Approximately 60 000 events have been collected in a spark chamber experiment at the CERN Proton Synchrotron which studied elastic diffraction scattering of π--p and p-p at incident momenta of 8.5, 12.4 and 18.4 GeV/c and of π+-p at 8.5 and 12.4 GeV/c. Magnetic analysis of the incoming and diffraction scattered particle, together with measurement of all angles, permitted each event to be determined as elastic subject to three constraints, so that the inelastic background was rejected with. high efficiency, even at the larger momentum, transfers. Much of the data have been processed by the CERN Automatic Flying-Spot DigitizerHPD. A detailed description of the experimental technique and of the methods of analysis is given. The results, together with data from lower energies, confirm the remarkable energy-independence of the shape of the pion-proton diffraction scattering peak up to |t| = 1.5 (GeV/c)2, wheret is the square of the four-momentum transfer, over a range of pion energies from 2 to 18 GeV. Proton-proton scattering does however appear to show a shrinking diffraction peak. In general, the data agree with other experiments using both counter and bubble chamber techniques, but some differences do appear. During the experiment, data were taken which set an upper limit of 2·102 μb/(GeV/c)2 on the differential elastic cross-section dσ/dt over a range of |t| from 20.9 to 23.4 (GeV/c)2 at 13.4 GeV/c incident pion momentum.
'1'. '2'. '3'. '4'.
'1'.
'1'.
We report the results of the investigation of 18 500 frames of π+p interactions in the Brookhaven 20-in. bubble chamber at an incident energy of 900 MeV. It is found that single-pion production proceeds almost entirely through formation of the N33* isobar. The production mechanism of the N33* is analyzed in terms of its spin density matrix. Comparison is made with Stodolsky and Sakurai's ρ-exchange model and with the absorptive peripheral model.
No description provided.
None
No description provided.
No description provided.
No description provided.
Decay correlation data for π − p → K ∗ Λ at 3.9 GeV /c are analyzed to determine the amplitude structure. We emphasize combinations of observables invariant under rotations between s and t channel frames.
No description provided.
We present the results of an analysis of data for the reaction π−p→KS0K−p at 20.3-GeV/c incident π momentum. We find that the K0K− effective-mass spectrum shows a single peak in the A2 region which is well fitted by a Breit-Wigner shape. The data in the A2-peak region are inconsistent with the split-A2 shape reported earlier. The distribution in t of the A2 events shows a forward dip followed by an exponential falloff. The A2 decay angular distribution is well fitted by a single resonance with quantum numbers JP=2+. The results of an analysis of the density-matrix elements for this reaction are given.
CORRECTED FOR UNSEEN K0 DECAYS AND FOR BREIT-WIGNER RESONANCE TAILS.
INCLUDING THE DENSITY MATRIX ELEMENTS OMITTED FROM THIS FIT GIVES NO SIGNIFICANT IMPROVEMENT AND THE NEW PARAMETERS ARE CLOSE TO ZERO. LIM INDICATES FITTED VALUE LIMITED FROM VARIATION BY PHYSICAL CONSTRAINTS FROM OTHER PARAMETERS.
The π−+p→π0+n differential cross section at 180° has been measured for 52 values of π− momentum from 1.8 to 6.0 GeV/c using a constant-geometry detection system. The average statistical uncertainty is ∼5% and the systematic uncertainty is ∼10%. The details of the experiment and the data analysis are discussed. The data are compared with those of other experiments with which they are generally in agreement. One set of data disagrees with those presented here and a possible reason for this is discussed. A five-parameter fit of the predictions of a dual-resonance model to our data gave excellent agreement. The differential cross sections at 180° for π±p elastic scattering have been compiled and the moduli and relative phase of the T=12 and T=32 pion-nucleon s- and u-channel amplitudes (|A12|, |A32|, and cosδ) have a minimum at u=0.4 GeV/c and, in the s channel, a corresponding minimum at s=2.2 GeV/c.
No description provided.
No description provided.
No description provided.
We present differential and total cross sections for two reactions: π−p→K0Λ and π−p→K0Σ0. The incident pion momenta were 8, 10.7, and 15.7 GeVc. The results are based on an analysis of approximately 22 600 events of the two reactions where the π+ and π− from the decay of the KS0 were detected in the forward leg of the Double Vee Magnetic Spectrometer. The separation of Λ recoils from Σ0 recoils was accomplished by the missing-mass technique.
No description provided.
No description provided.
No description provided.
We present the differential cross sections near u=0 for the reactions π−p→K0Λ and π−p→K*0(890)Λ at incident pion momenta of 8 and 10.7 GeV/c. The differential cross section for the first reaction follows the exponential dependence on u previously observed, while the second shows a dip in the backward direction.
Axis error includes +- 25/25 contribution.
Axis error includes +- 25/25 contribution.
Axis error includes +- 25/25 contribution.
We present the results of an experiment to study the reaction π−p→A2−p, A2−→KS0K− at 22.4 and 23.9 GeV/c. We have 3346 KS0K− events in the effective mass region 1.1 to 1.5 GeV, and covering the |t′| interval 0.0 to 1.0 (GeV/c)2. Because of the low background in this channel, we are able to study various |t′| regions, including the region 0.2 to 0.29 (GeV/c)2 in which the original split A2 peak was observed. We find no substructure in any region. We have also derived differential and total cross sections. The differential cross sections are well fitted by the form dσdt′=At′ebt′ with b≈7.0 (GeV/c)−2. The total cross section is in good agreement with the value derived from other experiments that measure the A2−→ρ0π− decay mode.
No description provided.
No description provided.
No description provided.
We present differential and total cross sections for the reactions π−p→K0[Σ(1385)Λ(1405)] and π−p→K0Λ(1520) at incident pion momenta of 8.0, 10.7, and 15.7 GeV/c. Pions from the decay of the forward K0s's were detected in the forward leg of the BNL double-vee spectrometer and the recoil Y* 's were identified by the missing-mass technique.
Axis error includes +- 20/20 contribution.
Axis error includes +- 20/20 contribution.
Axis error includes +- 20/20 contribution.