Photoproduction of Charged Pi Mesons from Hydrogen and Deuterium

Jenkins, T.L. ; Luckey, D. ; Palfrey, T.R. ; et al.
Phys.Rev. 95 (1954) 179-184, 1954.
Inspire Record 944932 DOI 10.17182/hepdata.26426

Photoproduction cross sections of charged pi mesons from hydrogen and deuterium have been measured as a function of meson angle at gamma-ray energies of 200, 235, and 265 Mev. The angular range extends from 30° to 180° in the laboratory system. Absolute cross sections have been determined. A least-squares fit of the measured cross sections has been made to the expression A+Bcosθ+Csin2θ, which assumes only S and P wave scattering. The coefficients so determined are qualitatively consistent with electric and magnetic dipole absorption together with the assumption of a resonant state of angular momentum 32 and of energy close to 300 Mev. Comparison with neutral meson production indicates some direct charged meson production in the P state.

2 data tables

No description provided.

No description provided.


Photoproduction of Charged Mesons from Free Nucleons for Bombarding Gamma-Ray Energies Near 275 MeV

Garelick, D. ; Cooperstein, G. ;
Phys.Rev. 136 (1964) B201-B213, 1964.
Inspire Record 944969 DOI 10.17182/hepdata.26720

The differential cross section for the photoproduction of a π− meson from the neutron bound in the deuteron was measured for pion laboratory angles of 76°, 96°, and 118° at incident gamma-ray energies in the region of 275 MeV. The π− meson and the high-energy proton were detected. The pion momentum and angle were measured by sets of spark chambers situated in front of and behind a magnetic field. The proton angle and range were also measured with spark chambers. To calculate "free" neutron cross sections from our data, we used a modified version of the extrapolation method suggested by Chew and Low. By observing the π+ only, the differential cross section for π+ photoproduction from hydrogen also was measured. As determined by this experiment, the differential cross section for photoproduction of a π− meson from a "free" neutron and the differential cross section for photoproduction of a π+ meson from hydrogen are as follows: Eγlab≃275 MeV These results disagree with the dispersion theory predictions of Chew, Goldberger, Low, and Nambu. They also disagree with McKinley's dispersion theory calculations which include a bipion or ρ-meson term in the production amplitudes.

2 data tables

No description provided.

No description provided.


Pi-+ photoproduction in forward direction

Ito, A. ; Loe, R. ; Loh, E.C. ; et al.
Phys.Rev.Lett. 24 (1970) 687-690, 1970.
Inspire Record 62934 DOI 10.17182/hepdata.21670

The ratio of π− to π+ off deuterium was measured as a function of incident photon energy from 600 to 1700 MeV in the forward direction. The ratio shows a broad dip around a center-of-mass energy of 1700 MeV, resulting presumably from the collective effect of several isospin-½ resonances in this energy region. Such a change in the ratio is reflected in the rapid variation of the isoscalar photoproduction amplitude since we found the isovector photoproduction amplitude to be a relatively smooth function decreasing slowly with increasing incident photon energy.

1 data table

No description provided.


Photoproduction of positive pions at 180 degrees from 0.22 to 3.1 gev

Bouquet, B. ; D' Almagne, B. ; Eschstruth, P.T. ; et al.
Phys.Rev.Lett. 27 (1971) 1244-1247, 1971.
Inspire Record 68896 DOI 10.17182/hepdata.21483

The π+ photoproduction cross section in hydrogen has been measured at 180° for photon energies from 0.22 to 3.1 GeV by detecting the pion in the backward direction. The statistical accuracy of the measurements varies typically from 3 to 10% depending on the energy. The data are compared with other recent experimental results and predictions of phenomenological theories.

1 data table

No description provided.


Pi+- and pi0 production by polarized photons in the resonance region

Alspector, J. ; Fox, D. ; Luckey, David ; et al.
Phys.Rev.Lett. 28 (1972) 1403-1406, 1972.
Inspire Record 75484 DOI 10.17182/hepdata.21872

We have measured the cross sections at 90° c.m. for π± and π0 photoproduction with polarized photons. The photon energies ranged from 0.8 to 2.2 GeV. We compare the resonant "bumps" in the cross section with theoretical models. The measured asymmetry agrees with a quark-model calculation though the predicted cross sections are low.

5 data tables

No description provided.

No description provided.

No description provided.

More…

Photoproduction of pi+ mesons on polarized protons at photon energies between 0.5 and 2.2 gev

Althoff, K.H. ; Feller, P. ; Herr, H. ; et al.
Nucl.Phys.B 53 (1973) 9-18, 1973.
Inspire Record 84220 DOI 10.17182/hepdata.32593

The target asymmetry T = ( σ ↑ − σ ↓)/( σ ↑ + σ ↓) for the reaction γ p → π + n has been measured at the Bonn 2.5 GeV electron synchrotron for a pion c.m. angle of 40° and γ energies between 0.5 and 2.2 GeV. Butanol was used as the target material. About 35% of the protons could be polarized using the dynamic-polarization method in a continuous-flow cryostat operating at 1°K and 25 kG. The π + mesons were detected in a magnetic-spectrometer system. Considerable structure in the asymmetry was observed.

1 data table

Axis error includes +- 11/11 contribution.


Measurement of the Target Asymmetry for the Reaction gamma p --> pi+ n at Photon Energies Between 0.7-GeV and 2.2-GeV and a Pion CM Angle of 65-Degrees

Althoff, K.H. ; Conrad, R. ; Herr, H. ; et al.
Phys.Lett.B 59 (1975) 93-94, 1975.
Inspire Record 104242 DOI 10.17182/hepdata.5536

At the Bonn 2.5.GeV electron synchrotron the target asymmetry for the photoproduction of positive pions has been measured. Data were taken at photon energies between 0.7 and 2.2 GeV and a pion CM-angle of 65°.

2 data tables

Axis error includes +- 0.0/0.0 contribution (?////).

No description provided.


Angular Distribution of the Target Asymmetry on Polarized Protons for the Reaction gamma p (Polarized) --> pi+ n at a Photon Energy of 700-MeV

Althoff, K.H. ; Conrad, R. ; Gies, M. ; et al.
Phys.Lett.B 63 (1976) 107-110, 1976.
Inspire Record 114330 DOI 10.17182/hepdata.27654

At the Bonn 2.5 GeV electron synchrotron the angular distribution of the target asymmetry T = (σ↑ − σ↓) (σ↑ + σ↓) for the reaction γp↑ → π + n was measured at a mean photon energy of 700 MeV and pion CM-angles from 50° to 155°. The combination of a 3 He-cryostat, polarizing the free protons in the target up to 65%, with a large acceptance magnet for pion detection led to statistical errors of the target asymmetry comparable with those of cross section measurements.

1 data table

No description provided.


Photoproduction of Pions on Polarized Protons and Neutrons in the Second Resonance Region

Althoff, K.H. ; Gies, M. ; Herr, H. ; et al.
Nucl.Phys.B 131 (1977) 1-6, 1977.
Inspire Record 119995 DOI 10.17182/hepdata.35224

Measurements of the target asymmetry T = ( σ ↑ − σ ↓)/( σ ↑ + σ ