalysis-CombinedLimit/part2/settinguptheanalysis/#binned-shape-analysis 8) All nuisance parameters for the systematic uncertainties are modelled with a Gaussian pdf. 9) Gluon fusion contributions are all scaled to 1 pb. Please combine them using either the scale factors from 'Table SM Gluon Fusion Fractions', or using your own composition.
Observed and expected distributions of the variable chosen for statistical inference in the low-mass analysis $m_{\tau\tau}$. Numerical values provided in this table correspond to Figure 10 of the auxilliary material of the publication, but restricted to High-$D_\zeta$ category and 2017 data-taking year. All distributions are considered after a fit to data is performed using a background-only model, which includes the $\text{H}(125)$ boson. Some details on how the distributions should be used: 1) All given uncertainties correspond to systematic variations of $\pm1\sigma$. 2) Upper values ('plus' in the yaml file) correspond to an upward systematic variation of the parameter ($+1\sigma$). 3) Lower values ('minus' in the yaml file) correspond to a downward systematic variation of the parameter ($-1\sigma$). 4) These variations can have both positive and negative values, depending on the modelled effect. 5) Uncertainties with the same name should be treated as correlated, consistently across the upper and lower variations. 6) Systematic uncertainties with 'prop_' in the name treat limited background statistics per histogram bin, and are deployed with 'Barlow-Beeston-lite' approach. Details in https://arxiv.org/abs/1103.0354 section 5 7) Remaining systematic uncertainties alter the normalization, the shape, or both for a distribution. The nuisance parameter for such an uncertainty is mapped separately on the normalization and the shape variation components of the uncertainty. For normalization, $\ln$ mapping is used, for shape a spline. Details in https://cms-analysis.github.io/HiggsAnalysis-CombinedLimit/part2/settinguptheanalysis/#binned-shape-analysis 8) All nuisance parameters for the systematic uncertainties are modelled with a Gaussian pdf. 9) Gluon fusion contributions are all scaled to 1 pb. Please combine them using either the scale factors from 'Table SM Gluon Fusion Fractions', or using your own composition.
Observed and expected distributions of the variable chosen for statistical inference in the low-mass analysis $m_{\tau\tau}$. Numerical values provided in this table correspond to Figure 10 of the auxilliary material of the publication, but restricted to High-$D_\zeta$ category and 2018 data-taking year. All distributions are considered after a fit to data is performed using a background-only model, which includes the $\text{H}(125)$ boson. Some details on how the distributions should be used: 1) All given uncertainties correspond to systematic variations of $\pm1\sigma$. 2) Upper values ('plus' in the yaml file) correspond to an upward systematic variation of the parameter ($+1\sigma$). 3) Lower values ('minus' in the yaml file) correspond to a downward systematic variation of the parameter ($-1\sigma$). 4) These variations can have both positive and negative values, depending on the modelled effect. 5) Uncertainties with the same name should be treated as correlated, consistently across the upper and lower variations. 6) Systematic uncertainties with 'prop_' in the name treat limited background statistics per histogram bin, and are deployed with 'Barlow-Beeston-lite' approach. Details in https://arxiv.org/abs/1103.0354 section 5 7) Remaining systematic uncertainties alter the normalization, the shape, or both for a distribution. The nuisance parameter for such an uncertainty is mapped separately on the normalization and the shape variation components of the uncertainty. For normalization, $\ln$ mapping is used, for shape a spline. Details in https://cms-analysis.github.io/HiggsAnalysis-CombinedLimit/part2/settinguptheanalysis/#binned-shape-analysis 8) All nuisance parameters for the systematic uncertainties are modelled with a Gaussian pdf. 9) Gluon fusion contributions are all scaled to 1 pb. Please combine them using either the scale factors from 'Table SM Gluon Fusion Fractions', or using your own composition.
Observed and expected distributions of the variable chosen for statistical inference in the low-mass analysis $m_{\tau\tau}$. Numerical values provided in this table correspond to Figure 10 of the auxilliary material of the publication, but restricted to Medium-$D_\zeta$ category and 2016 data-taking year. All distributions are considered after a fit to data is performed using a background-only model, which includes the $\text{H}(125)$ boson. Some details on how the distributions should be used: 1) All given uncertainties correspond to systematic variations of $\pm1\sigma$. 2) Upper values ('plus' in the yaml file) correspond to an upward systematic variation of the parameter ($+1\sigma$). 3) Lower values ('minus' in the yaml file) correspond to a downward systematic variation of the parameter ($-1\sigma$). 4) These variations can have both positive and negative values, depending on the modelled effect. 5) Uncertainties with the same name should be treated as correlated, consistently across the upper and lower variations. 6) Systematic uncertainties with 'prop_' in the name treat limited background statistics per histogram bin, and are deployed with 'Barlow-Beeston-lite' approach. Details in https://arxiv.org/abs/1103.0354 section 5 7) Remaining systematic uncertainties alter the normalization, the shape, or both for a distribution. The nuisance parameter for such an uncertainty is mapped separately on the normalization and the shape variation components of the uncertainty. For normalization, $\ln$ mapping is used, for shape a spline. Details in https://cms-analysis.github.io/HiggsAnalysis-CombinedLimit/part2/settinguptheanalysis/#binned-shape-analysis 8) All nuisance parameters for the systematic uncertainties are modelled with a Gaussian pdf. 9) Gluon fusion contributions are all scaled to 1 pb. Please combine them using either the scale factors from 'Table SM Gluon Fusion Fractions', or using your own composition.
Observed and expected distributions of the variable chosen for statistical inference in the low-mass analysis $m_{\tau\tau}$. Numerical values provided in this table correspond to Figure 10 of the auxilliary material of the publication, but restricted to Medium-$D_\zeta$ category and 2017 data-taking year. All distributions are considered after a fit to data is performed using a background-only model, which includes the $\text{H}(125)$ boson. Some details on how the distributions should be used: 1) All given uncertainties correspond to systematic variations of $\pm1\sigma$. 2) Upper values ('plus' in the yaml file) correspond to an upward systematic variation of the parameter ($+1\sigma$). 3) Lower values ('minus' in the yaml file) correspond to a downward systematic variation of the parameter ($-1\sigma$). 4) These variations can have both positive and negative values, depending on the modelled effect. 5) Uncertainties with the same name should be treated as correlated, consistently across the upper and lower variations. 6) Systematic uncertainties with 'prop_' in the name treat limited background statistics per histogram bin, and are deployed with 'Barlow-Beeston-lite' approach. Details in https://arxiv.org/abs/1103.0354 section 5 7) Remaining systematic uncertainties alter the normalization, the shape, or both for a distribution. The nuisance parameter for such an uncertainty is mapped separately on the normalization and the shape variation components of the uncertainty. For normalization, $\ln$ mapping is used, for shape a spline. Details in https://cms-analysis.github.io/HiggsAnalysis-CombinedLimit/part2/settinguptheanalysis/#binned-shape-analysis 8) All nuisance parameters for the systematic uncertainties are modelled with a Gaussian pdf. 9) Gluon fusion contributions are all scaled to 1 pb. Please combine them using either the scale factors from 'Table SM Gluon Fusion Fractions', or using your own composition.
Observed and expected distributions of the variable chosen for statistical inference in the low-mass analysis $m_{\tau\tau}$. Numerical values provided in this table correspond to Figure 10 of the auxilliary material of the publication, but restricted to Medium-$D_\zeta$ category and 2018 data-taking year. All distributions are considered after a fit to data is performed using a background-only model, which includes the $\text{H}(125)$ boson. Some details on how the distributions should be used: 1) All given uncertainties correspond to systematic variations of $\pm1\sigma$. 2) Upper values ('plus' in the yaml file) correspond to an upward systematic variation of the parameter ($+1\sigma$). 3) Lower values ('minus' in the yaml file) correspond to a downward systematic variation of the parameter ($-1\sigma$). 4) These variations can have both positive and negative values, depending on the modelled effect. 5) Uncertainties with the same name should be treated as correlated, consistently across the upper and lower variations. 6) Systematic uncertainties with 'prop_' in the name treat limited background statistics per histogram bin, and are deployed with 'Barlow-Beeston-lite' approach. Details in https://arxiv.org/abs/1103.0354 section 5 7) Remaining systematic uncertainties alter the normalization, the shape, or both for a distribution. The nuisance parameter for such an uncertainty is mapped separately on the normalization and the shape variation components of the uncertainty. For normalization, $\ln$ mapping is used, for shape a spline. Details in https://cms-analysis.github.io/HiggsAnalysis-CombinedLimit/part2/settinguptheanalysis/#binned-shape-analysis 8) All nuisance parameters for the systematic uncertainties are modelled with a Gaussian pdf. 9) Gluon fusion contributions are all scaled to 1 pb. Please combine them using either the scale factors from 'Table SM Gluon Fusion Fractions', or using your own composition.
Observed and expected distributions of the variable chosen for statistical inference in the low-mass analysis $m_{\tau\tau}$. Numerical values provided in this table correspond to Figure 16 of the auxilliary material of the publication, but restricted to $e\tau_{h}$ final state and 2016 data-taking year. All distributions are considered after a fit to data is performed using a background-only model, which includes the $\text{H}(125)$ boson. Some details on how the distributions should be used: 1) All given uncertainties correspond to systematic variations of $\pm1\sigma$. 2) Upper values ('plus' in the yaml file) correspond to an upward systematic variation of the parameter ($+1\sigma$). 3) Lower values ('minus' in the yaml file) correspond to a downward systematic variation of the parameter ($-1\sigma$). 4) These variations can have both positive and negative values, depending on the modelled effect. 5) Uncertainties with the same name should be treated as correlated, consistently across the upper and lower variations. 6) Systematic uncertainties with 'prop_' in the name treat limited background statistics per histogram bin, and are deployed with 'Barlow-Beeston-lite' approach. Details in https://arxiv.org/abs/1103.0354 section 5 7) Remaining systematic uncertainties alter the normalization, the shape, or both for a distribution. The nuisance parameter for such an uncertainty is mapped separately on the normalization and the shape variation components of the uncertainty. For normalization, $\ln$ mapping is used, for shape a spline. Details in https://cms-analysis.github.io/HiggsAnalysis-CombinedLimit/part2/settinguptheanalysis/#binned-shape-analysis 8) All nuisance parameters for the systematic uncertainties are modelled with a Gaussian pdf. 9) Gluon fusion contributions are all scaled to 1 pb. Please combine them using either the scale factors from 'Table SM Gluon Fusion Fractions', or using your own composition.
Observed and expected distributions of the variable chosen for statistical inference in the low-mass analysis $m_{\tau\tau}$. Numerical values provided in this table correspond to Figure 16 of the auxilliary material of the publication, but restricted to $e\tau_{h}$ final state and 2017 data-taking year. All distributions are considered after a fit to data is performed using a background-only model, which includes the $\text{H}(125)$ boson. Some details on how the distributions should be used: 1) All given uncertainties correspond to systematic variations of $\pm1\sigma$. 2) Upper values ('plus' in the yaml file) correspond to an upward systematic variation of the parameter ($+1\sigma$). 3) Lower values ('minus' in the yaml file) correspond to a downward systematic variation of the parameter ($-1\sigma$). 4) These variations can have both positive and negative values, depending on the modelled effect. 5) Uncertainties with the same name should be treated as correlated, consistently across the upper and lower variations. 6) Systematic uncertainties with 'prop_' in the name treat limited background statistics per histogram bin, and are deployed with 'Barlow-Beeston-lite' approach. Details in https://arxiv.org/abs/1103.0354 section 5 7) Remaining systematic uncertainties alter the normalization, the shape, or both for a distribution. The nuisance parameter for such an uncertainty is mapped separately on the normalization and the shape variation components of the uncertainty. For normalization, $\ln$ mapping is used, for shape a spline. Details in https://cms-analysis.github.io/HiggsAnalysis-CombinedLimit/part2/settinguptheanalysis/#binned-shape-analysis 8) All nuisance parameters for the systematic uncertainties are modelled with a Gaussian pdf. 9) Gluon fusion contributions are all scaled to 1 pb. Please combine them using either the scale factors from 'Table SM Gluon Fusion Fractions', or using your own composition.
Observed and expected distributions of the variable chosen for statistical inference in the low-mass analysis $m_{\tau\tau}$. Numerical values provided in this table correspond to Figure 16 of the auxilliary material of the publication, but restricted to $e\tau_{h}$ final state and 2018 data-taking year. All distributions are considered after a fit to data is performed using a background-only model, which includes the $\text{H}(125)$ boson. Some details on how the distributions should be used: 1) All given uncertainties correspond to systematic variations of $\pm1\sigma$. 2) Upper values ('plus' in the yaml file) correspond to an upward systematic variation of the parameter ($+1\sigma$). 3) Lower values ('minus' in the yaml file) correspond to a downward systematic variation of the parameter ($-1\sigma$). 4) These variations can have both positive and negative values, depending on the modelled effect. 5) Uncertainties with the same name should be treated as correlated, consistently across the upper and lower variations. 6) Systematic uncertainties with 'prop_' in the name treat limited background statistics per histogram bin, and are deployed with 'Barlow-Beeston-lite' approach. Details in https://arxiv.org/abs/1103.0354 section 5 7) Remaining systematic uncertainties alter the normalization, the shape, or both for a distribution. The nuisance parameter for such an uncertainty is mapped separately on the normalization and the shape variation components of the uncertainty. For normalization, $\ln$ mapping is used, for shape a spline. Details in https://cms-analysis.github.io/HiggsAnalysis-CombinedLimit/part2/settinguptheanalysis/#binned-shape-analysis 8) All nuisance parameters for the systematic uncertainties are modelled with a Gaussian pdf. 9) Gluon fusion contributions are all scaled to 1 pb. Please combine them using either the scale factors from 'Table SM Gluon Fusion Fractions', or using your own composition.
Observed and expected distributions of the variable chosen for statistical inference in the low-mass analysis $m_{\tau\tau}$. Numerical values provided in this table correspond to Figure 17 of the auxilliary material of the publication, but restricted to $e\tau_{h}$ final state and 2016 data-taking year. All distributions are considered after a fit to data is performed using a background-only model, which includes the $\text{H}(125)$ boson. Some details on how the distributions should be used: 1) All given uncertainties correspond to systematic variations of $\pm1\sigma$. 2) Upper values ('plus' in the yaml file) correspond to an upward systematic variation of the parameter ($+1\sigma$). 3) Lower values ('minus' in the yaml file) correspond to a downward systematic variation of the parameter ($-1\sigma$). 4) These variations can have both positive and negative values, depending on the modelled effect. 5) Uncertainties with the same name should be treated as correlated, consistently across the upper and lower variations. 6) Systematic uncertainties with 'prop_' in the name treat limited background statistics per histogram bin, and are deployed with 'Barlow-Beeston-lite' approach. Details in https://arxiv.org/abs/1103.0354 section 5 7) Remaining systematic uncertainties alter the normalization, the shape, or both for a distribution. The nuisance parameter for such an uncertainty is mapped separately on the normalization and the shape variation components of the uncertainty. For normalization, $\ln$ mapping is used, for shape a spline. Details in https://cms-analysis.github.io/HiggsAnalysis-CombinedLimit/part2/settinguptheanalysis/#binned-shape-analysis 8) All nuisance parameters for the systematic uncertainties are modelled with a Gaussian pdf. 9) Gluon fusion contributions are all scaled to 1 pb. Please combine them using either the scale factors from 'Table SM Gluon Fusion Fractions', or using your own composition.
Observed and expected distributions of the variable chosen for statistical inference in the low-mass analysis $m_{\tau\tau}$. Numerical values provided in this table correspond to Figure 17 of the auxilliary material of the publication, but restricted to $e\tau_{h}$ final state and 2017 data-taking year. All distributions are considered after a fit to data is performed using a background-only model, which includes the $\text{H}(125)$ boson. Some details on how the distributions should be used: 1) All given uncertainties correspond to systematic variations of $\pm1\sigma$. 2) Upper values ('plus' in the yaml file) correspond to an upward systematic variation of the parameter ($+1\sigma$). 3) Lower values ('minus' in the yaml file) correspond to a downward systematic variation of the parameter ($-1\sigma$). 4) These variations can have both positive and negative values, depending on the modelled effect. 5) Uncertainties with the same name should be treated as correlated, consistently across the upper and lower variations. 6) Systematic uncertainties with 'prop_' in the name treat limited background statistics per histogram bin, and are deployed with 'Barlow-Beeston-lite' approach. Details in https://arxiv.org/abs/1103.0354 section 5 7) Remaining systematic uncertainties alter the normalization, the shape, or both for a distribution. The nuisance parameter for such an uncertainty is mapped separately on the normalization and the shape variation components of the uncertainty. For normalization, $\ln$ mapping is used, for shape a spline. Details in https://cms-analysis.github.io/HiggsAnalysis-CombinedLimit/part2/settinguptheanalysis/#binned-shape-analysis 8) All nuisance parameters for the systematic uncertainties are modelled with a Gaussian pdf. 9) Gluon fusion contributions are all scaled to 1 pb. Please combine them using either the scale factors from 'Table SM Gluon Fusion Fractions', or using your own composition.
Observed and expected distributions of the variable chosen for statistical inference in the low-mass analysis $m_{\tau\tau}$. Numerical values provided in this table correspond to Figure 17 of the auxilliary material of the publication, but restricted to $e\tau_{h}$ final state and 2018 data-taking year. All distributions are considered after a fit to data is performed using a background-only model, which includes the $\text{H}(125)$ boson. Some details on how the distributions should be used: 1) All given uncertainties correspond to systematic variations of $\pm1\sigma$. 2) Upper values ('plus' in the yaml file) correspond to an upward systematic variation of the parameter ($+1\sigma$). 3) Lower values ('minus' in the yaml file) correspond to a downward systematic variation of the parameter ($-1\sigma$). 4) These variations can have both positive and negative values, depending on the modelled effect. 5) Uncertainties with the same name should be treated as correlated, consistently across the upper and lower variations. 6) Systematic uncertainties with 'prop_' in the name treat limited background statistics per histogram bin, and are deployed with 'Barlow-Beeston-lite' approach. Details in https://arxiv.org/abs/1103.0354 section 5 7) Remaining systematic uncertainties alter the normalization, the shape, or both for a distribution. The nuisance parameter for such an uncertainty is mapped separately on the normalization and the shape variation components of the uncertainty. For normalization, $\ln$ mapping is used, for shape a spline. Details in https://cms-analysis.github.io/HiggsAnalysis-CombinedLimit/part2/settinguptheanalysis/#binned-shape-analysis 8) All nuisance parameters for the systematic uncertainties are modelled with a Gaussian pdf. 9) Gluon fusion contributions are all scaled to 1 pb. Please combine them using either the scale factors from 'Table SM Gluon Fusion Fractions', or using your own composition.
