Search for Narrow Resonances in e+ e- Annihilation Into Hadrons in the Mass Regions 1910-MeV-2545-MeV and 2970-MeV-3090-MeV

Bacci, C. ; Baldini-Celio, R. ; Bidoli, V. ; et al.
Phys.Lett.B 58 (1975) 481-483, 1975.
Inspire Record 100016 DOI 10.17182/hepdata.27776

We have searched for possible narrow resonances produced in e + e − annihilation at Adone, in the mass regions 1910–2545 MeV and 2970–3090 MeV. No evidence has been found for narrow resonances, within the sensitivity of the present work: we deduce an upper limit on the energy integrated resonant cross section of about 10% of the J/ψ(3100) corresponding value.

1 data table

No description provided.


Multi-Hadronic Decays and Partial Widths of the J/psi (3100) Resonance Produced in e+ e- Annihilation at ADONE

Bacci, C. ; Baldini-Celio, R. ; Bozzo, M. ; et al.
Phys.Lett.B 58 (1975) 471-474, 1975.
Inspire Record 100017 DOI 10.17182/hepdata.27794

The reactions e + e − → hadrons and e + e + e − →e + e − have been studied at the J/gY (3100) resonance). The relative weights of the topological cross sections for fixed charged multiplicity are σ 2 =(32±5)%, σ 4 =(49±8)%, σ 6 =(18±3)%, and σ 8 =(1±0.6)%. The average pion multiplicities are 〈 n ch 〉=3.8±0.3 and 〈n π o 〉=3.1±0.8 . The decay widths are Γ e =(4.6±0.8) keV, Γ h =(59±24) keV, and Γ =(68±26) keV.

3 data tables

CROSS SECTION AROUND RESONANCE.

CROSS SECTION JUST BELOW J/PSI.

MULTIPLICITY AT J/PSI.


Multihadronic cross-sections from e+ e- annihilation at c.m. energies between 1.4 and 2.4 gev

Bacci, C. ; Penso, G. ; Salvini, G. ; et al.
Phys.Lett.B 38 (1972) 551-554, 1972.
Inspire Record 75822 DOI 10.17182/hepdata.28322

Multihadronic production has been observed at the Adone e + e − storage ring, in the c.m. energy range 1.4 - 2.4 GeV. The cross sections for the reactions e + + e − → 2 π ± + nπ o (1 ⩽ n ⩽ 4) and e + + e − → (4 π ± + nπ ± ) (0 ⩽ n ⩽ 2) have been measured, assuming that the produced particles are only pions with a pure phase space momentum distribution.

1 data table

No description provided.


Multihadronic cross-sections from e+ e- annihilation up to 3 gev center-of-mass energy

Bacci, C. ; Penson, G. ; Salvini, G. ; et al.
Phys.Lett.B 44 (1973) 533-536, 1973.
Inspire Record 84794 DOI 10.17182/hepdata.6496

With an apparatus slightly improved with respect to a previous one we have studied multihadronic production at the Adone e + e − storage ring up to a maximum center of mass energy of 3 GeV.

4 data tables

No description provided.

No description provided.

No description provided.

More…

Preliminary Result of Frascati (ADONE) on the Nature of a New 3.1-GeV Particle Produced in e+ e- Annihilation

Bacci, C. ; Celio, R.Balbini ; Berna-Rodini, M. ; et al.
Phys.Rev.Lett. 33 (1974) 1408, 1974.
Inspire Record 90991 DOI 10.17182/hepdata.21293

We report on the results at ADONE to study the properties of the newly found 3.1-BeV particle.

1 data table

No description provided.


Determination of alpha(s) from hadronic event shapes in e+ e- annihilation at 192-GeV <= s**(1/2) <= 208-GeV

The L3 collaboration Achard, P. ; Adriani, O. ; Aguilar-Benitez, M. ; et al.
Phys.Lett.B 536 (2002) 217-228, 2002.
Inspire Record 586115 DOI 10.17182/hepdata.49741

Results are presented from a study of the structure of high energy hadronic events recorded by the L3 detector at sqrt(s)>192 GeV. The distributions of several event shape variables are compared to resummed O(alphaS^2) QCD calculations. We determine the strong coupling constant at three average centre-of-mass energies: 194.4, 200.2 and 206.2 GeV. These measurements, combined with previous L3 measurements at lower energies, demonstrate the running of alphaS as expected in QCD and yield alphaS(mZ) = 0.1227 +- 0.0012 +- 0.0058, where the first uncertainty is experimental and the second is theoretical.

9 data tables

The measured ALPHA_S at three centre-of-mass energies from fits to the individual event shape distributions. The first error is statistcal, the first DSYS error is the experimental systematic uncertainty, and the second DSYS error is the theoryuncertainty.

Updated ALPHA_S measurements from the BT, BW and C-Parameter distributions,from earlier L3 data at lower centre-of-mass energies.. The first error is the total experimental error (stat+sys in quadrature) and the DSYS error is the theory uncertainty.

Combined ALPHA_S values from the five event shape variables. The first error is statistical, the first DSYS error is the experimental systematic uncertainity, the second DSYS error is the uncertainty from the hadronisdation models, andthethird DSYS errpr is the uncertainty due to uncalculated higher orders in the QCDpredictions.

