A study of the reaction pi+ + d --> p + p has been performed in the energy range of 18 - 44 MeV. Total cross sections and differential cross sections at six angles have been measured at 15 energies with an energy increment of 1 - 2 MeV. This is the most systematic data set in this energy range. No structure in the energy dependence of the cross section has been observed within the accuracy of this experiment.
No description provided.
No description provided.
No description provided.
Final results are presented for the spin-spin correlation parameters CSL and CLL for np elastic scattering with a polarized neutron beam incident on a polarized proton target. The beam kinetic energies are 484, 634, and 788 MeV, and the c.m. angular range is 80°-180°. These data will contribute significantly to the determination of the isospin-0 amplitudes in the energy range from 500 to 800 MeV.
Pure np elastic scattering spin variables. CLL and CSL derived from measured combined spin variable. Thus the errors on CLL and CSL are slightly correlated. There are also additional systematic errors of 7 pct associated with beam and 3.3 pct target polarizations respectively.
Pure np elastic scattering spin variables. CLL and CSL derived from measured combined spin variable. Thus the errors on CLL and CSL are slightly correlated. There are also additional systematic errors of 7 pct associated with beam and 3.3 pct target polarizations respectively.
Pure np elastic scattering spin variables. CLL and CSL derived from measured combined spin variable. Thus the errors on CLL and CSL are slightly correlated. There are also additional systematic errors of 7 pct associated with beam and 3.3 pct target polarizations respectively.
Jet production is studied in the Breit frame in deep-inelastic positron-proton scattering over a large range of four-momentum transfers 5 < Q^2 < 15000 GeV^2 and transverse jet energies 7 < E_T < 60 GeV. The analysis is based on data corresponding to an integrated luminosity of L_int \simeq 33 pb^(-1) taken in the years 1995-1997 with the H1 detector at HERA at a center-of-mass energy sqrt(s)=300 GeV. Dijet and inclusive jet cross sections are measured multi-differentially using k_perp and angular ordered jet algorithms. The results are compared to the predictions of perturbative QCD calculations in next-to-leading order in the strong coupling constant alphas.QCD fits are performed in which alphas and the gluon density in the proton are determined separately. The gluon density is found to be in good agreement with results obtained in other analyses using data from different processes. The strong coupling constant is determined to be alphas(MZ)=0.1186+-0.0059. In addition an analysis of the data in which both alphas and the gluon density are determined simultaneously is presented.
Inclusive single jet cross section as a function of ET and Q**2.. Data are analysed in the Breit frame using the inclusive kT alogrithm.
Inclusive dijet cross section as a function Q**2.. Data are analysed in the Breit frame using the inclusive kT alogrithm.
Inclusive di-jet cross section as a function of ET and Q**2.. Data are analysed in the Breit frame using the inclusive kT alogrithm.
The forward-backward asymmetries of$$e^ + e^ - \to Z^0 \to b\bar b and e^ + e^ - \to Z^0 \to c\bar c$$
Measurement of the asymmetry in b-quark production on the Z0 peak using a two parameter fit, neglecting the effects of B0-BBAR0 mixing.
Measurement of the asymmetry in b-quark production on the Z0 peak using a two parameter fit and correcting for B0-BBAR0 mixing. The second systematic error is due to the uncertainty of the mixing factor.
Measurement of the asymmetry in c-quark production on the Z0 peak using a two parameter fit.
From a sample of 146900 hadronicZ0 decays recorded by the OPAL detector at LEP, we have studied the azimuthal correlations of particles in hadronic events. It is expected that these correlations are sensitive to interference effects in QCD. We have compared the data to QCD Monte Carlo models which include and which do not include interference effects. We find that the distributions of azimuthal correlations are not reproduced by the parton shower models we have tested unless interference effects are included, no matter which hadronisation scheme is used.
Corrected data for the EMMC.
Corrected data for the TPAC.
New measurements of the hadronic and leptonic cross sections and of the leptonic forward-backward asymmetries ine+e− collisions are presented. The analysis includes data recorded up to the end of 1991 by the OPAL experiment at LEP, with centre-of-mass energies within ±3 GeV of the Z0 mass. The results are based on a recorded total of 454 000 hadronic and 58 000 leptonic events. A model independent analysis of Z0 parameters based on an extension of the improved Born approximation is presented leading to test of lepton universality and an interpretation of the results within the Standard Model framework. The determination of the mass and width of the Z0 benefit from an improved understanding of the LEP energy calibration.
Statistical and systematic point-to-point errors included. There is an additional 0.2 pct overall systematic uncertainty.
Systematic error of 0.45 pct not included.
Systematic error of 0.25 pct not included.
Results are reported of a study of neutral vector meson production in multihadronicZ0 decays in the OPAL experiment at LEP. Pions and kaons have been identified by specific ionisation energy loss andK±π∓ andK+K− mass spectra have been fitted, in bins of the scaled momentum variablexp, to combinations of resonance signals and non-resonant backgrounds. Rates are given forK*(892)° and ø(1020), and production cross sections are compared to the predictions of Monte Carlo models. Overall multiplicities have been determined as 0.76±0.07±0.06K*(892)° and 0.086±0.015±0.010 ø(1020) per hadronicZ0 decay (the quoted errors are respectively statistical and systematic). Momentum dependent distortions of the ππ mass spectra, possibly associated indirectly with Bose-Einstein effects, have prevented reliable measurement of the ρ(770)° cross section in this study.
No description provided.
No description provided.
No description provided.
The process e^+e^- -> Z gamma gamma -> q q~ gamma gamma is studied in 0.5 fb-1 of data collected with the L3 detector at centre-of-mass energies between 130.1 GeV and 201.7 GeV. Cross sections are measured and found to be consistent with the Standard Model expectations. The study of the least energetic photon constrains the quartic gauge boson couplings to -0.008 GeV-2 < a_0/\Lambda^2 < 0.005 GeV-2 and -0.007 GeV-2 < a_c/\Lambda^2 < 0.011 GeV-2, at 95% confidence level.
No description provided.
The results are presented for more more restrictive phase space.
CONST(NAME=LAMBDA_NEW) is New Physics scale. COUPLING(NAME=A0,AC) are quartic gauge boson couplings of the effective Lagrangians (see paper for details).
None
No description provided.
No description provided.
No description provided.
The spin-spin correlation parameters CLL=(L,L;0,0)=ALL and CSL=(S,L;0,0)=ASL for np elastic scattering were measured for incident polarized-neutron–beam kinetic energies of 484 and 634 MeV over the center-of-mass angles from ≃80° to 180°. The data are important for determining the I=0 nucleon-nucleon amplitudes. These results are compared with phase-shift calculations.
No description provided.
No description provided.
No description provided.