Observed and expected distributions of the variable chosen for statistical inference in the low-mass analysis $m_{\tau\tau}$. Numerical values provided in this table correspond to Figure 18 of the auxilliary material of the publication, but restricted to $e\tau_{h}$ final state and 2016 data-taking year. All distributions are considered after a fit to data is performed using a background-only model, which includes the $\text{H}(125)$ boson. Some details on how the distributions should be used: 1) All given uncertainties correspond to systematic variations of $\pm1\sigma$. 2) Upper values ('plus' in the yaml file) correspond to an upward systematic variation of the parameter ($+1\sigma$). 3) Lower values ('minus' in the yaml file) correspond to a downward systematic variation of the parameter ($-1\sigma$). 4) These variations can have both positive and negative values, depending on the modelled effect. 5) Uncertainties with the same name should be treated as correlated, consistently across the upper and lower variations. 6) Systematic uncertainties with 'prop_' in the name treat limited background statistics per histogram bin, and are deployed with 'Barlow-Beeston-lite' approach. Details in https://arxiv.org/abs/1103.0354 section 5 7) Remaining systematic uncertainties alter the normalization, the shape, or both for a distribution. The nuisance parameter for such an uncertainty is mapped separately on the normalization and the shape variation components of the uncertainty. For normalization, $\ln$ mapping is used, for shape a spline. Details in https://cms-analysis.github.io/HiggsAnalysis-CombinedLimit/part2/settinguptheanalysis/#binned-shape-analysis 8) All nuisance parameters for the systematic uncertainties are modelled with a Gaussian pdf. 9) Gluon fusion contributions are all scaled to 1 pb. Please combine them using either the scale factors from 'Table SM Gluon Fusion Fractions', or using your own composition.
Observed and expected distributions of the variable chosen for statistical inference in the low-mass analysis $m_{\tau\tau}$. Numerical values provided in this table correspond to Figure 18 of the auxilliary material of the publication, but restricted to $e\tau_{h}$ final state and 2017 data-taking year. All distributions are considered after a fit to data is performed using a background-only model, which includes the $\text{H}(125)$ boson. Some details on how the distributions should be used: 1) All given uncertainties correspond to systematic variations of $\pm1\sigma$. 2) Upper values ('plus' in the yaml file) correspond to an upward systematic variation of the parameter ($+1\sigma$). 3) Lower values ('minus' in the yaml file) correspond to a downward systematic variation of the parameter ($-1\sigma$). 4) These variations can have both positive and negative values, depending on the modelled effect. 5) Uncertainties with the same name should be treated as correlated, consistently across the upper and lower variations. 6) Systematic uncertainties with 'prop_' in the name treat limited background statistics per histogram bin, and are deployed with 'Barlow-Beeston-lite' approach. Details in https://arxiv.org/abs/1103.0354 section 5 7) Remaining systematic uncertainties alter the normalization, the shape, or both for a distribution. The nuisance parameter for such an uncertainty is mapped separately on the normalization and the shape variation components of the uncertainty. For normalization, $\ln$ mapping is used, for shape a spline. Details in https://cms-analysis.github.io/HiggsAnalysis-CombinedLimit/part2/settinguptheanalysis/#binned-shape-analysis 8) All nuisance parameters for the systematic uncertainties are modelled with a Gaussian pdf. 9) Gluon fusion contributions are all scaled to 1 pb. Please combine them using either the scale factors from 'Table SM Gluon Fusion Fractions', or using your own composition.
Observed and expected distributions of the variable chosen for statistical inference in the low-mass analysis $m_{\tau\tau}$. Numerical values provided in this table correspond to Figure 18 of the auxilliary material of the publication, but restricted to $e\tau_{h}$ final state and 2018 data-taking year. All distributions are considered after a fit to data is performed using a background-only model, which includes the $\text{H}(125)$ boson. Some details on how the distributions should be used: 1) All given uncertainties correspond to systematic variations of $\pm1\sigma$. 2) Upper values ('plus' in the yaml file) correspond to an upward systematic variation of the parameter ($+1\sigma$). 3) Lower values ('minus' in the yaml file) correspond to a downward systematic variation of the parameter ($-1\sigma$). 4) These variations can have both positive and negative values, depending on the modelled effect. 5) Uncertainties with the same name should be treated as correlated, consistently across the upper and lower variations. 6) Systematic uncertainties with 'prop_' in the name treat limited background statistics per histogram bin, and are deployed with 'Barlow-Beeston-lite' approach. Details in https://arxiv.org/abs/1103.0354 section 5 7) Remaining systematic uncertainties alter the normalization, the shape, or both for a distribution. The nuisance parameter for such an uncertainty is mapped separately on the normalization and the shape variation components of the uncertainty. For normalization, $\ln$ mapping is used, for shape a spline. Details in https://cms-analysis.github.io/HiggsAnalysis-CombinedLimit/part2/settinguptheanalysis/#binned-shape-analysis 8) All nuisance parameters for the systematic uncertainties are modelled with a Gaussian pdf. 9) Gluon fusion contributions are all scaled to 1 pb. Please combine them using either the scale factors from 'Table SM Gluon Fusion Fractions', or using your own composition.
Observed and expected distributions of the variable chosen for statistical inference in the low-mass analysis $m_{\tau\tau}$. Numerical values provided in this table correspond to Figure 19 of the auxilliary material of the publication, but restricted to $e\tau_{h}$ final state and 2016 data-taking year. All distributions are considered after a fit to data is performed using a background-only model, which includes the $\text{H}(125)$ boson. Some details on how the distributions should be used: 1) All given uncertainties correspond to systematic variations of $\pm1\sigma$. 2) Upper values ('plus' in the yaml file) correspond to an upward systematic variation of the parameter ($+1\sigma$). 3) Lower values ('minus' in the yaml file) correspond to a downward systematic variation of the parameter ($-1\sigma$). 4) These variations can have both positive and negative values, depending on the modelled effect. 5) Uncertainties with the same name should be treated as correlated, consistently across the upper and lower variations. 6) Systematic uncertainties with 'prop_' in the name treat limited background statistics per histogram bin, and are deployed with 'Barlow-Beeston-lite' approach. Details in https://arxiv.org/abs/1103.0354 section 5 7) Remaining systematic uncertainties alter the normalization, the shape, or both for a distribution. The nuisance parameter for such an uncertainty is mapped separately on the normalization and the shape variation components of the uncertainty. For normalization, $\ln$ mapping is used, for shape a spline. Details in https://cms-analysis.github.io/HiggsAnalysis-CombinedLimit/part2/settinguptheanalysis/#binned-shape-analysis 8) All nuisance parameters for the systematic uncertainties are modelled with a Gaussian pdf. 9) Gluon fusion contributions are all scaled to 1 pb. Please combine them using either the scale factors from 'Table SM Gluon Fusion Fractions', or using your own composition.
Observed and expected distributions of the variable chosen for statistical inference in the low-mass analysis $m_{\tau\tau}$. Numerical values provided in this table correspond to Figure 19 of the auxilliary material of the publication, but restricted to $e\tau_{h}$ final state and 2017 data-taking year. All distributions are considered after a fit to data is performed using a background-only model, which includes the $\text{H}(125)$ boson. Some details on how the distributions should be used: 1) All given uncertainties correspond to systematic variations of $\pm1\sigma$. 2) Upper values ('plus' in the yaml file) correspond to an upward systematic variation of the parameter ($+1\sigma$). 3) Lower values ('minus' in the yaml file) correspond to a downward systematic variation of the parameter ($-1\sigma$). 4) These variations can have both positive and negative values, depending on the modelled effect. 5) Uncertainties with the same name should be treated as correlated, consistently across the upper and lower variations. 6) Systematic uncertainties with 'prop_' in the name treat limited background statistics per histogram bin, and are deployed with 'Barlow-Beeston-lite' approach. Details in https://arxiv.org/abs/1103.0354 section 5 7) Remaining systematic uncertainties alter the normalization, the shape, or both for a distribution. The nuisance parameter for such an uncertainty is mapped separately on the normalization and the shape variation components of the uncertainty. For normalization, $\ln$ mapping is used, for shape a spline. Details in https://cms-analysis.github.io/HiggsAnalysis-CombinedLimit/part2/settinguptheanalysis/#binned-shape-analysis 8) All nuisance parameters for the systematic uncertainties are modelled with a Gaussian pdf. 9) Gluon fusion contributions are all scaled to 1 pb. Please combine them using either the scale factors from 'Table SM Gluon Fusion Fractions', or using your own composition.
Observed and expected distributions of the variable chosen for statistical inference in the low-mass analysis $m_{\tau\tau}$. Numerical values provided in this table correspond to Figure 19 of the auxilliary material of the publication, but restricted to $e\tau_{h}$ final state and 2018 data-taking year. All distributions are considered after a fit to data is performed using a background-only model, which includes the $\text{H}(125)$ boson. Some details on how the distributions should be used: 1) All given uncertainties correspond to systematic variations of $\pm1\sigma$. 2) Upper values ('plus' in the yaml file) correspond to an upward systematic variation of the parameter ($+1\sigma$). 3) Lower values ('minus' in the yaml file) correspond to a downward systematic variation of the parameter ($-1\sigma$). 4) These variations can have both positive and negative values, depending on the modelled effect. 5) Uncertainties with the same name should be treated as correlated, consistently across the upper and lower variations. 6) Systematic uncertainties with 'prop_' in the name treat limited background statistics per histogram bin, and are deployed with 'Barlow-Beeston-lite' approach. Details in https://arxiv.org/abs/1103.0354 section 5 7) Remaining systematic uncertainties alter the normalization, the shape, or both for a distribution. The nuisance parameter for such an uncertainty is mapped separately on the normalization and the shape variation components of the uncertainty. For normalization, $\ln$ mapping is used, for shape a spline. Details in https://cms-analysis.github.io/HiggsAnalysis-CombinedLimit/part2/settinguptheanalysis/#binned-shape-analysis 8) All nuisance parameters for the systematic uncertainties are modelled with a Gaussian pdf. 9) Gluon fusion contributions are all scaled to 1 pb. Please combine them using either the scale factors from 'Table SM Gluon Fusion Fractions', or using your own composition.
Observed and expected distributions of the variable chosen for statistical inference in the low-mass analysis $m_{\tau\tau}$. Numerical values provided in this table correspond to Figure 15 of the auxilliary material of the publication, but restricted to $e\tau_{h}$ final state and 2016 data-taking year. All distributions are considered after a fit to data is performed using a background-only model, which includes the $\text{H}(125)$ boson. Some details on how the distributions should be used: 1) All given uncertainties correspond to systematic variations of $\pm1\sigma$. 2) Upper values ('plus' in the yaml file) correspond to an upward systematic variation of the parameter ($+1\sigma$). 3) Lower values ('minus' in the yaml file) correspond to a downward systematic variation of the parameter ($-1\sigma$). 4) These variations can have both positive and negative values, depending on the modelled effect. 5) Uncertainties with the same name should be treated as correlated, consistently across the upper and lower variations. 6) Systematic uncertainties with 'prop_' in the name treat limited background statistics per histogram bin, and are deployed with 'Barlow-Beeston-lite' approach. Details in https://arxiv.org/abs/1103.0354 section 5 7) Remaining systematic uncertainties alter the normalization, the shape, or both for a distribution. The nuisance parameter for such an uncertainty is mapped separately on the normalization and the shape variation components of the uncertainty. For normalization, $\ln$ mapping is used, for shape a spline. Details in https://cms-analysis.github.io/HiggsAnalysis-CombinedLimit/part2/settinguptheanalysis/#binned-shape-analysis 8) All nuisance parameters for the systematic uncertainties are modelled with a Gaussian pdf. 9) Gluon fusion contributions are all scaled to 1 pb. Please combine them using either the scale factors from 'Table SM Gluon Fusion Fractions', or using your own composition.
Observed and expected distributions of the variable chosen for statistical inference in the low-mass analysis $m_{\tau\tau}$. Numerical values provided in this table correspond to Figure 15 of the auxilliary material of the publication, but restricted to $e\tau_{h}$ final state and 2017 data-taking year. All distributions are considered after a fit to data is performed using a background-only model, which includes the $\text{H}(125)$ boson. Some details on how the distributions should be used: 1) All given uncertainties correspond to systematic variations of $\pm1\sigma$. 2) Upper values ('plus' in the yaml file) correspond to an upward systematic variation of the parameter ($+1\sigma$). 3) Lower values ('minus' in the yaml file) correspond to a downward systematic variation of the parameter ($-1\sigma$). 4) These variations can have both positive and negative values, depending on the modelled effect. 5) Uncertainties with the same name should be treated as correlated, consistently across the upper and lower variations. 6) Systematic uncertainties with 'prop_' in the name treat limited background statistics per histogram bin, and are deployed with 'Barlow-Beeston-lite' approach. Details in https://arxiv.org/abs/1103.0354 section 5 7) Remaining systematic uncertainties alter the normalization, the shape, or both for a distribution. The nuisance parameter for such an uncertainty is mapped separately on the normalization and the shape variation components of the uncertainty. For normalization, $\ln$ mapping is used, for shape a spline. Details in https://cms-analysis.github.io/HiggsAnalysis-CombinedLimit/part2/settinguptheanalysis/#binned-shape-analysis 8) All nuisance parameters for the systematic uncertainties are modelled with a Gaussian pdf. 9) Gluon fusion contributions are all scaled to 1 pb. Please combine them using either the scale factors from 'Table SM Gluon Fusion Fractions', or using your own composition.
Observed and expected distributions of the variable chosen for statistical inference in the low-mass analysis $m_{\tau\tau}$. Numerical values provided in this table correspond to Figure 15 of the auxilliary material of the publication, but restricted to $e\tau_{h}$ final state and 2018 data-taking year. All distributions are considered after a fit to data is performed using a background-only model, which includes the $\text{H}(125)$ boson. Some details on how the distributions should be used: 1) All given uncertainties correspond to systematic variations of $\pm1\sigma$. 2) Upper values ('plus' in the yaml file) correspond to an upward systematic variation of the parameter ($+1\sigma$). 3) Lower values ('minus' in the yaml file) correspond to a downward systematic variation of the parameter ($-1\sigma$). 4) These variations can have both positive and negative values, depending on the modelled effect. 5) Uncertainties with the same name should be treated as correlated, consistently across the upper and lower variations. 6) Systematic uncertainties with 'prop_' in the name treat limited background statistics per histogram bin, and are deployed with 'Barlow-Beeston-lite' approach. Details in https://arxiv.org/abs/1103.0354 section 5 7) Remaining systematic uncertainties alter the normalization, the shape, or both for a distribution. The nuisance parameter for such an uncertainty is mapped separately on the normalization and the shape variation components of the uncertainty. For normalization, $\ln$ mapping is used, for shape a spline. Details in https://cms-analysis.github.io/HiggsAnalysis-CombinedLimit/part2/settinguptheanalysis/#binned-shape-analysis 8) All nuisance parameters for the systematic uncertainties are modelled with a Gaussian pdf. 9) Gluon fusion contributions are all scaled to 1 pb. Please combine them using either the scale factors from 'Table SM Gluon Fusion Fractions', or using your own composition.
Observed and expected distributions of the variable chosen for statistical inference in the low-mass analysis $m_{\tau\tau}$. Numerical values provided in this table correspond to Figure 16 of the auxilliary material of the publication, but restricted to $\mu\tau_{h}$ final state and 2016 data-taking year. All distributions are considered after a fit to data is performed using a background-only model, which includes the $\text{H}(125)$ boson. Some details on how the distributions should be used: 1) All given uncertainties correspond to systematic variations of $\pm1\sigma$. 2) Upper values ('plus' in the yaml file) correspond to an upward systematic variation of the parameter ($+1\sigma$). 3) Lower values ('minus' in the yaml file) correspond to a downward systematic variation of the parameter ($-1\sigma$). 4) These variations can have both positive and negative values, depending on the modelled effect. 5) Uncertainties with the same name should be treated as correlated, consistently across the upper and lower variations. 6) Systematic uncertainties with 'prop_' in the name treat limited background statistics per histogram bin, and are deployed with 'Barlow-Beeston-lite' approach. Details in https://arxiv.org/abs/1103.0354 section 5 7) Remaining systematic uncertainties alter the normalization, the shape, or both for a distribution. The nuisance parameter for such an uncertainty is mapped separately on the normalization and the shape variation components of the uncertainty. For normalization, $\ln$ mapping is used, for shape a spline. Details in https://cms-analysis.github.io/HiggsAnalysis-CombinedLimit/part2/settinguptheanalysis/#binned-shape-analysis 8) All nuisance parameters for the systematic uncertainties are modelled with a Gaussian pdf. 9) Gluon fusion contributions are all scaled to 1 pb. Please combine them using either the scale factors from 'Table SM Gluon Fusion Fractions', or using your own composition.
Observed and expected distributions of the variable chosen for statistical inference in the low-mass analysis $m_{\tau\tau}$. Numerical values provided in this table correspond to Figure 16 of the auxilliary material of the publication, but restricted to $\mu\tau_{h}$ final state and 2017 data-taking year. All distributions are considered after a fit to data is performed using a background-only model, which includes the $\text{H}(125)$ boson. Some details on how the distributions should be used: 1) All given uncertainties correspond to systematic variations of $\pm1\sigma$. 2) Upper values ('plus' in the yaml file) correspond to an upward systematic variation of the parameter ($+1\sigma$). 3) Lower values ('minus' in the yaml file) correspond to a downward systematic variation of the parameter ($-1\sigma$). 4) These variations can have both positive and negative values, depending on the modelled effect. 5) Uncertainties with the same name should be treated as correlated, consistently across the upper and lower variations. 6) Systematic uncertainties with 'prop_' in the name treat limited background statistics per histogram bin, and are deployed with 'Barlow-Beeston-lite' approach. Details in https://arxiv.org/abs/1103.0354 section 5 7) Remaining systematic uncertainties alter the normalization, the shape, or both for a distribution. The nuisance parameter for such an uncertainty is mapped separately on the normalization and the shape variation components of the uncertainty. For normalization, $\ln$ mapping is used, for shape a spline. Details in https://cms-analysis.github.io/HiggsAnalysis-CombinedLimit/part2/settinguptheanalysis/#binned-shape-analysis 8) All nuisance parameters for the systematic uncertainties are modelled with a Gaussian pdf. 9) Gluon fusion contributions are all scaled to 1 pb. Please combine them using either the scale factors from 'Table SM Gluon Fusion Fractions', or using your own composition.
Observed and expected distributions of the variable chosen for statistical inference in the low-mass analysis $m_{\tau\tau}$. Numerical values provided in this table correspond to Figure 16 of the auxilliary material of the publication, but restricted to $\mu\tau_{h}$ final state and 2018 data-taking year. All distributions are considered after a fit to data is performed using a background-only model, which includes the $\text{H}(125)$ boson. Some details on how the distributions should be used: 1) All given uncertainties correspond to systematic variations of $\pm1\sigma$. 2) Upper values ('plus' in the yaml file) correspond to an upward systematic variation of the parameter ($+1\sigma$). 3) Lower values ('minus' in the yaml file) correspond to a downward systematic variation of the parameter ($-1\sigma$). 4) These variations can have both positive and negative values, depending on the modelled effect. 5) Uncertainties with the same name should be treated as correlated, consistently across the upper and lower variations. 6) Systematic uncertainties with 'prop_' in the name treat limited background statistics per histogram bin, and are deployed with 'Barlow-Beeston-lite' approach. Details in https://arxiv.org/abs/1103.0354 section 5 7) Remaining systematic uncertainties alter the normalization, the shape, or both for a distribution. The nuisance parameter for such an uncertainty is mapped separately on the normalization and the shape variation components of the uncertainty. For normalization, $\ln$ mapping is used, for shape a spline. Details in https://cms-analysis.github.io/HiggsAnalysis-CombinedLimit/part2/settinguptheanalysis/#binned-shape-analysis 8) All nuisance parameters for the systematic uncertainties are modelled with a Gaussian pdf. 9) Gluon fusion contributions are all scaled to 1 pb. Please combine them using either the scale factors from 'Table SM Gluon Fusion Fractions', or using your own composition.