More…

Inclusive sigma+ and sigma0 production in hadronic Z decays

The L3 collaboration Acciarri, M. ; Achard, P. ; Adriani, O. ; et al.
Phys.Lett.B 479 (2000) 79-88, 2000.
Inspire Record 524450 DOI 10.17182/hepdata.49982

We report on measurements of the inclusive production rate of Sigma+ and Sigma0 baryons in hadronic Z decays collected with the L3 detector at LEP. The Sigma+ baryons are detected through the decay Sigma+ -> p pi0, while the Sigma0 baryons are detected via the decay mode Sigma0 -> Lambda gamma. The average numbers of Sigma+ and Sigma0 per hadronic Z decay are measured to be: &lt; N_Sigma+ > + &lt; N_Sigma+~ > = 0.114 +/- 0.011 (stat) +/- 0.009 (syst), &lt; N_Sigma0 > + &lt; N_Sigma0~ > = 0.095 +/- 0.015 (stat) +/- 0.013 (syst). These rates are found to be higher than the predictions from Monte Carlo hadronization models and analytical parameterizations of strange baryon production.

1 data table

Inclusive production rates.


Antideuteron production in $\Upsilon(nS)$ decays and in $e^+e^- \to q\overline{q}$ at $\sqrt{s} \approx 10.58 \mathrm{\,Ge\kern -0.1em V}$

The BaBar collaboration Lees, J.P. ; Poireau, V. ; Tisserand, V. ; et al.
Phys.Rev.D 89 (2014) 111102, 2014.
Inspire Record 1286317 DOI 10.17182/hepdata.64605

We present measurements of the inclusive production of antideuterons in $e^+e^-$ annihilation into hadrons at $\approx 10.58 \mathrm{\,Ge\kern -0.1em V}$ center-of-mass energy and in $\Upsilon(1S,2S,3S)$ decays. The results are obtained using data collected by the BABAR detector at the PEP-II electron-positron collider. Assuming a fireball spectral shape for the emitted antideuteron momentum, we find $\mathcal{B}(\Upsilon(1S) \to \bar{d}X) = (2.81 \pm 0.49 \mathrm{(stat)} {}^{+0.20}_{-0.24} \mathrm{(syst)})/! \times /! 10^{-5}$, $\mathcal{B}(\Upsilon(2S) \to \bar{d}X) = (2.64 \pm 0.11 \mathrm{(stat)} {}^{+0.26}_{-0.21} \mathrm{(syst)})/! \times /! 10^{-5}$, $\mathcal{B}(\Upsilon(3S) \to \bar{d}X) = (2.33 \pm 0.15 \mathrm{(stat)} {}^{+0.31}_{-0.28} \mathrm{(syst)})/! \times /! 10^{-5}$, and $\sigma (e^+e^- \to \bar{d}X) = (9.63 \pm 0.41 \mathrm{(stat)} {}^{+1.17}_{-1.01} \mathrm{(syst)}) \mbox{\,fb}$.

5 data tables

The rate of antideuteron production from the decay of UPSILON(3S).

The rate of antideuteron production from the decay of UPSILON(2S).

The rate of antideuteron production from the decay of UPSILON(1S).

More…

MASSES, WIDTHS, AND LEPTONIC WIDTHS OF THE HIGHER UPSILON RESONANCES

Lovelock, D.M.J. ; Horstkotte, J.E. ; Klopfenstein, C. ; et al.
Phys.Rev.Lett. 54 (1985) 377-380, 1985.
Inspire Record 215716 DOI 10.17182/hepdata.20355

The masses, total widths, and leptonic widths of three triplet s-wave bb¯ states ϒ(4S), ϒ(5S), and ϒ(6S) are determined from measurements of the e+e− annihilation cross section into hadrons for 10.55<W<11.25 GeV. The resonances are identified from potential model results and their properties are obtained with the help of a simplified coupled-channels calculation. We find M(4S)=10.577 GeV, Γ(4S)=25 MeV, Γee(4S)=0.28 keV; M(5S)=10.845 GeV, Γ(5S)=110 MeV, Γee(5S)=0.37 keV; M(6S)=11.02 GeV, Γ(6S)=90 MeV, Γee(6S)=0.16 keV.

1 data table

VISIBLE CROSS SECTION INTO HADRONS.


A Measurement of Strong Coupling Constant $\alpha_s$ to Second Order for 14-{GeV} $\le \sqrt{s} \le$ 46.78-{GeV}

The MARK-J collaboration Adeva, B. ; Becker, U. ; Becker-Szendy, R. ; et al.
Phys.Rev.Lett. 54 (1985) 1750, 1985.
Inspire Record 208007 DOI 10.17182/hepdata.20386

Using the Mark-J detector at the high-energy e+e− collider PETRA, we compare the data from hadron production with the complete second-order QCD calculation over the energy region 22 to 46.78 GeV. We determine the QCD parameter Λ=100±30−45+60 MeV which yields the strong-coupling constant αs=0.12±0.02 for s=44 GeV.

2 data tables

No description provided.

Axis error includes +- 0.0/0.0 contribution (DUE TO FRAGMENTATION MODEL).