The cross section for the production of Ξ + particles in K + p interactions at 12.7 GeV/ c is 10 ± 3 μ b; the Ξ − production cross section is 2.5 ± 1.0 μ b; the upper limit on Ω − or Ω + production is 0.4 μb. The Ξ − are produced preferentially in the backward direction in the CM system while the Ξ + are produced mainly forward. The mass and lifetime of the Ξ + agree with the accepted values for the Ξ − hyperon.
Cross sections have been corrected for the detection probability of all observed hyperons involved in these reactions.
Approximately 700 events of the reaction K − d → K − π − pp s produced by 5.5 GeV/ c kaons were used to measure the cross section for Kπ elastic scattering in the T = 3 2 state by a Chew-Low extrapolation. The cross section does not exceed 2.1 mb and has no structure for Kπ masses from threshold up to 2.0 GeV.
Chew-Low extrapolation is used for evaluation of the K- P elastic cross section.
A systematic search for exotic states produced in K − d interactions at 3 GeV/ c is reported. From the analysis of the mass spectra of strange mesons, non-strange mesons, hyperons with S = −1 and S = −2, upper limits for the production cross sections of exotic resonances may be placed at one or two orders of magnitude smaller than for the production of normal resonances of same strangeness and baryon number.
No description provided.
An experiment has been carried out to determine the imaginary part of the two-photon exchange amplitude by measuring the polarisation of the recoil proton in elastic electron-proton scattering. The polirisation was found to be −0.006 ± 0.030 at q 2 = 1.3 (GeV/ c ) 2 , +0.052 ± 0.55 at 1.5 (GeV/ c ) 2 and +0.065 ± 0.087 at 1.9 (GeV/ c ) 2 .
No description provided.
Compton scattering on protons has been measured at a mean photon energy of 6 GeV and four-momentum transfers − t between 0.06 and 0.60 (GeV/ c ) 2 . The differential cross section shows a diffraction-like behaviour. The cross section extrapolated to t =0 is in fair agreement with the optical point. Discrepancies with the vector meson dominance model are pointed out.
No description provided.
Differential cross sections for neutral-pion photoproduction on hydrogen in the region of the first resonance have been measured by two independent experiments detecting the recoil protons. The results of both measurements have been combined into one set of cross sections covering the photon energy range from 200 to 440 MeV at pion c.m. angles between 50 and 160 degrees.
No description provided.
No description provided.
No description provided.
Differential cross sections have been measured for π − p elastic scattering at laboratory momenta in the range 1.2 to 3.0 GeV/ c for the c.m. range 0.97 > cos θ ∗ > −0.98 . The corresponding mass range is 1.78 to 2.56 GeV/ c 2 . The data was obtained from a counter experiment in which the scattered pions and protons were detected in coincidence by arrays of scintillation counters.
No description provided.
No description provided.
No description provided.
None
No description provided.
Cross sections for the reactions γp→K+Λ and γp→K+Σ0 have been measured at squared four-momentum transfer (−t) from 0.005 to 2 GeV2, at photon energies 5, 8, 11, and 16 GeV. For −t>0.2 GeV2 each of the K+ cross sections is about ⅓ of the π+n photoproduction cross section, having nearly the same energy and momentum-transfer dependence. The K+ cross sections fall off at small |t|, however, in contrast to the sharp forward spike seen in π+n; this leads to a disagreement with an SU(3) prediction for −t<0.1 GeV2. The ratio of K+Σ0 to K+Λ cross sections is typically between 0.5 and 1.0.
'1'.
'1'.
'1'.
The cross section for photoproduction of π0 mesons was measured at a photon energy of 3 GeV and squared four-momentum transfer (t) of -0.1 to -1.2 (GeV/c)2 using plane-polarized photons. The asymmetry was found to be consistent with +1.0 for t values above -0.4 and below -1.1. For −0.4<~t<~−1.0 there is a dip in the asymmetry and at t=−0.6 it drops to 0.55 ± 0.15. This result precludes a simple Regge model with ω0 and B; a theoretical description requires Regge cuts or an ω′ exchange.
No description provided.
MIT PREP (1967).