Observed and expected distributions of the variable chosen for statistical inference in the low-mass analysis $m_{\tau\tau}$. Numerical values provided in this table correspond to Figure 17 of the auxilliary material of the publication, but restricted to $\mu\tau_{h}$ final state and 2016 data-taking year. All distributions are considered after a fit to data is performed using a background-only model, which includes the $\text{H}(125)$ boson. Some details on how the distributions should be used: 1) All given uncertainties correspond to systematic variations of $\pm1\sigma$. 2) Upper values ('plus' in the yaml file) correspond to an upward systematic variation of the parameter ($+1\sigma$). 3) Lower values ('minus' in the yaml file) correspond to a downward systematic variation of the parameter ($-1\sigma$). 4) These variations can have both positive and negative values, depending on the modelled effect. 5) Uncertainties with the same name should be treated as correlated, consistently across the upper and lower variations. 6) Systematic uncertainties with 'prop_' in the name treat limited background statistics per histogram bin, and are deployed with 'Barlow-Beeston-lite' approach. Details in https://arxiv.org/abs/1103.0354 section 5 7) Remaining systematic uncertainties alter the normalization, the shape, or both for a distribution. The nuisance parameter for such an uncertainty is mapped separately on the normalization and the shape variation components of the uncertainty. For normalization, $\ln$ mapping is used, for shape a spline. Details in https://cms-analysis.github.io/HiggsAnalysis-CombinedLimit/part2/settinguptheanalysis/#binned-shape-analysis 8) All nuisance parameters for the systematic uncertainties are modelled with a Gaussian pdf. 9) Gluon fusion contributions are all scaled to 1 pb. Please combine them using either the scale factors from 'Table SM Gluon Fusion Fractions', or using your own composition.
Observed and expected distributions of the variable chosen for statistical inference in the low-mass analysis $m_{\tau\tau}$. Numerical values provided in this table correspond to Figure 17 of the auxilliary material of the publication, but restricted to $\mu\tau_{h}$ final state and 2017 data-taking year. All distributions are considered after a fit to data is performed using a background-only model, which includes the $\text{H}(125)$ boson. Some details on how the distributions should be used: 1) All given uncertainties correspond to systematic variations of $\pm1\sigma$. 2) Upper values ('plus' in the yaml file) correspond to an upward systematic variation of the parameter ($+1\sigma$). 3) Lower values ('minus' in the yaml file) correspond to a downward systematic variation of the parameter ($-1\sigma$). 4) These variations can have both positive and negative values, depending on the modelled effect. 5) Uncertainties with the same name should be treated as correlated, consistently across the upper and lower variations. 6) Systematic uncertainties with 'prop_' in the name treat limited background statistics per histogram bin, and are deployed with 'Barlow-Beeston-lite' approach. Details in https://arxiv.org/abs/1103.0354 section 5 7) Remaining systematic uncertainties alter the normalization, the shape, or both for a distribution. The nuisance parameter for such an uncertainty is mapped separately on the normalization and the shape variation components of the uncertainty. For normalization, $\ln$ mapping is used, for shape a spline. Details in https://cms-analysis.github.io/HiggsAnalysis-CombinedLimit/part2/settinguptheanalysis/#binned-shape-analysis 8) All nuisance parameters for the systematic uncertainties are modelled with a Gaussian pdf. 9) Gluon fusion contributions are all scaled to 1 pb. Please combine them using either the scale factors from 'Table SM Gluon Fusion Fractions', or using your own composition.
Observed and expected distributions of the variable chosen for statistical inference in the low-mass analysis $m_{\tau\tau}$. Numerical values provided in this table correspond to Figure 17 of the auxilliary material of the publication, but restricted to $\mu\tau_{h}$ final state and 2018 data-taking year. All distributions are considered after a fit to data is performed using a background-only model, which includes the $\text{H}(125)$ boson. Some details on how the distributions should be used: 1) All given uncertainties correspond to systematic variations of $\pm1\sigma$. 2) Upper values ('plus' in the yaml file) correspond to an upward systematic variation of the parameter ($+1\sigma$). 3) Lower values ('minus' in the yaml file) correspond to a downward systematic variation of the parameter ($-1\sigma$). 4) These variations can have both positive and negative values, depending on the modelled effect. 5) Uncertainties with the same name should be treated as correlated, consistently across the upper and lower variations. 6) Systematic uncertainties with 'prop_' in the name treat limited background statistics per histogram bin, and are deployed with 'Barlow-Beeston-lite' approach. Details in https://arxiv.org/abs/1103.0354 section 5 7) Remaining systematic uncertainties alter the normalization, the shape, or both for a distribution. The nuisance parameter for such an uncertainty is mapped separately on the normalization and the shape variation components of the uncertainty. For normalization, $\ln$ mapping is used, for shape a spline. Details in https://cms-analysis.github.io/HiggsAnalysis-CombinedLimit/part2/settinguptheanalysis/#binned-shape-analysis 8) All nuisance parameters for the systematic uncertainties are modelled with a Gaussian pdf. 9) Gluon fusion contributions are all scaled to 1 pb. Please combine them using either the scale factors from 'Table SM Gluon Fusion Fractions', or using your own composition.
Observed and expected distributions of the variable chosen for statistical inference in the low-mass analysis $m_{\tau\tau}$. Numerical values provided in this table correspond to Figure 18 of the auxilliary material of the publication, but restricted to $\mu\tau_{h}$ final state and 2016 data-taking year. All distributions are considered after a fit to data is performed using a background-only model, which includes the $\text{H}(125)$ boson. Some details on how the distributions should be used: 1) All given uncertainties correspond to systematic variations of $\pm1\sigma$. 2) Upper values ('plus' in the yaml file) correspond to an upward systematic variation of the parameter ($+1\sigma$). 3) Lower values ('minus' in the yaml file) correspond to a downward systematic variation of the parameter ($-1\sigma$). 4) These variations can have both positive and negative values, depending on the modelled effect. 5) Uncertainties with the same name should be treated as correlated, consistently across the upper and lower variations. 6) Systematic uncertainties with 'prop_' in the name treat limited background statistics per histogram bin, and are deployed with 'Barlow-Beeston-lite' approach. Details in https://arxiv.org/abs/1103.0354 section 5 7) Remaining systematic uncertainties alter the normalization, the shape, or both for a distribution. The nuisance parameter for such an uncertainty is mapped separately on the normalization and the shape variation components of the uncertainty. For normalization, $\ln$ mapping is used, for shape a spline. Details in https://cms-analysis.github.io/HiggsAnalysis-CombinedLimit/part2/settinguptheanalysis/#binned-shape-analysis 8) All nuisance parameters for the systematic uncertainties are modelled with a Gaussian pdf. 9) Gluon fusion contributions are all scaled to 1 pb. Please combine them using either the scale factors from 'Table SM Gluon Fusion Fractions', or using your own composition.
Observed and expected distributions of the variable chosen for statistical inference in the low-mass analysis $m_{\tau\tau}$. Numerical values provided in this table correspond to Figure 18 of the auxilliary material of the publication, but restricted to $\mu\tau_{h}$ final state and 2017 data-taking year. All distributions are considered after a fit to data is performed using a background-only model, which includes the $\text{H}(125)$ boson. Some details on how the distributions should be used: 1) All given uncertainties correspond to systematic variations of $\pm1\sigma$. 2) Upper values ('plus' in the yaml file) correspond to an upward systematic variation of the parameter ($+1\sigma$). 3) Lower values ('minus' in the yaml file) correspond to a downward systematic variation of the parameter ($-1\sigma$). 4) These variations can have both positive and negative values, depending on the modelled effect. 5) Uncertainties with the same name should be treated as correlated, consistently across the upper and lower variations. 6) Systematic uncertainties with 'prop_' in the name treat limited background statistics per histogram bin, and are deployed with 'Barlow-Beeston-lite' approach. Details in https://arxiv.org/abs/1103.0354 section 5 7) Remaining systematic uncertainties alter the normalization, the shape, or both for a distribution. The nuisance parameter for such an uncertainty is mapped separately on the normalization and the shape variation components of the uncertainty. For normalization, $\ln$ mapping is used, for shape a spline. Details in https://cms-analysis.github.io/HiggsAnalysis-CombinedLimit/part2/settinguptheanalysis/#binned-shape-analysis 8) All nuisance parameters for the systematic uncertainties are modelled with a Gaussian pdf. 9) Gluon fusion contributions are all scaled to 1 pb. Please combine them using either the scale factors from 'Table SM Gluon Fusion Fractions', or using your own composition.
Observed and expected distributions of the variable chosen for statistical inference in the low-mass analysis $m_{\tau\tau}$. Numerical values provided in this table correspond to Figure 18 of the auxilliary material of the publication, but restricted to $\mu\tau_{h}$ final state and 2018 data-taking year. All distributions are considered after a fit to data is performed using a background-only model, which includes the $\text{H}(125)$ boson. Some details on how the distributions should be used: 1) All given uncertainties correspond to systematic variations of $\pm1\sigma$. 2) Upper values ('plus' in the yaml file) correspond to an upward systematic variation of the parameter ($+1\sigma$). 3) Lower values ('minus' in the yaml file) correspond to a downward systematic variation of the parameter ($-1\sigma$). 4) These variations can have both positive and negative values, depending on the modelled effect. 5) Uncertainties with the same name should be treated as correlated, consistently across the upper and lower variations. 6) Systematic uncertainties with 'prop_' in the name treat limited background statistics per histogram bin, and are deployed with 'Barlow-Beeston-lite' approach. Details in https://arxiv.org/abs/1103.0354 section 5 7) Remaining systematic uncertainties alter the normalization, the shape, or both for a distribution. The nuisance parameter for such an uncertainty is mapped separately on the normalization and the shape variation components of the uncertainty. For normalization, $\ln$ mapping is used, for shape a spline. Details in https://cms-analysis.github.io/HiggsAnalysis-CombinedLimit/part2/settinguptheanalysis/#binned-shape-analysis 8) All nuisance parameters for the systematic uncertainties are modelled with a Gaussian pdf. 9) Gluon fusion contributions are all scaled to 1 pb. Please combine them using either the scale factors from 'Table SM Gluon Fusion Fractions', or using your own composition.
Observed and expected distributions of the variable chosen for statistical inference in the low-mass analysis $m_{\tau\tau}$. Numerical values provided in this table correspond to Figure 19 of the auxilliary material of the publication, but restricted to $\mu\tau_{h}$ final state and 2016 data-taking year. All distributions are considered after a fit to data is performed using a background-only model, which includes the $\text{H}(125)$ boson. Some details on how the distributions should be used: 1) All given uncertainties correspond to systematic variations of $\pm1\sigma$. 2) Upper values ('plus' in the yaml file) correspond to an upward systematic variation of the parameter ($+1\sigma$). 3) Lower values ('minus' in the yaml file) correspond to a downward systematic variation of the parameter ($-1\sigma$). 4) These variations can have both positive and negative values, depending on the modelled effect. 5) Uncertainties with the same name should be treated as correlated, consistently across the upper and lower variations. 6) Systematic uncertainties with 'prop_' in the name treat limited background statistics per histogram bin, and are deployed with 'Barlow-Beeston-lite' approach. Details in https://arxiv.org/abs/1103.0354 section 5 7) Remaining systematic uncertainties alter the normalization, the shape, or both for a distribution. The nuisance parameter for such an uncertainty is mapped separately on the normalization and the shape variation components of the uncertainty. For normalization, $\ln$ mapping is used, for shape a spline. Details in https://cms-analysis.github.io/HiggsAnalysis-CombinedLimit/part2/settinguptheanalysis/#binned-shape-analysis 8) All nuisance parameters for the systematic uncertainties are modelled with a Gaussian pdf. 9) Gluon fusion contributions are all scaled to 1 pb. Please combine them using either the scale factors from 'Table SM Gluon Fusion Fractions', or using your own composition.
Observed and expected distributions of the variable chosen for statistical inference in the low-mass analysis $m_{\tau\tau}$. Numerical values provided in this table correspond to Figure 19 of the auxilliary material of the publication, but restricted to $\mu\tau_{h}$ final state and 2017 data-taking year. All distributions are considered after a fit to data is performed using a background-only model, which includes the $\text{H}(125)$ boson. Some details on how the distributions should be used: 1) All given uncertainties correspond to systematic variations of $\pm1\sigma$. 2) Upper values ('plus' in the yaml file) correspond to an upward systematic variation of the parameter ($+1\sigma$). 3) Lower values ('minus' in the yaml file) correspond to a downward systematic variation of the parameter ($-1\sigma$). 4) These variations can have both positive and negative values, depending on the modelled effect. 5) Uncertainties with the same name should be treated as correlated, consistently across the upper and lower variations. 6) Systematic uncertainties with 'prop_' in the name treat limited background statistics per histogram bin, and are deployed with 'Barlow-Beeston-lite' approach. Details in https://arxiv.org/abs/1103.0354 section 5 7) Remaining systematic uncertainties alter the normalization, the shape, or both for a distribution. The nuisance parameter for such an uncertainty is mapped separately on the normalization and the shape variation components of the uncertainty. For normalization, $\ln$ mapping is used, for shape a spline. Details in https://cms-analysis.github.io/HiggsAnalysis-CombinedLimit/part2/settinguptheanalysis/#binned-shape-analysis 8) All nuisance parameters for the systematic uncertainties are modelled with a Gaussian pdf. 9) Gluon fusion contributions are all scaled to 1 pb. Please combine them using either the scale factors from 'Table SM Gluon Fusion Fractions', or using your own composition.
Observed and expected distributions of the variable chosen for statistical inference in the low-mass analysis $m_{\tau\tau}$. Numerical values provided in this table correspond to Figure 19 of the auxilliary material of the publication, but restricted to $\mu\tau_{h}$ final state and 2018 data-taking year. All distributions are considered after a fit to data is performed using a background-only model, which includes the $\text{H}(125)$ boson. Some details on how the distributions should be used: 1) All given uncertainties correspond to systematic variations of $\pm1\sigma$. 2) Upper values ('plus' in the yaml file) correspond to an upward systematic variation of the parameter ($+1\sigma$). 3) Lower values ('minus' in the yaml file) correspond to a downward systematic variation of the parameter ($-1\sigma$). 4) These variations can have both positive and negative values, depending on the modelled effect. 5) Uncertainties with the same name should be treated as correlated, consistently across the upper and lower variations. 6) Systematic uncertainties with 'prop_' in the name treat limited background statistics per histogram bin, and are deployed with 'Barlow-Beeston-lite' approach. Details in https://arxiv.org/abs/1103.0354 section 5 7) Remaining systematic uncertainties alter the normalization, the shape, or both for a distribution. The nuisance parameter for such an uncertainty is mapped separately on the normalization and the shape variation components of the uncertainty. For normalization, $\ln$ mapping is used, for shape a spline. Details in https://cms-analysis.github.io/HiggsAnalysis-CombinedLimit/part2/settinguptheanalysis/#binned-shape-analysis 8) All nuisance parameters for the systematic uncertainties are modelled with a Gaussian pdf. 9) Gluon fusion contributions are all scaled to 1 pb. Please combine them using either the scale factors from 'Table SM Gluon Fusion Fractions', or using your own composition.
Observed and expected distributions of the variable chosen for statistical inference in the low-mass analysis $m_{\tau\tau}$. Numerical values provided in this table correspond to Figure 15 of the auxilliary material of the publication, but restricted to $\mu\tau_{h}$ final state and 2016 data-taking year. All distributions are considered after a fit to data is performed using a background-only model, which includes the $\text{H}(125)$ boson. Some details on how the distributions should be used: 1) All given uncertainties correspond to systematic variations of $\pm1\sigma$. 2) Upper values ('plus' in the yaml file) correspond to an upward systematic variation of the parameter ($+1\sigma$). 3) Lower values ('minus' in the yaml file) correspond to a downward systematic variation of the parameter ($-1\sigma$). 4) These variations can have both positive and negative values, depending on the modelled effect. 5) Uncertainties with the same name should be treated as correlated, consistently across the upper and lower variations. 6) Systematic uncertainties with 'prop_' in the name treat limited background statistics per histogram bin, and are deployed with 'Barlow-Beeston-lite' approach. Details in https://arxiv.org/abs/1103.0354 section 5 7) Remaining systematic uncertainties alter the normalization, the shape, or both for a distribution. The nuisance parameter for such an uncertainty is mapped separately on the normalization and the shape variation components of the uncertainty. For normalization, $\ln$ mapping is used, for shape a spline. Details in https://cms-analysis.github.io/HiggsAnalysis-CombinedLimit/part2/settinguptheanalysis/#binned-shape-analysis 8) All nuisance parameters for the systematic uncertainties are modelled with a Gaussian pdf. 9) Gluon fusion contributions are all scaled to 1 pb. Please combine them using either the scale factors from 'Table SM Gluon Fusion Fractions', or using your own composition.
Observed and expected distributions of the variable chosen for statistical inference in the low-mass analysis $m_{\tau\tau}$. Numerical values provided in this table correspond to Figure 15 of the auxilliary material of the publication, but restricted to $\mu\tau_{h}$ final state and 2017 data-taking year. All distributions are considered after a fit to data is performed using a background-only model, which includes the $\text{H}(125)$ boson. Some details on how the distributions should be used: 1) All given uncertainties correspond to systematic variations of $\pm1\sigma$. 2) Upper values ('plus' in the yaml file) correspond to an upward systematic variation of the parameter ($+1\sigma$). 3) Lower values ('minus' in the yaml file) correspond to a downward systematic variation of the parameter ($-1\sigma$). 4) These variations can have both positive and negative values, depending on the modelled effect. 5) Uncertainties with the same name should be treated as correlated, consistently across the upper and lower variations. 6) Systematic uncertainties with 'prop_' in the name treat limited background statistics per histogram bin, and are deployed with 'Barlow-Beeston-lite' approach. Details in https://arxiv.org/abs/1103.0354 section 5 7) Remaining systematic uncertainties alter the normalization, the shape, or both for a distribution. The nuisance parameter for such an uncertainty is mapped separately on the normalization and the shape variation components of the uncertainty. For normalization, $\ln$ mapping is used, for shape a spline. Details in https://cms-analysis.github.io/HiggsAnalysis-CombinedLimit/part2/settinguptheanalysis/#binned-shape-analysis 8) All nuisance parameters for the systematic uncertainties are modelled with a Gaussian pdf. 9) Gluon fusion contributions are all scaled to 1 pb. Please combine them using either the scale factors from 'Table SM Gluon Fusion Fractions', or using your own composition.
Observed and expected distributions of the variable chosen for statistical inference in the low-mass analysis $m_{\tau\tau}$. Numerical values provided in this table correspond to Figure 15 of the auxilliary material of the publication, but restricted to $\mu\tau_{h}$ final state and 2018 data-taking year. All distributions are considered after a fit to data is performed using a background-only model, which includes the $\text{H}(125)$ boson. Some details on how the distributions should be used: 1) All given uncertainties correspond to systematic variations of $\pm1\sigma$. 2) Upper values ('plus' in the yaml file) correspond to an upward systematic variation of the parameter ($+1\sigma$). 3) Lower values ('minus' in the yaml file) correspond to a downward systematic variation of the parameter ($-1\sigma$). 4) These variations can have both positive and negative values, depending on the modelled effect. 5) Uncertainties with the same name should be treated as correlated, consistently across the upper and lower variations. 6) Systematic uncertainties with 'prop_' in the name treat limited background statistics per histogram bin, and are deployed with 'Barlow-Beeston-lite' approach. Details in https://arxiv.org/abs/1103.0354 section 5 7) Remaining systematic uncertainties alter the normalization, the shape, or both for a distribution. The nuisance parameter for such an uncertainty is mapped separately on the normalization and the shape variation components of the uncertainty. For normalization, $\ln$ mapping is used, for shape a spline. Details in https://cms-analysis.github.io/HiggsAnalysis-CombinedLimit/part2/settinguptheanalysis/#binned-shape-analysis 8) All nuisance parameters for the systematic uncertainties are modelled with a Gaussian pdf. 9) Gluon fusion contributions are all scaled to 1 pb. Please combine them using either the scale factors from 'Table SM Gluon Fusion Fractions', or using your own composition.
Observed and expected distributions of the variable chosen for statistical inference in the low-mass analysis $m_{\tau\tau}$. Numerical values provided in this table correspond to Figure 21 of the auxilliary material of the publication, but restricted to 2016 data-taking year. All distributions are considered after a fit to data is performed using a background-only model, which includes the $\text{H}(125)$ boson. Some details on how the distributions should be used: 1) All given uncertainties correspond to systematic variations of $\pm1\sigma$. 2) Upper values ('plus' in the yaml file) correspond to an upward systematic variation of the parameter ($+1\sigma$). 3) Lower values ('minus' in the yaml file) correspond to a downward systematic variation of the parameter ($-1\sigma$). 4) These variations can have both positive and negative values, depending on the modelled effect. 5) Uncertainties with the same name should be treated as correlated, consistently across the upper and lower variations. 6) Systematic uncertainties with 'prop_' in the name treat limited background statistics per histogram bin, and are deployed with 'Barlow-Beeston-lite' approach. Details in https://arxiv.org/abs/1103.0354 section 5 7) Remaining systematic uncertainties alter the normalization, the shape, or both for a distribution. The nuisance parameter for such an uncertainty is mapped separately on the normalization and the shape variation components of the uncertainty. For normalization, $\ln$ mapping is used, for shape a spline. Details in https://cms-analysis.github.io/HiggsAnalysis-CombinedLimit/part2/settinguptheanalysis/#binned-shape-analysis 8) All nuisance parameters for the systematic uncertainties are modelled with a Gaussian pdf. 9) Gluon fusion contributions are all scaled to 1 pb. Please combine them using either the scale factors from 'Table SM Gluon Fusion Fractions', or using your own composition.
Observed and expected distributions of the variable chosen for statistical inference in the low-mass analysis $m_{\tau\tau}$. Numerical values provided in this table correspond to Figure 21 of the auxilliary material of the publication, but restricted to 2017 data-taking year. All distributions are considered after a fit to data is performed using a background-only model, which includes the $\text{H}(125)$ boson. Some details on how the distributions should be used: 1) All given uncertainties correspond to systematic variations of $\pm1\sigma$. 2) Upper values ('plus' in the yaml file) correspond to an upward systematic variation of the parameter ($+1\sigma$). 3) Lower values ('minus' in the yaml file) correspond to a downward systematic variation of the parameter ($-1\sigma$). 4) These variations can have both positive and negative values, depending on the modelled effect. 5) Uncertainties with the same name should be treated as correlated, consistently across the upper and lower variations. 6) Systematic uncertainties with 'prop_' in the name treat limited background statistics per histogram bin, and are deployed with 'Barlow-Beeston-lite' approach. Details in https://arxiv.org/abs/1103.0354 section 5 7) Remaining systematic uncertainties alter the normalization, the shape, or both for a distribution. The nuisance parameter for such an uncertainty is mapped separately on the normalization and the shape variation components of the uncertainty. For normalization, $\ln$ mapping is used, for shape a spline. Details in https://cms-analysis.github.io/HiggsAnalysis-CombinedLimit/part2/settinguptheanalysis/#binned-shape-analysis 8) All nuisance parameters for the systematic uncertainties are modelled with a Gaussian pdf. 9) Gluon fusion contributions are all scaled to 1 pb. Please combine them using either the scale factors from 'Table SM Gluon Fusion Fractions', or using your own composition.
Observed and expected distributions of the variable chosen for statistical inference in the low-mass analysis $m_{\tau\tau}$. Numerical values provided in this table correspond to Figure 21 of the auxilliary material of the publication, but restricted to 2018 data-taking year. All distributions are considered after a fit to data is performed using a background-only model, which includes the $\text{H}(125)$ boson. Some details on how the distributions should be used: 1) All given uncertainties correspond to systematic variations of $\pm1\sigma$. 2) Upper values ('plus' in the yaml file) correspond to an upward systematic variation of the parameter ($+1\sigma$). 3) Lower values ('minus' in the yaml file) correspond to a downward systematic variation of the parameter ($-1\sigma$). 4) These variations can have both positive and negative values, depending on the modelled effect. 5) Uncertainties with the same name should be treated as correlated, consistently across the upper and lower variations. 6) Systematic uncertainties with 'prop_' in the name treat limited background statistics per histogram bin, and are deployed with 'Barlow-Beeston-lite' approach. Details in https://arxiv.org/abs/1103.0354 section 5 7) Remaining systematic uncertainties alter the normalization, the shape, or both for a distribution. The nuisance parameter for such an uncertainty is mapped separately on the normalization and the shape variation components of the uncertainty. For normalization, $\ln$ mapping is used, for shape a spline. Details in https://cms-analysis.github.io/HiggsAnalysis-CombinedLimit/part2/settinguptheanalysis/#binned-shape-analysis 8) All nuisance parameters for the systematic uncertainties are modelled with a Gaussian pdf. 9) Gluon fusion contributions are all scaled to 1 pb. Please combine them using either the scale factors from 'Table SM Gluon Fusion Fractions', or using your own composition.
Observed and expected distributions of the variable chosen for statistical inference in the low-mass analysis $m_{\tau\tau}$. Numerical values provided in this table correspond to Figure 22 of the auxilliary material of the publication, but restricted to 2016 data-taking year. All distributions are considered after a fit to data is performed using a background-only model, which includes the $\text{H}(125)$ boson. Some details on how the distributions should be used: 1) All given uncertainties correspond to systematic variations of $\pm1\sigma$. 2) Upper values ('plus' in the yaml file) correspond to an upward systematic variation of the parameter ($+1\sigma$). 3) Lower values ('minus' in the yaml file) correspond to a downward systematic variation of the parameter ($-1\sigma$). 4) These variations can have both positive and negative values, depending on the modelled effect. 5) Uncertainties with the same name should be treated as correlated, consistently across the upper and lower variations. 6) Systematic uncertainties with 'prop_' in the name treat limited background statistics per histogram bin, and are deployed with 'Barlow-Beeston-lite' approach. Details in https://arxiv.org/abs/1103.0354 section 5 7) Remaining systematic uncertainties alter the normalization, the shape, or both for a distribution. The nuisance parameter for such an uncertainty is mapped separately on the normalization and the shape variation components of the uncertainty. For normalization, $\ln$ mapping is used, for shape a spline. Details in https://cms-analysis.github.io/HiggsAnalysis-CombinedLimit/part2/settinguptheanalysis/#binned-shape-analysis 8) All nuisance parameters for the systematic uncertainties are modelled with a Gaussian pdf. 9) Gluon fusion contributions are all scaled to 1 pb. Please combine them using either the scale factors from 'Table SM Gluon Fusion Fractions', or using your own composition.
Observed and expected distributions of the variable chosen for statistical inference in the low-mass analysis $m_{\tau\tau}$. Numerical values provided in this table correspond to Figure 22 of the auxilliary material of the publication, but restricted to 2017 data-taking year. All distributions are considered after a fit to data is performed using a background-only model, which includes the $\text{H}(125)$ boson. Some details on how the distributions should be used: 1) All given uncertainties correspond to systematic variations of $\pm1\sigma$. 2) Upper values ('plus' in the yaml file) correspond to an upward systematic variation of the parameter ($+1\sigma$). 3) Lower values ('minus' in the yaml file) correspond to a downward systematic variation of the parameter ($-1\sigma$). 4) These variations can have both positive and negative values, depending on the modelled effect. 5) Uncertainties with the same name should be treated as correlated, consistently across the upper and lower variations. 6) Systematic uncertainties with 'prop_' in the name treat limited background statistics per histogram bin, and are deployed with 'Barlow-Beeston-lite' approach. Details in https://arxiv.org/abs/1103.0354 section 5 7) Remaining systematic uncertainties alter the normalization, the shape, or both for a distribution. The nuisance parameter for such an uncertainty is mapped separately on the normalization and the shape variation components of the uncertainty. For normalization, $\ln$ mapping is used, for shape a spline. Details in https://cms-analysis.github.io/HiggsAnalysis-CombinedLimit/part2/settinguptheanalysis/#binned-shape-analysis 8) All nuisance parameters for the systematic uncertainties are modelled with a Gaussian pdf. 9) Gluon fusion contributions are all scaled to 1 pb. Please combine them using either the scale factors from 'Table SM Gluon Fusion Fractions', or using your own composition.
Observed and expected distributions of the variable chosen for statistical inference in the low-mass analysis $m_{\tau\tau}$. Numerical values provided in this table correspond to Figure 22 of the auxilliary material of the publication, but restricted to 2018 data-taking year. All distributions are considered after a fit to data is performed using a background-only model, which includes the $\text{H}(125)$ boson. Some details on how the distributions should be used: 1) All given uncertainties correspond to systematic variations of $\pm1\sigma$. 2) Upper values ('plus' in the yaml file) correspond to an upward systematic variation of the parameter ($+1\sigma$). 3) Lower values ('minus' in the yaml file) correspond to a downward systematic variation of the parameter ($-1\sigma$). 4) These variations can have both positive and negative values, depending on the modelled effect. 5) Uncertainties with the same name should be treated as correlated, consistently across the upper and lower variations. 6) Systematic uncertainties with 'prop_' in the name treat limited background statistics per histogram bin, and are deployed with 'Barlow-Beeston-lite' approach. Details in https://arxiv.org/abs/1103.0354 section 5 7) Remaining systematic uncertainties alter the normalization, the shape, or both for a distribution. The nuisance parameter for such an uncertainty is mapped separately on the normalization and the shape variation components of the uncertainty. For normalization, $\ln$ mapping is used, for shape a spline. Details in https://cms-analysis.github.io/HiggsAnalysis-CombinedLimit/part2/settinguptheanalysis/#binned-shape-analysis 8) All nuisance parameters for the systematic uncertainties are modelled with a Gaussian pdf. 9) Gluon fusion contributions are all scaled to 1 pb. Please combine them using either the scale factors from 'Table SM Gluon Fusion Fractions', or using your own composition.
Observed and expected distributions of the variable chosen for statistical inference in the low-mass analysis $m_{\tau\tau}$. Numerical values provided in this table correspond to Figure 23 of the auxilliary material of the publication, but restricted to 2016 data-taking year. All distributions are considered after a fit to data is performed using a background-only model, which includes the $\text{H}(125)$ boson. Some details on how the distributions should be used: 1) All given uncertainties correspond to systematic variations of $\pm1\sigma$. 2) Upper values ('plus' in the yaml file) correspond to an upward systematic variation of the parameter ($+1\sigma$). 3) Lower values ('minus' in the yaml file) correspond to a downward systematic variation of the parameter ($-1\sigma$). 4) These variations can have both positive and negative values, depending on the modelled effect. 5) Uncertainties with the same name should be treated as correlated, consistently across the upper and lower variations. 6) Systematic uncertainties with 'prop_' in the name treat limited background statistics per histogram bin, and are deployed with 'Barlow-Beeston-lite' approach. Details in https://arxiv.org/abs/1103.0354 section 5 7) Remaining systematic uncertainties alter the normalization, the shape, or both for a distribution. The nuisance parameter for such an uncertainty is mapped separately on the normalization and the shape variation components of the uncertainty. For normalization, $\ln$ mapping is used, for shape a spline. Details in https://cms-analysis.github.io/HiggsAnalysis-CombinedLimit/part2/settinguptheanalysis/#binned-shape-analysis 8) All nuisance parameters for the systematic uncertainties are modelled with a Gaussian pdf. 9) Gluon fusion contributions are all scaled to 1 pb. Please combine them using either the scale factors from 'Table SM Gluon Fusion Fractions', or using your own composition.
Observed and expected distributions of the variable chosen for statistical inference in the low-mass analysis $m_{\tau\tau}$. Numerical values provided in this table correspond to Figure 23 of the auxilliary material of the publication, but restricted to 2017 data-taking year. All distributions are considered after a fit to data is performed using a background-only model, which includes the $\text{H}(125)$ boson. Some details on how the distributions should be used: 1) All given uncertainties correspond to systematic variations of $\pm1\sigma$. 2) Upper values ('plus' in the yaml file) correspond to an upward systematic variation of the parameter ($+1\sigma$). 3) Lower values ('minus' in the yaml file) correspond to a downward systematic variation of the parameter ($-1\sigma$). 4) These variations can have both positive and negative values, depending on the modelled effect. 5) Uncertainties with the same name should be treated as correlated, consistently across the upper and lower variations. 6) Systematic uncertainties with 'prop_' in the name treat limited background statistics per histogram bin, and are deployed with 'Barlow-Beeston-lite' approach. Details in https://arxiv.org/abs/1103.0354 section 5 7) Remaining systematic uncertainties alter the normalization, the shape, or both for a distribution. The nuisance parameter for such an uncertainty is mapped separately on the normalization and the shape variation components of the uncertainty. For normalization, $\ln$ mapping is used, for shape a spline. Details in https://cms-analysis.github.io/HiggsAnalysis-CombinedLimit/part2/settinguptheanalysis/#binned-shape-analysis 8) All nuisance parameters for the systematic uncertainties are modelled with a Gaussian pdf. 9) Gluon fusion contributions are all scaled to 1 pb. Please combine them using either the scale factors from 'Table SM Gluon Fusion Fractions', or using your own composition.
Observed and expected distributions of the variable chosen for statistical inference in the low-mass analysis $m_{\tau\tau}$. Numerical values provided in this table correspond to Figure 23 of the auxilliary material of the publication, but restricted to 2018 data-taking year. All distributions are considered after a fit to data is performed using a background-only model, which includes the $\text{H}(125)$ boson. Some details on how the distributions should be used: 1) All given uncertainties correspond to systematic variations of $\pm1\sigma$. 2) Upper values ('plus' in the yaml file) correspond to an upward systematic variation of the parameter ($+1\sigma$). 3) Lower values ('minus' in the yaml file) correspond to a downward systematic variation of the parameter ($-1\sigma$). 4) These variations can have both positive and negative values, depending on the modelled effect. 5) Uncertainties with the same name should be treated as correlated, consistently across the upper and lower variations. 6) Systematic uncertainties with 'prop_' in the name treat limited background statistics per histogram bin, and are deployed with 'Barlow-Beeston-lite' approach. Details in https://arxiv.org/abs/1103.0354 section 5 7) Remaining systematic uncertainties alter the normalization, the shape, or both for a distribution. The nuisance parameter for such an uncertainty is mapped separately on the normalization and the shape variation components of the uncertainty. For normalization, $\ln$ mapping is used, for shape a spline. Details in https://cms-analysis.github.io/HiggsAnalysis-CombinedLimit/part2/settinguptheanalysis/#binned-shape-analysis 8) All nuisance parameters for the systematic uncertainties are modelled with a Gaussian pdf. 9) Gluon fusion contributions are all scaled to 1 pb. Please combine them using either the scale factors from 'Table SM Gluon Fusion Fractions', or using your own composition.
Observed and expected distributions of the variable chosen for statistical inference in the low-mass analysis $m_{\tau\tau}$. Numerical values provided in this table correspond to Figure 24 of the auxilliary material of the publication, but restricted to 2016 data-taking year. All distributions are considered after a fit to data is performed using a background-only model, which includes the $\text{H}(125)$ boson. Some details on how the distributions should be used: 1) All given uncertainties correspond to systematic variations of $\pm1\sigma$. 2) Upper values ('plus' in the yaml file) correspond to an upward systematic variation of the parameter ($+1\sigma$). 3) Lower values ('minus' in the yaml file) correspond to a downward systematic variation of the parameter ($-1\sigma$). 4) These variations can have both positive and negative values, depending on the modelled effect. 5) Uncertainties with the same name should be treated as correlated, consistently across the upper and lower variations. 6) Systematic uncertainties with 'prop_' in the name treat limited background statistics per histogram bin, and are deployed with 'Barlow-Beeston-lite' approach. Details in https://arxiv.org/abs/1103.0354 section 5 7) Remaining systematic uncertainties alter the normalization, the shape, or both for a distribution. The nuisance parameter for such an uncertainty is mapped separately on the normalization and the shape variation components of the uncertainty. For normalization, $\ln$ mapping is used, for shape a spline. Details in https://cms-analysis.github.io/HiggsAnalysis-CombinedLimit/part2/settinguptheanalysis/#binned-shape-analysis 8) All nuisance parameters for the systematic uncertainties are modelled with a Gaussian pdf. 9) Gluon fusion contributions are all scaled to 1 pb. Please combine them using either the scale factors from 'Table SM Gluon Fusion Fractions', or using your own composition.
Observed and expected distributions of the variable chosen for statistical inference in the low-mass analysis $m_{\tau\tau}$. Numerical values provided in this table correspond to Figure 24 of the auxilliary material of the publication, but restricted to 2017 data-taking year. All distributions are considered after a fit to data is performed using a background-only model, which includes the $\text{H}(125)$ boson. Some details on how the distributions should be used: 1) All given uncertainties correspond to systematic variations of $\pm1\sigma$. 2) Upper values ('plus' in the yaml file) correspond to an upward systematic variation of the parameter ($+1\sigma$). 3) Lower values ('minus' in the yaml file) correspond to a downward systematic variation of the parameter ($-1\sigma$). 4) These variations can have both positive and negative values, depending on the modelled effect. 5) Uncertainties with the same name should be treated as correlated, consistently across the upper and lower variations. 6) Systematic uncertainties with 'prop_' in the name treat limited background statistics per histogram bin, and are deployed with 'Barlow-Beeston-lite' approach. Details in https://arxiv.org/abs/1103.0354 section 5 7) Remaining systematic uncertainties alter the normalization, the shape, or both for a distribution. The nuisance parameter for such an uncertainty is mapped separately on the normalization and the shape variation components of the uncertainty. For normalization, $\ln$ mapping is used, for shape a spline. Details in https://cms-analysis.github.io/HiggsAnalysis-CombinedLimit/part2/settinguptheanalysis/#binned-shape-analysis 8) All nuisance parameters for the systematic uncertainties are modelled with a Gaussian pdf. 9) Gluon fusion contributions are all scaled to 1 pb. Please combine them using either the scale factors from 'Table SM Gluon Fusion Fractions', or using your own composition.
Observed and expected distributions of the variable chosen for statistical inference in the low-mass analysis $m_{\tau\tau}$. Numerical values provided in this table correspond to Figure 24 of the auxilliary material of the publication, but restricted to 2018 data-taking year. All distributions are considered after a fit to data is performed using a background-only model, which includes the $\text{H}(125)$ boson. Some details on how the distributions should be used: 1) All given uncertainties correspond to systematic variations of $\pm1\sigma$. 2) Upper values ('plus' in the yaml file) correspond to an upward systematic variation of the parameter ($+1\sigma$). 3) Lower values ('minus' in the yaml file) correspond to a downward systematic variation of the parameter ($-1\sigma$). 4) These variations can have both positive and negative values, depending on the modelled effect. 5) Uncertainties with the same name should be treated as correlated, consistently across the upper and lower variations. 6) Systematic uncertainties with 'prop_' in the name treat limited background statistics per histogram bin, and are deployed with 'Barlow-Beeston-lite' approach. Details in https://arxiv.org/abs/1103.0354 section 5 7) Remaining systematic uncertainties alter the normalization, the shape, or both for a distribution. The nuisance parameter for such an uncertainty is mapped separately on the normalization and the shape variation components of the uncertainty. For normalization, $\ln$ mapping is used, for shape a spline. Details in https://cms-analysis.github.io/HiggsAnalysis-CombinedLimit/part2/settinguptheanalysis/#binned-shape-analysis 8) All nuisance parameters for the systematic uncertainties are modelled with a Gaussian pdf. 9) Gluon fusion contributions are all scaled to 1 pb. Please combine them using either the scale factors from 'Table SM Gluon Fusion Fractions', or using your own composition.
Observed and expected distributions of the variable chosen for statistical inference in the low-mass analysis $m_{\tau\tau}$. Numerical values provided in this table correspond to Figure 20 of the auxilliary material of the publication, but restricted to 2016 data-taking year. All distributions are considered after a fit to data is performed using a background-only model, which includes the $\text{H}(125)$ boson. Some details on how the distributions should be used: 1) All given uncertainties correspond to systematic variations of $\pm1\sigma$. 2) Upper values ('plus' in the yaml file) correspond to an upward systematic variation of the parameter ($+1\sigma$). 3) Lower values ('minus' in the yaml file) correspond to a downward systematic variation of the parameter ($-1\sigma$). 4) These variations can have both positive and negative values, depending on the modelled effect. 5) Uncertainties with the same name should be treated as correlated, consistently across the upper and lower variations. 6) Systematic uncertainties with 'prop_' in the name treat limited background statistics per histogram bin, and are deployed with 'Barlow-Beeston-lite' approach. Details in https://arxiv.org/abs/1103.0354 section 5 7) Remaining systematic uncertainties alter the normalization, the shape, or both for a distribution. The nuisance parameter for such an uncertainty is mapped separately on the normalization and the shape variation components of the uncertainty. For normalization, $\ln$ mapping is used, for shape a spline. Details in https://cms-analysis.github.io/HiggsAnalysis-CombinedLimit/part2/settinguptheanalysis/#binned-shape-analysis 8) All nuisance parameters for the systematic uncertainties are modelled with a Gaussian pdf. 9) Gluon fusion contributions are all scaled to 1 pb. Please combine them using either the scale factors from 'Table SM Gluon Fusion Fractions', or using your own composition.
Observed and expected distributions of the variable chosen for statistical inference in the low-mass analysis $m_{\tau\tau}$. Numerical values provided in this table correspond to Figure 20 of the auxilliary material of the publication, but restricted to 2017 data-taking year. All distributions are considered after a fit to data is performed using a background-only model, which includes the $\text{H}(125)$ boson. Some details on how the distributions should be used: 1) All given uncertainties correspond to systematic variations of $\pm1\sigma$. 2) Upper values ('plus' in the yaml file) correspond to an upward systematic variation of the parameter ($+1\sigma$). 3) Lower values ('minus' in the yaml file) correspond to a downward systematic variation of the parameter ($-1\sigma$). 4) These variations can have both positive and negative values, depending on the modelled effect. 5) Uncertainties with the same name should be treated as correlated, consistently across the upper and lower variations. 6) Systematic uncertainties with 'prop_' in the name treat limited background statistics per histogram bin, and are deployed with 'Barlow-Beeston-lite' approach. Details in https://arxiv.org/abs/1103.0354 section 5 7) Remaining systematic uncertainties alter the normalization, the shape, or both for a distribution. The nuisance parameter for such an uncertainty is mapped separately on the normalization and the shape variation components of the uncertainty. For normalization, $\ln$ mapping is used, for shape a spline. Details in https://cms-analysis.github.io/HiggsAnalysis-CombinedLimit/part2/settinguptheanalysis/#binned-shape-analysis 8) All nuisance parameters for the systematic uncertainties are modelled with a Gaussian pdf. 9) Gluon fusion contributions are all scaled to 1 pb. Please combine them using either the scale factors from 'Table SM Gluon Fusion Fractions', or using your own composition.
Observed and expected distributions of the variable chosen for statistical inference in the low-mass analysis $m_{\tau\tau}$. Numerical values provided in this table correspond to Figure 20 of the auxilliary material of the publication, but restricted to 2018 data-taking year. All distributions are considered after a fit to data is performed using a background-only model, which includes the $\text{H}(125)$ boson. Some details on how the distributions should be used: 1) All given uncertainties correspond to systematic variations of $\pm1\sigma$. 2) Upper values ('plus' in the yaml file) correspond to an upward systematic variation of the parameter ($+1\sigma$). 3) Lower values ('minus' in the yaml file) correspond to a downward systematic variation of the parameter ($-1\sigma$). 4) These variations can have both positive and negative values, depending on the modelled effect. 5) Uncertainties with the same name should be treated as correlated, consistently across the upper and lower variations. 6) Systematic uncertainties with 'prop_' in the name treat limited background statistics per histogram bin, and are deployed with 'Barlow-Beeston-lite' approach. Details in https://arxiv.org/abs/1103.0354 section 5 7) Remaining systematic uncertainties alter the normalization, the shape, or both for a distribution. The nuisance parameter for such an uncertainty is mapped separately on the normalization and the shape variation components of the uncertainty. For normalization, $\ln$ mapping is used, for shape a spline. Details in https://cms-analysis.github.io/HiggsAnalysis-CombinedLimit/part2/settinguptheanalysis/#binned-shape-analysis 8) All nuisance parameters for the systematic uncertainties are modelled with a Gaussian pdf. 9) Gluon fusion contributions are all scaled to 1 pb. Please combine them using either the scale factors from 'Table SM Gluon Fusion Fractions', or using your own composition.
A measurement of the top quark pole mass $m_\mathrm{t}^\text{pole}$ in events where a top quark-antiquark pair ($\mathrm{t\bar{t}}$) is produced in association with at least one additional jet ($\mathrm{t\bar{t}}$+jet) is presented. This analysis is performed using proton-proton collision data at $\sqrt{s}$ = 13 TeV collected by the CMS experiment at the CERN LHC, corresponding to a total integrated luminosity of 36.3 fb$^{-1}$. Events with two opposite-sign leptons in the final state (e$^+$e$^-$, $\mu^+\mu^-$, e$^\pm\mu^\mp$) are analyzed. The reconstruction of the main observable and the event classification are optimized using multivariate analysis techniques based on machine learning. The production cross section is measured as a function of the inverse of the invariant mass of the $\mathrm{t\bar{t}}$+jet system at the parton level using a maximum likelihood unfolding. Given a reference parton distribution function (PDF), the top quark pole mass is extracted using the theoretical predictions at next-to-leading order. For the ABMP16NLO PDF, this results in $m_\mathrm{t}^\text{pole}$ = 172.93 $\pm$ 1.36 GeV.
Absolute differential cross section as a function of the rho observable at parton level.
Absolute differential cross section as a function of the rho observable at parton level.
Covariance matrix for the total uncertainty for the measurement of the absolute differential cross section as a function of the rho observable at parton level.
Covariance matrix for the total uncertainty (i.e. fit including stat., not extrapolation) for the measurement of the absolute differential cross section as a function of the rho observable at parton level.
Covariance matrix for the statistical uncertainty for the measurement of the absolute differential cross section as a function of the rho observable at parton level.
Covariance matrix for the statistical uncertainty for the measurement of the absolute differential cross section as a function of the rho observable at parton level.
Covariance matrix for the extrapolation uncertainty for the measurement of the absolute differential cross section as a function of the rho observable at parton level.
Covariance matrix for the extrapolation uncertainty for the measurement of the absolute differential cross section as a function of the rho observable at parton level.
Normalized differential cross section as a function of the rho observable at parton level.
Normalized differential cross section as a function of the rho observable at parton level.
Covariance matrix for the total uncertainty for the measurement of the normalized differential cross section as a function of the rho observable at parton level.
Covariance matrix for the total uncertainty (i.e. fit including stat., not extrapolation) for the measurement of the normalized differential cross section as a function of the rho observable at parton level.
Covariance matrix for the statistical uncertainty for the measurement of the normalized differential cross section as a function of the rho observable at parton level.
Covariance matrix for the statistical uncertainty for the measurement of the normalized differential cross section as a function of the rho observable at parton level.
Covariance matrix for the extrapolation uncertainty for the measurement of the normalized differential cross section as a function of the rho observable at parton level.
Covariance matrix for the extrapolation uncertainty for the measurement of the normalized differential cross section as a function of the rho observable at parton level.
Correlation matrix for all nuisance parameters and parameters of interest of the Likelihood fit.
Correlation matrix for all nuisance parameters and parameters of interest of the Likelihood fit.
This table is a numerical representation of Fig. 8 for all nuisance parameters.
This table is a numerical representation of Fig. 8 for all nuisance parameters.
A search for new phenomena has been performed in final states with at least one isolated high-momentum photon, jets and missing transverse momentum in proton--proton collisions at a centre-of-mass energy of $\sqrt{s} = 13$ TeV. The data, collected by the ATLAS experiment at the CERN LHC, correspond to an integrated luminosity of 139 $fb^{-1}$. The experimental results are interpreted in a supersymmetric model in which pair-produced gluinos decay into neutralinos, which in turn decay into a gravitino, at least one photon, and jets. No significant deviations from the predictions of the Standard Model are observed. Upper limits are set on the visible cross section due to physics beyond the Standard Model, and lower limits are set on the masses of the gluinos and neutralinos, all at 95% confidence level. Visible cross sections greater than 0.022 fb are excluded and pair-produced gluinos with masses up to 2200 GeV are excluded for most of the NLSP masses investigated.
The observed and expected (post-fit) yields in the control and validation regions. The lower panel shows the difference in standard deviations between the observed and expected yields, considering both the systematic and statistical uncertainties on the background expectation.
Observed (points with error bars) and expected background (solid histograms) distributions for $E_{T}^{miss}$ in the signal region (a) SRL, (b) SRM and (c) SRH after the background-only fit applied to the CRs. The predicted signal distributions for the two models with a gluino mass of 2000 GeV and neutralino mass of 250 GeV (SRL), 1050 GeV (SRM) or 1950 GeV (SRH) are also shown for comparison. The uncertainties in the SM background are only statistical.
Observed (points with error bars) and expected background (solid histograms) distributions for $E_{T}^{miss}$ in the signal region (a) SRL, (b) SRM and (c) SRH after the background-only fit applied to the CRs. The predicted signal distributions for the two models with a gluino mass of 2000 GeV and neutralino mass of 250 GeV (SRL), 1050 GeV (SRM) or 1950 GeV (SRH) are also shown for comparison. The uncertainties in the SM background are only statistical.
Observed (points with error bars) and expected background (solid histograms) distributions for $E_{T}^{miss}$ in the signal region (a) SRL, (b) SRM and (c) SRH after the background-only fit applied to the CRs. The predicted signal distributions for the two models with a gluino mass of 2000 GeV and neutralino mass of 250 GeV (SRL), 1050 GeV (SRM) or 1950 GeV (SRH) are also shown for comparison. The uncertainties in the SM background are only statistical.
Observed and expected exclusion limit in the gluino-neutralino mass plane at 95% CL combined using the signal region with the best expected sensitivity at each point, for the full Run-2 dataset corresponding to an integrated luminosity of $139~\mathrm{fb}^{-1}$, for $\gamma/Z$ (a) and $\gamma/h$ (b) signal models. The black solid line corresponds to the expected limits at 95% CL, with the light (yellow) bands indicating the 1$\sigma$ exclusions due to experimental and background-theory uncertainties. The observed limits are indicated by medium (red) curves, the solid contour represents the nominal limit, and the dotted lines are obtained by varying the signal cross section by the theoretical scale and PDF uncertainties. For each point in the higgsino-bino parameter space, the labels indicate the best-expected signal region, where L, M and H mean SRL, SRM and SRH, respectively.
Observed and expected exclusion limit in the gluino-neutralino mass plane at 95% CL combined using the signal region with the best expected sensitivity at each point, for the full Run-2 dataset corresponding to an integrated luminosity of $139~\mathrm{fb}^{-1}$, for $\gamma/Z$ (a) and $\gamma/h$ (b) signal models. The black solid line corresponds to the expected limits at 95% CL, with the light (yellow) bands indicating the 1$\sigma$ exclusions due to experimental and background-theory uncertainties. The observed limits are indicated by medium (red) curves, the solid contour represents the nominal limit, and the dotted lines are obtained by varying the signal cross section by the theoretical scale and PDF uncertainties. For each point in the higgsino-bino parameter space, the labels indicate the best-expected signal region, where L, M and H mean SRL, SRM and SRH, respectively.
Acceptance (left) and efficiency (right) for the $\gamma/Z$ model signal grid for SRL (top), SRM (middle) and SRH (bottom).
Acceptance (left) and efficiency (right) for the $\gamma/Z$ model signal grid for SRL (top), SRM (middle) and SRH (bottom).
Acceptance (left) and efficiency (right) for the $\gamma/Z$ model signal grid for SRL (top), SRM (middle) and SRH (bottom).
Acceptance (left) and efficiency (right) for the $\gamma/Z$ model signal grid for SRL (top), SRM (middle) and SRH (bottom).
Acceptance (left) and efficiency (right) for the $\gamma/Z$ model signal grid for SRL (top), SRM (middle) and SRH (bottom).
Acceptance (left) and efficiency (right) for the $\gamma/Z$ model signal grid for SRL (top), SRM (middle) and SRH (bottom).
Acceptance (left) and efficiency (right) for the $\gamma/h$ model signal grid for SRL (top), SRM (middle) and SRH (bottom).
Acceptance (left) and efficiency (right) for the $\gamma/h$ model signal grid for SRL (top), SRM (middle) and SRH (bottom).
Acceptance (left) and efficiency (right) for the $\gamma/h$ model signal grid for SRL (top), SRM (middle) and SRH (bottom).
Acceptance (left) and efficiency (right) for the $\gamma/h$ model signal grid for SRL (top), SRM (middle) and SRH (bottom).
Acceptance (left) and efficiency (right) for the $\gamma/h$ model signal grid for SRL (top), SRM (middle) and SRH (bottom).
Acceptance (left) and efficiency (right) for the $\gamma/h$ model signal grid for SRL (top), SRM (middle) and SRH (bottom).
Cutflow for the SRL selection, for two relevant signal points for both $\gamma/Z$ and $\gamma/h$ models, where the gluinos have mass of 2000 GeV and the neutralinos have a mass of 250 GeV (10000 generated events). The numbers are normalized to a luminosity of 139 $fb^{-1}$.
Cutflow for the SRM selection, for two relevant signal points for both $\gamma/Z$ and $\gamma/h$ models, where the gluinos have mass of 2000 GeV and the neutralinos have a mass of 1050 GeV (10000 generated events). The numbers are normalized to a luminosity of 139 $fb^{-1}$.
Cutflow for the SRH selection, for two relevant signal points for both $\gamma/Z$ and $\gamma/h$ models, where the gluinos have mass of 2000 GeV and the neutralinos have a mass of 1950 GeV (10000 generated events). The numbers are normalized to a luminosity of 139 $fb^{-1}$.
Observed and expected exclusion limits in the gluino–neutralino mass plane at 95% CL for the full Run-2 dataset corresponding to an integrated luminosity of 139 fb−1 , for the (a) $\gamma/Z$ and (b) $\gamma/h$ signal models. They are obtained by combining limits from the signal region with the best expected sensitivity at each point. The dashed (black) line corresponds to the expected limits at 95% CL, with the light (yellow) band indicating the $\pm 1\sigma$ excursions due to experimental and background-theory uncertainties. The observed limits are indicated by medium (red) curves: the solid contour represents the nominal limit, and the dotted lines are obtained by varying the signal cross section by the theoretical scale and PDF uncertainties.
Observed and expected exclusion limits in the gluino–neutralino mass plane at 95% CL for the full Run-2 dataset corresponding to an integrated luminosity of 139 fb−1 , for the (a) $\gamma/Z$ and (b) $\gamma/h$ signal models. They are obtained by combining limits from the signal region with the best expected sensitivity at each point. The dashed (black) line corresponds to the expected limits at 95% CL, with the light (yellow) band indicating the $\pm 1\sigma$ excursions due to experimental and background-theory uncertainties. The observed limits are indicated by medium (red) curves: the solid contour represents the nominal limit, and the dotted lines are obtained by varying the signal cross section by the theoretical scale and PDF uncertainties.
Observed and expected exclusion limits in the gluino–neutralino mass plane at 95% CL for the full Run-2 dataset corresponding to an integrated luminosity of 139 fb−1 , for the (a) $\gamma/Z$ and (b) $\gamma/h$ signal models. They are obtained by combining limits from the signal region with the best expected sensitivity at each point. The dashed (black) line corresponds to the expected limits at 95% CL, with the light (yellow) band indicating the $\pm 1\sigma$ excursions due to experimental and background-theory uncertainties. The observed limits are indicated by medium (red) curves: the solid contour represents the nominal limit, and the dotted lines are obtained by varying the signal cross section by the theoretical scale and PDF uncertainties.
Observed and expected exclusion limits in the gluino–neutralino mass plane at 95% CL for the full Run-2 dataset corresponding to an integrated luminosity of 139 fb−1 , for the (a) $\gamma/Z$ and (b) $\gamma/h$ signal models. They are obtained by combining limits from the signal region with the best expected sensitivity at each point. The dashed (black) line corresponds to the expected limits at 95% CL, with the light (yellow) band indicating the $\pm 1\sigma$ excursions due to experimental and background-theory uncertainties. The observed limits are indicated by medium (red) curves: the solid contour represents the nominal limit, and the dotted lines are obtained by varying the signal cross section by the theoretical scale and PDF uncertainties.
