Date

Cross-sections and leptonic forward-backward asymmetries from the Z0 running of LEP.

The DELPHI collaboration Abreu, P. ; Adam, W. ; Adye, T. ; et al.
Eur.Phys.J.C 16 (2000) 371-405, 2000.
Inspire Record 527605 DOI 10.17182/hepdata.49969

During 1993 and 1995 LEP was run at 3 energies near the Z$^0$peak in order to give improved measurements of the mass and width of the resonance. During 1994, LEP o

3 data tables match query

Cross section and forward-backward asymmetry in the E+ E- channel for the 1993 data. The polar angle is 44 to 136 degrees. Additional systematic error for cross section of 0.46 PCT (efficiencies and backgrounds) and 0.29 PCT (absolute luminosity). Additional systematic error for the asymmetry of 0.0026.

Cross section and forward-backward asymmetry in the E+ E- channel for the 1994 data. The polar angle is 44 to 136 degrees. Additional systematic error for cross section of 0.52 PCT (efficiencies and backgrounds) and 0.14 PCT (absolute luminosity). Additional systematic error for the asymmetry of 0.0021.

Cross section and forward-backward asymmetry in the E+ E- channel for the 1995 data. The polar angle is 44 to 136 degrees. Additional systematic error for cross section of 0.52 PCT (efficiencies and backgrounds) and 0.14 PCT (absolute luminosity). Additional systematic error for the asymmetry of 0.0020.


DELPHI results on the Z0 resonance parameters through its hadronic and leptonic decay modes

The DELPHI collaboration Abreu, P. ; Adam, W. ; Adami, F. ; et al.
CERN-PPE-90-119, 1990.
Inspire Record 298840 DOI 10.17182/hepdata.47313

None

1 data table match query

Overall systematic error is 2.6 pct.


Measurements of the line shape of the Z0 and determination of electroweak parameters from its hadronic and leptonic decays

The DELPHI collaboration Abreu, P. ; Adam, W. ; Adye, T. ; et al.
Nucl.Phys.B 417 (1994) 3-57, 1994.
Inspire Record 372144 DOI 10.17182/hepdata.48413

During the LEP running periods in 1990 and 1991 DELPHI has accumulated approximately 450 000 Z 0 decays into hadrons and charged leptons. The increased event statistics coupled with improved analysis techniques and improved knowledge of the LEP beam energies permit significantly better measurements of the mass and width of the Z 0 resonance. Model independent fits to the cross sections and leptonic forward- backward asymmetries yield the following Z 0 parameters: the mass and total width M Z = 91.187 ± 0.009 GeV, Γ Z = 2.486 ± 0.012 GeV, the hadronicf and leptonic partials widths Γ had = 1.725 ± 0.012 GeV, Γ ℓ = 83.01 ± 0.52 MeV, the invisible width Γ inv = 512 ± 10 MeV, the ratio of hadronic to leptonic partial widths R ℓ = 20.78 ± 0.15, and the Born level hadronic peak cross section σ 0 = 40.90 ± 0.28 nb. Using these results and the value of α s determined from DELPHI data, the number of light neutrino species is determined to be 3.08 ± 0.05. The individual leptonic widths are found to be: Γ e = 82.93 ± 0.70 MeV, Γ μ = 83.20 ± 1.11 MeV and Γ τ = 82.89 ± 1.31 MeV. Using the measured leptonic forward-backward asymmetries and assuming lepton universality, the squared vector and axial-vector couplings of the Z 0 to charged leptons are found to be g V ℓ 2 = (1.47 ± 0.51) × 10 −3 and g A ℓ 2 = 0.2483 ± 0.0016. A full Standard Model fit to the data yields a value of the top mass m t = 115 −82 +52 (expt.) −24 +52 (Higgs) GeV, corresponding to a value of the weak mixing angle sin 2 θ eff lept = 0.2339±0.0015 (expt.) −0.0004 +0.0001 (Higgs). Values are obtained for the variables S and T , or ϵ 1 and ϵ 3 which parameterize electroweak loop effects.

8 data tables match query

E+ E- cross sections from the 1990 data set for both final state fermions in the polar angle range 44 to 136 degrees and accollinearity < 10 degrees (the s + t data).

E+ E- cross sections from the 1991 data set for both final state fermions in the polar angle range 44 to 136 degrees and accollinearity < 10 degrees (the s + t data). Additional systematic error, excluding luminosity, is 0.37 pct.

E+ E- cross sections from the 1990 data set after t-channel subtraction with only the E- constraint by polar angle 44 to 136 degrees and accollinearity < 10 degrees. Additional systematic error, excluding luminosity, is 1.0 pct at the peak.

More…

Measurement of the spin rotation parameters R and A in pi- p elastic scattering at 450-MeV and 560-MeV

Abaev, V.V. ; Bazhanov, N.A. ; Bekrenev, V.S. ; et al.
Sov.J.Nucl.Phys. 48 (1988) 852-858, 1988.
Inspire Record 457307 DOI 10.17182/hepdata.17344
3 data tables match query

No description provided.

No description provided.

No description provided.