Observed and expected exclusion limits in the gluino–neutralino mass plane at 95% CL for the full Run-2 dataset corresponding to an integrated luminosity of 139 fb−1 , for the (a) $\gamma/Z$ and (b) $\gamma/h$ signal models. They are obtained by combining limits from the signal region with the best expected sensitivity at each point. The dashed (black) line corresponds to the expected limits at 95% CL, with the light (yellow) band indicating the $\pm 1\sigma$ excursions due to experimental and background-theory uncertainties. The observed limits are indicated by medium (red) curves: the solid contour represents the nominal limit, and the dotted lines are obtained by varying the signal cross section by the theoretical scale and PDF uncertainties.
Observed and expected exclusion limits in the gluino–neutralino mass plane at 95% CL for the full Run-2 dataset corresponding to an integrated luminosity of 139 fb−1 , for the (a) $\gamma/Z$ and (b) $\gamma/h$ signal models. They are obtained by combining limits from the signal region with the best expected sensitivity at each point. The dashed (black) line corresponds to the expected limits at 95% CL, with the light (yellow) band indicating the $\pm 1\sigma$ excursions due to experimental and background-theory uncertainties. The observed limits are indicated by medium (red) curves: the solid contour represents the nominal limit, and the dotted lines are obtained by varying the signal cross section by the theoretical scale and PDF uncertainties.
Observed and expected exclusion limits in the gluino–neutralino mass plane at 95% CL for the full Run-2 dataset corresponding to an integrated luminosity of 139 fb−1 , for the (a) $\gamma/Z$ and (b) $\gamma/h$ signal models. They are obtained by combining limits from the signal region with the best expected sensitivity at each point. The dashed (black) line corresponds to the expected limits at 95% CL, with the light (yellow) band indicating the $\pm 1\sigma$ excursions due to experimental and background-theory uncertainties. The observed limits are indicated by medium (red) curves: the solid contour represents the nominal limit, and the dotted lines are obtained by varying the signal cross section by the theoretical scale and PDF uncertainties.
Observed and expected exclusion limits in the gluino–neutralino mass plane at 95% CL for the full Run-2 dataset corresponding to an integrated luminosity of 139 fb−1 , for the (a) $\gamma/Z$ and (b) $\gamma/h$ signal models. They are obtained by combining limits from the signal region with the best expected sensitivity at each point. The dashed (black) line corresponds to the expected limits at 95% CL, with the light (yellow) band indicating the $\pm 1\sigma$ excursions due to experimental and background-theory uncertainties. The observed limits are indicated by medium (red) curves: the solid contour represents the nominal limit, and the dotted lines are obtained by varying the signal cross section by the theoretical scale and PDF uncertainties.
Observed and expected exclusion limits in the gluino–neutralino mass plane at 95% CL for the full Run-2 dataset corresponding to an integrated luminosity of 139 fb−1 , for the (a) $\gamma/Z$ and (b) $\gamma/h$ signal models. They are obtained by combining limits from the signal region with the best expected sensitivity at each point. The dashed (black) line corresponds to the expected limits at 95% CL, with the light (yellow) band indicating the $\pm 1\sigma$ excursions due to experimental and background-theory uncertainties. The observed limits are indicated by medium (red) curves: the solid contour represents the nominal limit, and the dotted lines are obtained by varying the signal cross section by the theoretical scale and PDF uncertainties.
Observed and expected exclusion limits in the gluino–neutralino mass plane at 95% CL for the full Run-2 dataset corresponding to an integrated luminosity of 139 fb−1 , for the (a) $\gamma/Z$ and (b) $\gamma/h$ signal models. They are obtained by combining limits from the signal region with the best expected sensitivity at each point. The dashed (black) line corresponds to the expected limits at 95% CL, with the light (yellow) band indicating the $\pm 1\sigma$ excursions due to experimental and background-theory uncertainties. The observed limits are indicated by medium (red) curves: the solid contour represents the nominal limit, and the dotted lines are obtained by varying the signal cross section by the theoretical scale and PDF uncertainties.
Observed and expected exclusion limits in the gluino–neutralino mass plane at 95% CL for the full Run-2 dataset corresponding to an integrated luminosity of 139 fb−1 , for the (a) $\gamma/Z$ and (b) $\gamma/h$ signal models. They are obtained by combining limits from the signal region with the best expected sensitivity at each point. The dashed (black) line corresponds to the expected limits at 95% CL, with the light (yellow) band indicating the $\pm 1\sigma$ excursions due to experimental and background-theory uncertainties. The observed limits are indicated by medium (red) curves: the solid contour represents the nominal limit, and the dotted lines are obtained by varying the signal cross section by the theoretical scale and PDF uncertainties.
Observed and expected exclusion limits in the gluino–neutralino mass plane at 95% CL for the full Run-2 dataset corresponding to an integrated luminosity of 139 fb−1 , for the (a) $\gamma/Z$ and (b) $\gamma/h$ signal models. They are obtained by combining limits from the signal region with the best expected sensitivity at each point. The dashed (black) line corresponds to the expected limits at 95% CL, with the light (yellow) band indicating the $\pm 1\sigma$ excursions due to experimental and background-theory uncertainties. The observed limits are indicated by medium (red) curves: the solid contour represents the nominal limit, and the dotted lines are obtained by varying the signal cross section by the theoretical scale and PDF uncertainties.
This paper presents a search for hypothetical massive, charged, long-lived particles with the ATLAS detector at the LHC using an integrated luminosity of 139 fb$^{-1}$ of proton-proton collisions at $\sqrt{s}=13$ TeV. These particles are expected to move significantly slower than the speed of light and should be identifiable by their high transverse momenta and anomalously large specific ionisation losses, ${\mathrm{d}}E/\mathrm{d}x$. Trajectories reconstructed solely by the inner tracking system and a ${\mathrm{d}}E/\mathrm{d}x$ measurement in the pixel detector layers provide sensitivity to particles with lifetimes down to ${\cal O}(1)$$\text{ns}$ with a mass, measured using the Bethe--Bloch relation, ranging from 100 GeV to 3 TeV. Interpretations for pair-production of $R$-hadrons, charginos and staus in scenarios of supersymmetry compatible with these particles being long-lived are presented, with mass limits extending considerably beyond those from previous searches in broad ranges of lifetime.
This material aims to give people outside the ATLAS Collaboration the possibility to reinterpret the results from the search for heavy charged long-lived particles (CLLPs), using only particles from Monte Carlo event generators. The reinterpretation material is provided for signal regions SR-Inclusive_Low and SR-Inclusive_High. <ul display="inline-block"> <li>The "long" lifetime regime of mass windows is used.</li> <li>Users are guided to read Guide.pdf (available from "Resources" or "Download All" buttons) for how to use the provided materials for reinterpretation.</li> <li>The pseudo-code snippet snippet.cxx also illustrates a sketch of possible implementation.</li> </ul> <b>Signal Region (Discovery) mass distribution</b> <ul> <li><a href="?table=SR-Inclusive_Low%20mass%20distribution">SR-Inclusive_Low mass distribution</a></li> <li><a href="?table=SR-Inclusive_High%20mass%20distribution">SR-Inclusive_High mass distribution</a></li> </ul> <b>Signal Region (Discovery) $p_\text{T}, \eta, dE/dx$ distribution</b> <ul> <li><a href="?table=SR-Inclusive_Low%20pT%20distribution">SR-Inclusive_Low pT distribution</a></li> <li><a href="?table=SR-Inclusive_High%20pT%20distribution">SR-Inclusive_High pT distribution</a></li> <li><a href="?table=SR-Inclusive_Low%20$eta$%20distribution">SR-Inclusive_Low $\eta$ distribution</a></li> <li><a href="?table=SR-Inclusive_High%20$eta$%20distribution">SR-Inclusive_High $\eta$ distribution</a></li> <li><a href="?table=SR-Inclusive_Low%20dE/dx%20distribution">SR-Inclusive_Low dE/dx distribution</a></li> <li><a href="?table=SR-Inclusive_High%20dE/dx%20distribution">SR-Inclusive_High dE/dx distribution</a></li> </ul> <b>Signal Region (Limit Setting) mass distribution</b> <ul> <li><a href="?table=SR-Trk-IBL0_Low%20mass%20distribution">SR-Trk-IBL0_Low mass distribution</a></li> <li><a href="?table=SR-Mu-IBL0_Low%20mass%20distribution">SR-Mu-IBL0_Low mass distribution</a></li> <li><a href="?table=SR-Trk-IBL0_High%20mass%20distribution">SR-Trk-IBL0_High mass distribution</a></li> <li><a href="?table=SR-Mu-IBL0_High%20mass%20distribution">SR-Mu-IBL0_High mass distribution</a></li> <li><a href="?table=SR-Trk-IBL1%20mass%20distribution">SR-Trk-IBL1 mass distribution</a></li> <li><a href="?table=SR-Mu-IBL1%20mass%20distribution">SR-Mu-IBL1 mass distribution</a></li> </ul> <b>Signal Region (Limit Setting) $p_\text{T}$ distribution</b> <ul> <li><a href="?table=SR-Trk-IBL0_Low%20pT%20distribution">SR-Trk-IBL0_Low pT distribution</a></li> <li><a href="?table=SR-Mu-IBL0_Low%20pT%20distribution">SR-Mu-IBL0_Low pT distribution</a></li> <li><a href="?table=SR-Trk-IBL0_High%20pT%20distribution">SR-Trk-IBL0_High pT distribution</a></li> <li><a href="?table=SR-Mu-IBL0_High%20pT%20distribution">SR-Mu-IBL0_High pT distribution</a></li> <li><a href="?table=SR-Trk-IBL1%20pT%20distribution">SR-Trk-IBL1 pT distribution</a></li> <li><a href="?table=SR-Mu-IBL1%20pT%20distribution">SR-Mu-IBL1 pT distribution</a></li> </ul> <b>Signal Region (Limit Setting) $dE/dx$ distribution</b> <ul> <li><a href="?table=SR-Trk-IBL0_Low%20dE/dx%20distribution">SR-Trk-IBL0_Low dE/dx distribution</a></li> <li><a href="?table=SR-Mu-IBL0_Low%20dE/dx%20distribution">SR-Mu-IBL0_Low dE/dx distribution</a></li> <li><a href="?table=SR-Trk-IBL0_High%20dE/dx%20distribution">SR-Trk-IBL0_High dE/dx distribution</a></li> <li><a href="?table=SR-Mu-IBL0_High%20dE/dx%20distribution">SR-Mu-IBL0_High dE/dx distribution</a></li> <li><a href="?table=SR-Trk-IBL1%20dE/dx%20distribution">SR-Trk-IBL1 dE/dx distribution</a></li> <li><a href="?table=SR-Mu-IBL1%20dE/dx%20distribution">SR-Mu-IBL1 dE/dx distribution</a></li> </ul> <b>Discovery Signal Regions $p_{0}$ values</b> <ul> <li><a href="?table=p0-values%20and%20model-independent%20limits,%20short%20regime">p0-values and model-independent limits, short regime</a></li> <li><a href="?table=p0-values%20and%20model-independent%20limits,%20long%20regime">p0-values and model-independent limits, long regime</a></li> </ul> <b>Validation Region plots</b> <ul> <li><a href="?table=VR-LowPt-Inclusive_High%20mass%20distribution">VR-LowPt-Inclusive_High mass distribution</a></li> <li><a href="?table=VR-HiEta-Inclusive%20mass%20distribution">VR-HiEta-Inclusive mass distribution</a></li> </ul> <ul> <li><a href="?table=VR-LowPt-Trk-IBL0_Low%20mass%20distribution">VR-LowPt-Trk-IBL0_Low mass distribution</a></li> <li><a href="?table=VR-LowPt-Mu-IBL0_Low%20mass%20distribution">VR-LowPt-Mu-IBL0_Low mass distribution</a></li> <li><a href="?table=VR-LowPt-Trk-IBL0_High%20mass%20distribution">VR-LowPt-Trk-IBL0_High mass distribution</a></li> <li><a href="?table=VR-LowPt-Mu-IBL0_High%20mass%20distribution">VR-LowPt-Mu-IBL0_High mass distribution</a></li> <li><a href="?table=VR-LowPt-Trk-IBL1%20mass%20distribution">VR-LowPt-Trk-IBL1 mass distribution</a></li> <li><a href="?table=VR-LowPt-Mu-IBL1%20mass%20distribution">VR-LowPt-Mu-IBL1 mass distribution</a></li> </ul> <ul> <li><a href="?table=VR-HiEta-Trk-IBL0_Low%20mass%20distribution">VR-HiEta-Trk-IBL0_Low mass distribution</a></li> <li><a href="?table=VR-HiEta-Mu-IBL0_Low%20mass%20distribution">VR-HiEta-Mu-IBL0_Low mass distribution</a></li> <li><a href="?table=VR-HiEta-Trk-IBL0_High%20mass%20distribution">VR-HiEta-Trk-IBL0_High mass distribution</a></li> <li><a href="?table=VR-HiEta-Mu-IBL0_High%20mass%20distribution">VR-HiEta-Mu-IBL0_High mass distribution</a></li> <li><a href="?table=VR-HiEta-Trk-IBL1%20mass%20distribution">VR-HiEta-Trk-IBL1 mass distribution</a></li> <li><a href="?table=VR-HiEta-Mu-IBL1%20mass%20distribution">VR-HiEta-Mu-IBL1 mass distribution</a></li> </ul> <b>Mass vs. Lifetime limit plots</b> <ul> <li><a href="?table=Mass%20Limit%20vs.%20Lifetime,%20R-hadron,%20Expected">Mass Limit vs. Lifetime, R-hadron, Expected</a></li> <li><a href="?table=Mass%20Limit%20vs.%20Lifetime,%20R-hadron,%20Observed">Mass Limit vs. Lifetime, R-hadron, Observed</a></li> <li><a href="?table=Mass%20Limit%20vs.%20Lifetime,%20R-hadron,%20compressed,%20Expected">Mass Limit vs. Lifetime, R-hadron, compressed, Expected</a></li> <li><a href="?table=Mass%20Limit%20vs.%20Lifetime,%20R-hadron,%20compressed,%20Observed">Mass Limit vs. Lifetime, R-hadron, compressed, Observed</a></li> <li><a href="?table=Mass%20Limit%20vs.%20Lifetime,%20Chargino,%20Expected">Mass Limit vs. Lifetime, Chargino, Expected</a></li> <li><a href="?table=Mass%20Limit%20vs.%20Lifetime,%20Chargino,%20Observed">Mass Limit vs. Lifetime, Chargino, Observed</a></li> <li><a href="?table=Mass%20Limit%20vs.%20Lifetime,%20Stau,%20Expected">Mass Limit vs. Lifetime, Stau, Expected</a></li> <li><a href="?table=Mass%20Limit%20vs.%20Lifetime,%20Stau,%20Observed">Mass Limit vs. Lifetime, Stau, Observed</a></li> </ul> <b>Cross-section limit plots</b> <ul> <li><a href="?table=Cross%20Section%20Limit,%20R-hadron%201ns">Cross Section Limit, R-hadron 1ns</a></li> <li><a href="?table=Cross%20Section%20Limit,%20R-hadron%203ns">Cross Section Limit, R-hadron 3ns</a></li> <li><a href="?table=Cross%20Section%20Limit,%20R-hadron%2010ns">Cross Section Limit, R-hadron 10ns</a></li> <li><a href="?table=Cross%20Section%20Limit,%20R-hadron%2030ns">Cross Section Limit, R-hadron 30ns</a></li> <li><a href="?table=Cross%20Section%20Limit,%20R-hadron%20Stable">Cross Section Limit, R-hadron Stable</a></li> <li><a href="?table=Cross%20Section%20Limit,%20R-hadron%20Compressed%201ns">Cross Section Limit, R-hadron Compressed 1ns</a></li> <li><a href="?table=Cross%20Section%20Limit,%20R-hadron%20Compressed%203ns">Cross Section Limit, R-hadron Compressed 3ns</a></li> <li><a href="?table=Cross%20Section%20Limit,%20R-hadron%20Compressed%2010ns">Cross Section Limit, R-hadron Compressed 10ns</a></li> <li><a href="?table=Cross%20Section%20Limit,%20R-hadron%20Compressed%2030ns">Cross Section Limit, R-hadron Compressed 30ns</a></li> <li><a href="?table=Cross%20Section%20Limit,%20Chargino%201ns">Cross Section Limit, Chargino 1ns</a></li> <li><a href="?table=Cross%20Section%20Limit,%20Chargino%204ns">Cross Section Limit, Chargino 4ns</a></li> <li><a href="?table=Cross%20Section%20Limit,%20Chargino%2010ns">Cross Section Limit, Chargino 10ns</a></li> <li><a href="?table=Cross%20Section%20Limit,%20Chargino%2030ns">Cross Section Limit, Chargino 30ns</a></li> <li><a href="?table=Cross%20Section%20Limit,%20Chargino%20Stable">Cross Section Limit, Chargino Stable</a></li> <li><a href="?table=Cross%20Section%20Limit,%20Stau%201ns">Cross Section Limit, Stau 1ns</a></li> <li><a href="?table=Cross%20Section%20Limit,%20Stau%203ns">Cross Section Limit, Stau 3ns</a></li> <li><a href="?table=Cross%20Section%20Limit,%20Stau%2010ns">Cross Section Limit, Stau 10ns</a></li> <li><a href="?table=Cross%20Section%20Limit,%20Stau%2030ns">Cross Section Limit, Stau 30ns</a></li> <li><a href="?table=Cross%20Section%20Limit,%20Stau%20Stable">Cross Section Limit, Stau Stable</a></li> </ul> <b>Signal Region events projected to other kinematic variables</b> <ul> <li><a href="?table=SR-Inclusive_Low%20MET">SR-Inclusive_Low MET</a></li> <li><a href="?table=SR-Inclusive_High%20MET">SR-Inclusive_High MET</a></li> <li><a href="?table=SR-Inclusive_Low%20deltaPhi(MET,%20Track)">SR-Inclusive_Low deltaPhi(MET, Track)</a></li> <li><a href="?table=SR-Inclusive_High%20deltaPhi(MET,%20Track)">SR-Inclusive_High deltaPhi(MET, Track)</a></li> <li><a href="?table=SR-Inclusive_Low%20mT(MET,%20Track)">SR-Inclusive_Low mT(MET, Track)</a></li> <li><a href="?table=SR-Inclusive_High%20mT(MET,%20Track)">SR-Inclusive_High mT(MET, Track)</a></li> <li><a href="?table=SR-Inclusive_Low%20Leading%20jet%20pT">SR-Inclusive_Low Leading jet pT</a></li> <li><a href="?table=SR-Inclusive_High%20Leading%20jet%20pT">SR-Inclusive_High Leading jet pT</a></li> <li><a href="?table=SR-Inclusive_Low%20deltaPhi(Leading%20jet,%20Track)">SR-Inclusive_Low deltaPhi(Leading jet, Track)</a></li> <li><a href="?table=SR-Inclusive_High%20deltaPhi(Leading%20jet,%20Track)">SR-Inclusive_High deltaPhi(Leading jet, Track)</a></li> <li><a href="?table=SR-Inclusive_Low%20deltaPhi(MET,%20Leading%20jet)">SR-Inclusive_Low deltaPhi(MET, Leading jet)</a></li> <li><a href="?table=SR-Inclusive_High%20deltaPhi(MET,%20Leading%20jet)">SR-Inclusive_High deltaPhi(MET, Leading jet)</a></li> <li><a href="?table=SR-Inclusive_Low%20mT(MET,%20Leading%20jet)">SR-Inclusive_Low mT(MET, Leading jet)</a></li> <li><a href="?table=SR-Inclusive_High%20mT(MET,%20Leading%20jet)">SR-Inclusive_High mT(MET, Leading jet)</a></li> <li><a href="?table=SR-Inclusive_Low%20Effective%20mass">SR-Inclusive_Low Effective mass</a></li> <li><a href="?table=SR-Inclusive_High%20Effective%20mass">SR-Inclusive_High Effective mass</a></li> </ul> <b>Acceptance and efficiency values for reinterpretation</b> <ul> <li><a href="?table=Muon%20Reconstruction%20Efficiency%20distribution">Muon Reconstruction Efficiency distribution</a></li> <li><a href="?table=Muon%20Reconstruction%20Efficiency,%20R-hadron%20distribution">Muon Reconstruction Efficiency, R-hadron distribution</a></li> <li><a href="?table=Trigger%20Efficiency%20distribution">Trigger Efficiency distribution</a></li> <li><a href="?table=Event%20Selection%20Efficiency%20distribution">Event Selection Efficiency distribution</a></li> <li><a href="?table=Track%20Selection%20Efficiency%20distribution">Track Selection Efficiency distribution</a></li> <li><a href="?table=Mass%20Window%20Efficiency">Mass Window Efficiency</a></li> </ul> <b>Acceptance and efficiency tables for signal samples</b> <ul> <li><a href="?table=Acceptance,%20R-hadron">Acceptance, R-hadron</a></li> <li><a href="?table=Acceptance,%20R-hadron,%20compressed">Acceptance, R-hadron, compressed</a></li> <li><a href="?table=Acceptance,%20Chargino">Acceptance, Chargino</a></li> <li><a href="?table=Acceptance,%20Stau">Acceptance, Stau</a></li> </ul> <ul> <li><a href="?table=Event-level%20efficiency,%20R-hadron">Event-level efficiency, R-hadron</a></li> <li><a href="?table=Event-level%20efficiency,%20R-hadron,%20compressed">Event-level efficiency, R-hadron, compressed</a></li> <li><a href="?table=Event-level%20efficiency,%20Chargino">Event-level efficiency, Chargino</a></li> <li><a href="?table=Event-level%20efficiency,%20Stau">Event-level efficiency, Stau</a></li> </ul> <ul> <li><a href="?table=Efficiency,%20SR-Inclusve_High,%20R-hadron">Efficiency, SR-Inclusve_High, R-hadron</a></li> <li><a href="?table=Efficiency,%20SR-Inclusve_High,%20R-hadron,%20compressed">Efficiency, SR-Inclusve_High, R-hadron, compressed</a></li> <li><a href="?table=Efficiency,%20SR-Inclusve_High,%20Chargino">Efficiency, SR-Inclusve_High, Chargino</a></li> <li><a href="?table=Efficiency,%20SR-Inclusve_High,%20Stau">Efficiency, SR-Inclusve_High, Stau</a></li> </ul> <ul> <li><a href="?table=Efficiency,%20SR-Inclusive_Low,%20R-hadron">Efficiency, SR-Inclusive_Low, R-hadron</a></li> <li><a href="?table=Efficiency,%20SR-Inclusive_Low,%20R-hadron,%20compressed">Efficiency, SR-Inclusive_Low, R-hadron, compressed</a></li> <li><a href="?table=Efficiency,%20SR-Inclusive_Low,%20Chargino">Efficiency, SR-Inclusive_Low, Chargino</a></li> <li><a href="?table=Efficiency,%20SR-Inclusive_Low,%20Stau">Efficiency, SR-Inclusive_Low, Stau</a></li> </ul> <b>Cut flow for signal samples</b> <ul> <li><a href="?table=Cut%20Flow,%20R-hadron">Cut Flow, R-hadron</a></li> <li><a href="?table=Cut%20Flow,%20R-hadron,%20compressed">Cut Flow, R-hadron, compressed</a></li> <li><a href="?table=Cut%20Flow,%20Chargino">Cut Flow, Chargino</a></li> <li><a href="?table=Cut%20Flow,%20Stau">Cut Flow, Stau</a></li> </ul>
Comparison of the observed and expected VAR distributionsin VR-LowPt-Inclusive_High. The band on the expected background estimation indicates the total uncertainty of the estimation. Downward triangle markers at the bottom of the panels indicate there is no events observed in the corresponding bin, while upward triangle markers at the bottom panel indicate the observed data is beyond the range.
Comparison of the observed and expected VAR distributionsin VR-HiEta-Inclusive. The band on the expected background estimation indicates the total uncertainty of the estimation. Downward triangle markers at the bottom of the panels indicate there is no events observed in the corresponding bin, while upward triangle markers at the bottom panel indicate the observed data is beyond the range.
The observed mass distribution in the SR-Inclusive_Low signal-region bin. The band on the expected background indicates the total uncertainty of the estimation. Several representative signal models are overlaid. Events outside the shown range are accumulated in the rightmost bin indicated as 'Overflow'. Downward triangle markers at the bottom of the panels indicate that no events are observed in the corresponding mass bin, while upward triangle markers in the lower panels indicate that the observed data is beyond the range.
The observed mass distribution in the SR-Inclusive_High signal-region bin. The band on the expected background indicates the total uncertainty of the estimation. Several representative signal models are overlaid. Events outside the shown range are accumulated in the rightmost bin indicated as 'Overflow'. Downward triangle markers at the bottom of the panels indicate that no events are observed in the corresponding mass bin, while upward triangle markers in the lower panels indicate that the observed data is beyond the range.
List of expected and observed events, $p_{0}$-value and the corresponding $Z$ local significance, as well as the 95% CLs upper limit of the expected and observed signal events ($S^{95}_ ext{exp} and $S^{95}_ ext{obs}$ ) in each mass window for SR-Inclusive bins of the short lifetime regime.
List of expected and observed events, $p_{0}$-value and the corresponding $Z$ local significance, as well as the 95% CLs upper limit of the expected and observed signal events ($S^{95}_ ext{exp} and $S^{95}_ ext{obs}$ ) in each mass window for SR-Inclusive bins of the long lifetime regime.
The observed $p_{\rm T$ distribution in the SR-Inclusive_Low signal-region bin. The band on the expected background indicates the total uncertainty of the estimation. Several representative signal models are overlaid. Events outside the shown range are accumulated in the rightmost bin indicated as 'Overflow'. Downward triangle markers at the bottom of the panels indicate that no events are observed in the corresponding mass bin, while upward triangle markers in the lower panels indicate that the observed data is beyond the range.
The observed $p_{\rm T$ distribution in the SR-Inclusive_High signal-region bin. The band on the expected background indicates the total uncertainty of the estimation. Several representative signal models are overlaid. Events outside the shown range are accumulated in the rightmost bin indicated as 'Overflow'. Downward triangle markers at the bottom of the panels indicate that no events are observed in the corresponding mass bin, while upward triangle markers in the lower panels indicate that the observed data is beyond the range.
The observed $|\eta|$ distribution in the SR-Inclusive_Low signal-region bin. The band on the expected background indicates the total uncertainty of the estimation. Several representative signal models are overlaid. Events outside the shown range are accumulated in the rightmost bin indicated as 'Overflow'. Downward triangle markers at the bottom of the panels indicate that no events are observed in the corresponding mass bin, while upward triangle markers in the lower panels indicate that the observed data is beyond the range.
The observed $|\eta|$ distribution in the SR-Inclusive_High signal-region bin. The band on the expected background indicates the total uncertainty of the estimation. Several representative signal models are overlaid. Events outside the shown range are accumulated in the rightmost bin indicated as 'Overflow'. Downward triangle markers at the bottom of the panels indicate that no events are observed in the corresponding mass bin, while upward triangle markers in the lower panels indicate that the observed data is beyond the range.
The observed dE/dx distribution in the SR-Inclusive_Low signal-region bin. The band on the expected background indicates the total uncertainty of the estimation. Several representative signal models are overlaid. Events outside the shown range are accumulated in the rightmost bin indicated as 'Overflow'. Downward triangle markers at the bottom of the panels indicate that no events are observed in the corresponding mass bin, while upward triangle markers in the lower panels indicate that the observed data is beyond the range.
The observed dE/dx distribution in the SR-Inclusive_High signal-region bin. The band on the expected background indicates the total uncertainty of the estimation. Several representative signal models are overlaid. Events outside the shown range are accumulated in the rightmost bin indicated as 'Overflow'. Downward triangle markers at the bottom of the panels indicate that no events are observed in the corresponding mass bin, while upward triangle markers in the lower panels indicate that the observed data is beyond the range.
The observed mass distribution in the SR-Trk-IBL0_Low signal-region bin. The band on the expected background indicates the total uncertainty of the estimation. Several representative signal models are overlaid. Events outside the shown range are accumulated in the rightmost bin indicated as 'Overflow'. Downward triangle markers at the bottom of the panels indicate that no events are observed in the corresponding mass bin, while upward triangle markers in the lower panels indicate that the observed data is beyond the range.
The observed mass distribution in the SR-Mu-IBL0_Low signal-region bin. The band on the expected background indicates the total uncertainty of the estimation. Several representative signal models are overlaid. Events outside the shown range are accumulated in the rightmost bin indicated as 'Overflow'. Downward triangle markers at the bottom of the panels indicate that no events are observed in the corresponding mass bin, while upward triangle markers in the lower panels indicate that the observed data is beyond the range.
The observed mass distribution in the SR-Trk-IBL0_High signal-region bin. The band on the expected background indicates the total uncertainty of the estimation. Several representative signal models are overlaid. Events outside the shown range are accumulated in the rightmost bin indicated as 'Overflow'. Downward triangle markers at the bottom of the panels indicate that no events are observed in the corresponding mass bin, while upward triangle markers in the lower panels indicate that the observed data is beyond the range.
The observed mass distribution in the SR-Mu-IBL0_High signal-region bin. The band on the expected background indicates the total uncertainty of the estimation. Several representative signal models are overlaid. Events outside the shown range are accumulated in the rightmost bin indicated as 'Overflow'. Downward triangle markers at the bottom of the panels indicate that no events are observed in the corresponding mass bin, while upward triangle markers in the lower panels indicate that the observed data is beyond the range.
The observed mass distribution in the SR-Trk-IBL1 signal-region bin. The band on the expected background indicates the total uncertainty of the estimation. Several representative signal models are overlaid. Events outside the shown range are accumulated in the rightmost bin indicated as 'Overflow'. Downward triangle markers at the bottom of the panels indicate that no events are observed in the corresponding mass bin, while upward triangle markers in the lower panels indicate that the observed data is beyond the range.
The observed mass distribution in the SR-Mu-IBL1 signal-region bin. The band on the expected background indicates the total uncertainty of the estimation. Several representative signal models are overlaid. Events outside the shown range are accumulated in the rightmost bin indicated as 'Overflow'. Downward triangle markers at the bottom of the panels indicate that no events are observed in the corresponding mass bin, while upward triangle markers in the lower panels indicate that the observed data is beyond the range.
Lower limits on the gluino mass, from gluino $R$-hadron pair production, as a function of gluino lifetime for two neutralino mass assumptions of (a) $m(\tilde{\chi}_{1}^{0}) = 100 \text{GeV}$ and (b) $\Delta m(\tilde{g}, \tilde{\chi}_{1}^{0}) = 30 \text{GeV}$. The upper $1 \sigma_\text{exp}$ expected bound is very close to the expected limit for some lifetime values due to the expected background getting very close to 0 events.
Lower limits on the gluino mass, from gluino $R$-hadron pair production, as a function of gluino lifetime for two neutralino mass assumptions of (a) $m(\tilde{\chi}_{1}^{0}) = 100 \text{GeV}$ and (b) $\Delta m(\tilde{g}, \tilde{\chi}_{1}^{0}) = 30 \text{GeV}$. The upper $1 \sigma_\text{exp}$ expected bound is very close to the expected limit for some lifetime values due to the expected background getting very close to 0 events.
Lower limits on the gluino mass, from gluino $R$-hadron pair production, as a function of gluino lifetime for two neutralino mass assumptions of (a) $m(\tilde{\chi}_{1}^{0}) = 100 \text{GeV}$ and (b) $\Delta m(\tilde{g}, \tilde{\chi}_{1}^{0}) = 30 \text{GeV}$. The upper $1 \sigma_\text{exp}$ expected bound is very close to the expected limit for some lifetime values due to the expected background getting very close to 0 events.
Lower limits on the gluino mass, from gluino $R$-hadron pair production, as a function of gluino lifetime for two neutralino mass assumptions of (a) $m(\tilde{\chi}_{1}^{0}) = 100 \text{GeV}$ and (b) $\Delta m(\tilde{g}, \tilde{\chi}_{1}^{0}) = 30 \text{GeV}$. The upper $1 \sigma_\text{exp}$ expected bound is very close to the expected limit for some lifetime values due to the expected background getting very close to 0 events.
(a) Lower limits on the chargino mass as a function of lifetime, and (b) the contours around the excluded mass-lifetime region for stau pair production.
(a) Lower limits on the chargino mass as a function of lifetime, and (b) the contours around the excluded mass-lifetime region for stau pair production.
(a) Lower limits on the chargino mass as a function of lifetime, and (b) the contours around the excluded mass-lifetime region for stau pair production.
(a) Lower limits on the chargino mass as a function of lifetime, and (b) the contours around the excluded mass-lifetime region for stau pair production.
Comparison of the observed and expected VAR distributionsin VR-LowPt-Trk-IBL0_Low. The band on the expected background estimation indicates the total uncertainty of the estimation. Downward triangle markers at the bottom of the panels indicate there is no events observed in the corresponding bin, while upward triangle markers at the bottom panel indicate the observed data is beyond the range.
Comparison of the observed and expected VAR distributionsin VR-LowPt-Mu-IBL0_Low. The band on the expected background estimation indicates the total uncertainty of the estimation. Downward triangle markers at the bottom of the panels indicate there is no events observed in the corresponding bin, while upward triangle markers at the bottom panel indicate the observed data is beyond the range.
Comparison of the observed and expected VAR distributionsin VR-LowPt-Trk-IBL0_High. The band on the expected background estimation indicates the total uncertainty of the estimation. Downward triangle markers at the bottom of the panels indicate there is no events observed in the corresponding bin, while upward triangle markers at the bottom panel indicate the observed data is beyond the range.
Comparison of the observed and expected VAR distributionsin VR-LowPt-Mu-IBL0_High. The band on the expected background estimation indicates the total uncertainty of the estimation. Downward triangle markers at the bottom of the panels indicate there is no events observed in the corresponding bin, while upward triangle markers at the bottom panel indicate the observed data is beyond the range.
Comparison of the observed and expected VAR distributionsin VR-LowPt-Trk-IBL1. The band on the expected background estimation indicates the total uncertainty of the estimation. Downward triangle markers at the bottom of the panels indicate there is no events observed in the corresponding bin, while upward triangle markers at the bottom panel indicate the observed data is beyond the range.
Comparison of the observed and expected VAR distributionsin VR-LowPt-Mu-IBL1. The band on the expected background estimation indicates the total uncertainty of the estimation. Downward triangle markers at the bottom of the panels indicate there is no events observed in the corresponding bin, while upward triangle markers at the bottom panel indicate the observed data is beyond the range.
Comparison of the observed and expected VAR distributionsin VR-HiEta-Trk-IBL0_Low. The band on the expected background estimation indicates the total uncertainty of the estimation. Downward triangle markers at the bottom of the panels indicate there is no events observed in the corresponding bin, while upward triangle markers at the bottom panel indicate the observed data is beyond the range.
Comparison of the observed and expected VAR distributionsin VR-HiEta-Mu-IBL0_Low. The band on the expected background estimation indicates the total uncertainty of the estimation. Downward triangle markers at the bottom of the panels indicate there is no events observed in the corresponding bin, while upward triangle markers at the bottom panel indicate the observed data is beyond the range.
Comparison of the observed and expected VAR distributionsin VR-HiEta-Trk-IBL0_High. The band on the expected background estimation indicates the total uncertainty of the estimation. Downward triangle markers at the bottom of the panels indicate there is no events observed in the corresponding bin, while upward triangle markers at the bottom panel indicate the observed data is beyond the range.
Comparison of the observed and expected VAR distributionsin VR-HiEta-Mu-IBL0_High. The band on the expected background estimation indicates the total uncertainty of the estimation. Downward triangle markers at the bottom of the panels indicate there is no events observed in the corresponding bin, while upward triangle markers at the bottom panel indicate the observed data is beyond the range.
Comparison of the observed and expected VAR distributionsin VR-HiEta-Trk-IBL1. The band on the expected background estimation indicates the total uncertainty of the estimation. Downward triangle markers at the bottom of the panels indicate there is no events observed in the corresponding bin, while upward triangle markers at the bottom panel indicate the observed data is beyond the range.
Comparison of the observed and expected VAR distributionsin VR-HiEta-Mu-IBL1. The band on the expected background estimation indicates the total uncertainty of the estimation. Downward triangle markers at the bottom of the panels indicate there is no events observed in the corresponding bin, while upward triangle markers at the bottom panel indicate the observed data is beyond the range.
The observed $p_{\rm T$ distribution in the SR-Trk-IBL0_Low signal-region bin. The band on the expected background indicates the total uncertainty of the estimation. Several representative signal models are overlaid. Events outside the shown range are accumulated in the rightmost bin indicated as 'Overflow'. Downward triangle markers at the bottom of the panels indicate that no events are observed in the corresponding mass bin, while upward triangle markers in the lower panels indicate that the observed data is beyond the range.
The observed $p_{\rm T$ distribution in the SR-Mu-IBL0_Low signal-region bin. The band on the expected background indicates the total uncertainty of the estimation. Several representative signal models are overlaid. Events outside the shown range are accumulated in the rightmost bin indicated as 'Overflow'. Downward triangle markers at the bottom of the panels indicate that no events are observed in the corresponding mass bin, while upward triangle markers in the lower panels indicate that the observed data is beyond the range.
The observed $p_{\rm T$ distribution in the SR-Trk-IBL0_High signal-region bin. The band on the expected background indicates the total uncertainty of the estimation. Several representative signal models are overlaid. Events outside the shown range are accumulated in the rightmost bin indicated as 'Overflow'. Downward triangle markers at the bottom of the panels indicate that no events are observed in the corresponding mass bin, while upward triangle markers in the lower panels indicate that the observed data is beyond the range.
The observed $p_{\rm T$ distribution in the SR-Mu-IBL0_High signal-region bin. The band on the expected background indicates the total uncertainty of the estimation. Several representative signal models are overlaid. Events outside the shown range are accumulated in the rightmost bin indicated as 'Overflow'. Downward triangle markers at the bottom of the panels indicate that no events are observed in the corresponding mass bin, while upward triangle markers in the lower panels indicate that the observed data is beyond the range.