Measurement of the spin rotation parameter A+ in the elastic scattering of positive pions on a longitudinally polarized proton target in the second resonance region

The ITEP-PNPI collaboration Alekseev, I.G. ; Bobchenko, B.M. ; Budkovsky, P.E. ; et al.
Phys.Lett.B 351 (1995) 585-590, 1995.
Inspire Record 403317 DOI 10.17182/hepdata.28540

The ITEP-PNPI collaboration presents the first results of the spin rotation parameter A + measurements in the second resonance region. The experiment was performed at the ITEP accelerator at a positive pion beam momentum 1.43 GeV/c for scattering angles θ cm = 127° and 133°. The setup was based on a polarized proton target and a carbon-plate polarimeter. The obtained data is compared with the predictions of the existing partial-wave analyses.

1 data table match query

No description provided.


Measurements of spin rotation parameter A in pion proton elastic scattering at 1.62-GeV/c.

The ITEP-PNPI collaboration Alekseev, I.G. ; Budkovsky, P.E. ; Kanavets, V.P. ; et al.
Phys.Lett.B 485 (2000) 32-36, 2000.
Inspire Record 526552 DOI 10.17182/hepdata.41744

The ITEP-PNPI collaboration presents the results of the measurements of the spin rotation parameter A in the elastic scattering of positive and negative pions on protons at P_beam = 1.62 GeV/c. The setup included a longitudinally-polarized proton target with superconductive magnet, multiwire spark chambers and a carbon polarimeter with thick filter. Results are compared to the predictions of partial wave analyses. The experiment was performed at the ITEP proton synchrotron, Moscow.

2 data tables match query

No description provided.

No description provided.


Study of Elastic $\pi^+ p$, $K^+ p$ and $p p$ Scattering at 250-{GeV}/$c$

The NA22 collaboration Adamus, M. ; Ajinenko, I.V. ; Agababyan, N.M. ; et al.
Phys.Lett.B 186 (1987) 223-226, 1987.
Inspire Record 246909 DOI 10.17182/hepdata.40833

Results are presented on π + p and K + p elastic scattering at 250 GeV/ c , the highest momentum so far reached for positive meson beams. The experiment (NA22) was performed with the european hybrid spectrometer. The π + p elastic cross section stays constant with energy while the K + p cross section increases.

4 data tables match query

No description provided.

No description provided.

ERRORS IN ELASTIC CROSS SECTIONS INCLUDE SYSTEMATIC ERRORS.

More…

Comparison of the Line Reversed Channels anti-p p --> pi- pi+ and pi+ p --> p pi+ at 6-GeV/c

Stein, N.A. ; Edelstein, R.M. ; Green, D.R. ; et al.
Phys.Rev.Lett. 39 (1977) 378-381, 1977.
Inspire Record 124936 DOI 10.17182/hepdata.20964

Differential cross sections have been measured for p¯p→π−π+ (1) and its line-reversed partner π+p→pπ+ (2) in the range tmin>t>−1.5 (GeV/c)2 at 6 GeV/c. Clear structure is seen in the differential cross section for Reaction (1) at t∼−0.4 (GeV/c)2. However, this feature is quite different from the striking dip seen in (2) at t∼−0.15 (GeV/c)2, indicating a failure of line reversal and disagreement with simple Regge models.

1 data table match query

No description provided.


Elastic Scattering of pi-, K-, and anti-p from Hydrogen at 8-GeV/c and 16-GeV/c

Russ, J.S. ; Birnbaum, D. ; Edelstein, R.M. ; et al.
Phys.Rev.D 15 (1977) 3139-3154, 1977.
Inspire Record 124704 DOI 10.17182/hepdata.24650

In a single-arm spectrometer experiment, high-precision measurements of dσdt for π−p, K−p, and p¯p elastic scattering have been made at 8 and 16 GeV/c. The π−p data show rich structure at 8 GeV/c, indicative of strong non-Pomeron contributions, while the 16-GeV/c data are much smoother. For −t≳1 (GeV/c)2 there is a strong s dependence while there is very little for −t<1 (GeV/c)2. For p¯p scattering the forward region is smoothly diffractive for −t<0.4 (GeV/c)2 and shows antishrinkage. The exponential slope parameter b is measured to be 12.36 ± 0.04 (GeV/c)−2 at 8 GeV/c and 11.40 ± 0.04 (GeV/c)−2 at 16 GeV/c. The structure near −t=0.6 (GeV/c)2 seen at lower energies is still obvious at 16 GeV/c. The K−p data show some structure at 8 GeV/c, but can be represented adequately by a quadratic exponential form. At 16 GeV/c the K−p angular distribution shows antishrinkage and lies above the 8-GeV/c cross section for 0.11<−t<0.8 (GeV/c)2.

7 data tables match query

No description provided.

No description provided.

No description provided.

More…

Positive pion-proton scattering at energies 176, 200, 240, 270, 307 and 310 Mev

Mukhin, A.I. ; Ozerov, E.B. ; Mitin, N.A. ; et al.
204-224, 1956.
Inspire Record 1186667 DOI 10.17182/hepdata.70406

None

1 data table match query

No description provided.