The observed $p_{\rm T$ distribution in the SR-Trk-IBL1 signal-region bin. The band on the expected background indicates the total uncertainty of the estimation. Several representative signal models are overlaid. Events outside the shown range are accumulated in the rightmost bin indicated as 'Overflow'. Downward triangle markers at the bottom of the panels indicate that no events are observed in the corresponding mass bin, while upward triangle markers in the lower panels indicate that the observed data is beyond the range.
The observed $p_{\rm T$ distribution in the SR-Mu-IBL1 signal-region bin. The band on the expected background indicates the total uncertainty of the estimation. Several representative signal models are overlaid. Events outside the shown range are accumulated in the rightmost bin indicated as 'Overflow'. Downward triangle markers at the bottom of the panels indicate that no events are observed in the corresponding mass bin, while upward triangle markers in the lower panels indicate that the observed data is beyond the range.
The observed dE/dx distribution in the SR-Trk-IBL0_Low signal-region bin. The band on the expected background indicates the total uncertainty of the estimation. Several representative signal models are overlaid. Events outside the shown range are accumulated in the rightmost bin indicated as 'Overflow'. Downward triangle markers at the bottom of the panels indicate that no events are observed in the corresponding mass bin, while upward triangle markers in the lower panels indicate that the observed data is beyond the range.
The observed dE/dx distribution in the SR-Mu-IBL0_Low signal-region bin. The band on the expected background indicates the total uncertainty of the estimation. Several representative signal models are overlaid. Events outside the shown range are accumulated in the rightmost bin indicated as 'Overflow'. Downward triangle markers at the bottom of the panels indicate that no events are observed in the corresponding mass bin, while upward triangle markers in the lower panels indicate that the observed data is beyond the range.
The observed dE/dx distribution in the SR-Trk-IBL0_High signal-region bin. The band on the expected background indicates the total uncertainty of the estimation. Several representative signal models are overlaid. Events outside the shown range are accumulated in the rightmost bin indicated as 'Overflow'. Downward triangle markers at the bottom of the panels indicate that no events are observed in the corresponding mass bin, while upward triangle markers in the lower panels indicate that the observed data is beyond the range.
The observed dE/dx distribution in the SR-Mu-IBL0_High signal-region bin. The band on the expected background indicates the total uncertainty of the estimation. Several representative signal models are overlaid. Events outside the shown range are accumulated in the rightmost bin indicated as 'Overflow'. Downward triangle markers at the bottom of the panels indicate that no events are observed in the corresponding mass bin, while upward triangle markers in the lower panels indicate that the observed data is beyond the range.
The observed dE/dx distribution in the SR-Trk-IBL1 signal-region bin. The band on the expected background indicates the total uncertainty of the estimation. Several representative signal models are overlaid. Events outside the shown range are accumulated in the rightmost bin indicated as 'Overflow'. Downward triangle markers at the bottom of the panels indicate that no events are observed in the corresponding mass bin, while upward triangle markers in the lower panels indicate that the observed data is beyond the range.
The observed dE/dx distribution in the SR-Mu-IBL1 signal-region bin. The band on the expected background indicates the total uncertainty of the estimation. Several representative signal models are overlaid. Events outside the shown range are accumulated in the rightmost bin indicated as 'Overflow'. Downward triangle markers at the bottom of the panels indicate that no events are observed in the corresponding mass bin, while upward triangle markers in the lower panels indicate that the observed data is beyond the range.
Expected and observed distributions in SR-Inclusive_Low of missing transverse momentum. The expected background distribution is calculated for each |eta| slice using CR-kin control region as the template and applying the scale factor using the dE/dx distribution in CR-dEdx of the corresponding |eta| slice. The last bins of the plots include overflow events above the range.
Expected and observed distributions in SR-Inclusive_High of missing transverse momentum. The expected background distribution is calculated for each |eta| slice using CR-kin control region as the template and applying the scale factor using the dE/dx distribution in CR-dEdx of the corresponding |eta| slice. The last bins of the plots include overflow events above the range.
Expected and observed distributions in SR-Inclusive_Low of relative phi-angle between pTmiss and the signal candidate track. The expected background distribution is calculated for each |eta| slice using CR-kin control region as the template and applying the scale factor using the dE/dx distribution in CR-dEdx of the corresponding |eta| slice. The last bins of the plots include overflow events above the range.
Expected and observed distributions in SR-Inclusive_High of relative phi-angle between pTmiss and the signal candidate track. The expected background distribution is calculated for each |eta| slice using CR-kin control region as the template and applying the scale factor using the dE/dx distribution in CR-dEdx of the corresponding |eta| slice. The last bins of the plots include overflow events above the range.
Expected and observed distributions in SR-Inclusive_Low of the transverse mass of pTmiss and the signal candidate track. The expected background distribution is calculated for each |eta| slice using CR-kin control region as the template and applying the scale factor using the dE/dx distribution in CR-dEdx of the corresponding |eta| slice. The last bins of the plots include overflow events above the range.
Expected and observed distributions in SR-Inclusive_High of the transverse mass of pTmiss and the signal candidate track. The expected background distribution is calculated for each |eta| slice using CR-kin control region as the template and applying the scale factor using the dE/dx distribution in CR-dEdx of the corresponding |eta| slice. The last bins of the plots include overflow events above the range.
Expected and observed distributions in SR-Inclusive_Low of the leading jet pT, required to be separated by at least deltaR > 0.4 with respect to the signal candidate track. The expected background distribution is calculated for each |eta| slice using CR-kin control region as the template and applying the scale factor using the dE/dx distribution in CR-dEdx of the corresponding |eta| slice. The last bins of the plots include overflow events above the range.
Expected and observed distributions in SR-Inclusive_High of the leading jet pT, required to be separated by at least deltaR > 0.4 with respect to the signal candidate track. The expected background distribution is calculated for each |eta| slice using CR-kin control region as the template and applying the scale factor using the dE/dx distribution in CR-dEdx of the corresponding |eta| slice. The last bins of the plots include overflow events above the range.
Expected and observed distributions in SR-Inclusive_Low of the relative phi-angle between the leading jet pT, required to be separated by at least deltaR > 0.4 with respect to the signal candidate track, and the signal candidate track. The expected background distribution is calculated for each |eta| slice using CR-kin control region as the template and applying the scale factor using the dE/dx distribution in CR-dEdx of the corresponding |eta| slice. The last bins of the plots include overflow events above the range.
Expected and observed distributions in SR-Inclusive_High of the relative phi-angle between the leading jet pT, required to be separated by at least deltaR > 0.4 with respect to the signal candidate track, and the signal candidate track. The expected background distribution is calculated for each |eta| slice using CR-kin control region as the template and applying the scale factor using the dE/dx distribution in CR-dEdx of the corresponding |eta| slice. The last bins of the plots include overflow events above the range.
Expected and observed distributions in SR-Inclusive_Low of the relative phi-angle between pTmiss and the leading jet pT, required to be separated by at least deltaR > 0.4 with respect to the signal candidate track. The expected background distribution is calculated for each |eta| slice using CR-kin control region as the template and applying the scale factor using the dE/dx distribution in CR-dEdx of the corresponding |eta| slice. The last bins of the plots include overflow events above the range.
Expected and observed distributions in SR-Inclusive_High of the relative phi-angle between pTmiss and the leading jet pT, required to be separated by at least deltaR > 0.4 with respect to the signal candidate track. The expected background distribution is calculated for each |eta| slice using CR-kin control region as the template and applying the scale factor using the dE/dx distribution in CR-dEdx of the corresponding |eta| slice. The last bins of the plots include overflow events above the range.
Expected and observed distributions in SR-Inclusive_Low of the transverse mass of pTmiss and the leading jet pT, required to be separated by at least deltaR > 0.4 with respect to the signal candidate track. The expected background distribution is calculated for each |eta| slice using CR-kin control region as the template and applying the scale factor using the dE/dx distribution in CR-dEdx of the corresponding |eta| slice. The last bins of the plots include overflow events above the range.
Expected and observed distributions in SR-Inclusive_High of the transverse mass of pTmiss and the leading jet pT, required to be separated by at least deltaR > 0.4 with respect to the signal candidate track. The expected background distribution is calculated for each |eta| slice using CR-kin control region as the template and applying the scale factor using the dE/dx distribution in CR-dEdx of the corresponding |eta| slice. The last bins of the plots include overflow events above the range.
Expected and observed distributions in SR-Inclusive_Low of the effective mass, defined as the scalar sum pT of the signal candidate track, jets satisfying pT > 30 GeV, excluding ones within deltaR < 0.4 with respect to the signal candidate track, and pTmiss. The expected background distribution is calculated for each |eta| slice using CR-kin control region as the template and applying the scale factor using the dE/dx distribution in CR-dEdx of the corresponding |eta| slice. The last bins of the plots include overflow events above the range.
Expected and observed distributions in SR-Inclusive_High of the effective mass, defined as the scalar sum pT of the signal candidate track, jets satisfying pT > 30 GeV, excluding ones within deltaR < 0.4 with respect to the signal candidate track, and pTmiss. The expected background distribution is calculated for each |eta| slice using CR-kin control region as the template and applying the scale factor using the dE/dx distribution in CR-dEdx of the corresponding |eta| slice. The last bins of the plots include overflow events above the range.
The expected upper limits on cross-section for gluinos with $m(\tilde{\chi}_{1}^{0}) = 100 \text{GeV}$, with lifetime with lifetime (a) 1 ns, (b) 3 ns, (c) 10 ns, (d) 30 ns, and (e) stable.
The expected upper limits on cross-section for gluinos with $m(\tilde{\chi}_{1}^{0}) = 100 \text{GeV}$, with lifetime with lifetime (a) 1 ns, (b) 3 ns, (c) 10 ns, (d) 30 ns, and (e) stable.
The expected upper limits on cross-section for gluinos with $m(\tilde{\chi}_{1}^{0}) = 100 \text{GeV}$, with lifetime with lifetime (a) 1 ns, (b) 3 ns, (c) 10 ns, (d) 30 ns, and (e) stable.
The expected upper limits on cross-section for gluinos with $m(\tilde{\chi}_{1}^{0}) = 100 \text{GeV}$, with lifetime with lifetime (a) 1 ns, (b) 3 ns, (c) 10 ns, (d) 30 ns, and (e) stable.
The expected upper limits on cross-section for gluinos with $m(\tilde{\chi}_{1}^{0}) = 100 \text{GeV}$, with lifetime with lifetime (a) 1 ns, (b) 3 ns, (c) 10 ns, (d) 30 ns, and (e) stable.
The expected upper limits on cross-section for gluinos with $\Delta m(\tilde{g}, \tilde{\chi}_{1}^{0}) = 30 \text{GeV}$, with lifetime (a) 1 ns, (b) 3 ns, (c) 10 ns, and (d) 30 ns.
The expected upper limits on cross-section for gluinos with $\Delta m(\tilde{g}, \tilde{\chi}_{1}^{0}) = 30 \text{GeV}$, with lifetime (a) 1 ns, (b) 3 ns, (c) 10 ns, and (d) 30 ns.
The expected upper limits on cross-section for gluinos with $\Delta m(\tilde{g}, \tilde{\chi}_{1}^{0}) = 30 \text{GeV}$, with lifetime (a) 1 ns, (b) 3 ns, (c) 10 ns, and (d) 30 ns.
The expected upper limits on cross-section for gluinos with $\Delta m(\tilde{g}, \tilde{\chi}_{1}^{0}) = 30 \text{GeV}$, with lifetime (a) 1 ns, (b) 3 ns, (c) 10 ns, and (d) 30 ns.
The expected upper limits on cross-section for charginos with lifetime (c) 10 ns, (d) 30 ns, and (e) stable.
The expected upper limits on cross-section for charginos with lifetime (c) 10 ns, (d) 30 ns, and (e) stable.
The expected upper limits on cross-section for charginos with lifetime (c) 10 ns, (d) 30 ns, and (e) stable.
The expected upper limits on cross-section for charginos with lifetime (c) 10 ns, (d) 30 ns, and (e) stable.
The expected upper limits on cross-section for charginos with lifetime (c) 10 ns, (d) 30 ns, and (e) stable.
The expected upper limits on cross-section for sleptons with lifetime (a) 1 ns, (b) 3 ns, (c) 10 ns, (d) 30 ns, and (e) stable.
The expected upper limits on cross-section for sleptons with lifetime (a) 1 ns, (b) 3 ns, (c) 10 ns, (d) 30 ns, and (e) stable.
The expected upper limits on cross-section for sleptons with lifetime (a) 1 ns, (b) 3 ns, (c) 10 ns, (d) 30 ns, and (e) stable.
The expected upper limits on cross-section for sleptons with lifetime (a) 1 ns, (b) 3 ns, (c) 10 ns, (d) 30 ns, and (e) stable.
The expected upper limits on cross-section for sleptons with lifetime (a) 1 ns, (b) 3 ns, (c) 10 ns, (d) 30 ns, and (e) stable.
Muon reconstruction efficiency as a function of β and |η| for (a) stable charginos and (b) stable charged R-hadrons. For weakly interacting LLPs with calorimeter materials the efficiency for the chargino is recommended to refer to. The muon reconstruction efficiency for R-hadrons is significantly lower due to having QCD interactions with materials.
Muon reconstruction efficiency as a function of β and |η| for (a) stable charginos and (b) stable charged R-hadrons. For weakly interacting LLPs with calorimeter materials the efficiency for the chargino is recommended to refer to. The muon reconstruction efficiency for R-hadrons is significantly lower due to having QCD interactions with materials.
Trigger and event selection efficiencies. The band on the marker indicates a typical size of fluctuation by the LLP mass and lifetime observed by the samples used in efficiency derivation, but it does not indicate the full envelope of model dependence.
Trigger and event selection efficiencies. The band on the marker indicates a typical size of fluctuation by the LLP mass and lifetime observed by the samples used in efficiency derivation, but it does not indicate the full envelope of model dependence.
Signal track selection efficiency as a function of CLLP $\beta\gamma$ for SR-Inclusive_Low and SR-Inclusive_High bins. The band on the marker indicates a typical size of fluctuation by the LLP mass and lifetime observed by the samples used in efficiency derivation, but it does not indicate the full envelope of model dependence.
Signal selection efficiency by the mass window for SR-Inclusive_Low and SR-Inclusive_High bins.
Acceptance for the R-hadron pair-production model with m(N1) = 100 GeV for various masses and lifetimes. The acceptance is defined as the fraction of events having at least one charged LLP satisfying pT > 120 GeV, |\eta| < 1.8 and r_decay > 500 mm.
Acceptance for the R-hadron pair-production model with DeltaM(gluino, N1) = 30 GeV for various masses and lifetimes. The acceptance is defined as the fraction of events having at least one charged LLP satisfying pT > 120 GeV, |eta| < 1.8 and r_decay > 500 mm.
Acceptance for the chargino pair-production model for various masses and lifetimes. The acceptance is defined as the fraction of events having at least one charged LLP satisfying pT > 120 GeV, |\eta| < 1.8 and r_decay > 500 mm.
Acceptance for the stau pair-production model for various masses and lifetimes. The acceptance is defined as the fraction of events having at least one charged LLP satisfying pT > 120 GeV, |\eta| < 1.8 and r_decay > 500 mm.
Event-level efficiency for the R-hadron pair-production model with m(N1) = 100 GeV for various masses and lifetimes. The efficiency is defined as the fraction of events satisfying the selection of trigger, event and jet cleaning, ETmiss and primary vertex requirements per events satisfying the acceptance criteria.
Event-level efficiency for the R-hadron pair-production model with DeltaM(gluino, N1) = 30 GeV for various masses and lifetimes. The efficiency is defined as the fraction of events satisfying the selection of trigger, event and jet cleaning, ETmiss and primary vertex requirements per events satisfying the acceptance criteria.
Event-level efficiency for the chargino pair-production model for various masses and lifetimes. The efficiency is defined as the fraction of events satisfying the selection of trigger, event and jet cleaning, ETmiss and primary vertex requirements per events satisfying the acceptance criteria.
Event-level efficiency for the stau pair-production model for various masses and lifetimes. The efficiency is defined as the fraction of events satisfying the selection of trigger, event and jet cleaning, ETmiss and primary vertex requirements per events satisfying the acceptance criteria.
Efficiency of SR-Inclusive_Highfor the R-hadron pair-production model with m(N1) = 100 GeV for various masses and lifetimes. The efficiency is defined as the ratio of events satisfying the signal region selection to those satisfying the acceptance criteria. The mass window is not applied for the presented numbers.
Efficiency of SR-Inclusive_Highfor the R-hadron pair-production model with DeltaM(gluino, N1) = 30 GeV for various masses and lifetimes. The efficiency is defined as the ratio of events satisfying the signal region selection to those satisfying the acceptance criteria. The mass window is not applied for the presented numbers.
Efficiency of SR-Inclusive_Highfor the chargino pair-production model for various masses and lifetimes. The efficiency is defined as the ratio of events satisfying the signal region selection to those satisfying the acceptance criteria. The mass window is not applied for the presented numbers.
Efficiency of SR-Inclusive_Highfor the stau pair-production model for various masses and lifetimes. The efficiency is defined as the ratio of events satisfying the signal region selection to those satisfying the acceptance criteria. The mass window is not applied for the presented numbers.
Efficiency of SR-Inclusive_Low for the R-hadron pair-production model with m(N1) = 100 GeV for various masses and lifetimes. The efficiency is defined as the ratio of events satisfying the signal region selection to those satisfying the acceptance criteria. The mass window is not applied for the presented numbers.
Efficiency of SR-Inclusive_Low for the R-hadron pair-production model with DeltaM(gluino, N1) = 30 GeV for various masses and lifetimes. The efficiency is defined as the ratio of events satisfying the signal region selection to those satisfying the acceptance criteria. The mass window is not applied for the presented numbers.
Efficiency of SR-Inclusive_Low for the chargino pair-production model for various masses and lifetimes. The efficiency is defined as the ratio of events satisfying the signal region selection to those satisfying the acceptance criteria. The mass window is not applied for the presented numbers.
Efficiency of SR-Inclusive_Low for the stau pair-production model for various masses and lifetimes. The efficiency is defined as the ratio of events satisfying the signal region selection to those satisfying the acceptance criteria. The mass window is not applied for the presented numbers.
Passing events in event selection steps for the R-hadron pair-production model with m(N1) = 100 GeV for various masses and lifetimes.
Passing events in event selection steps for the R-hadron pair-production model with DeltaM(gluino, N1) = 30 GeV for various masses and lifetimes.
Passing events in event selection steps for the chargino pair-production model for various masses and lifetimes.
Passing events in event selection steps for the stau pair-production model for various masses and lifetimes.
When you search on a word, e.g. 'collisions', we will automatically search across everything we store about a record. But sometimes you may wish to be more specific. Here we show you how.
Guidance on the query string syntax can also be found in the OpenSearch documentation.
We support searching for a range of records using their HEPData record ID or Inspire ID.
About HEPData Submitting to HEPData HEPData File Formats HEPData Coordinators HEPData Terms of Use HEPData Cookie Policy
Status
Email
Forum
Twitter
GitHub
Copyright ~1975-Present, HEPData | Powered by Invenio, funded by STFC, hosted and originally developed at CERN, supported and further developed at IPPP Durham.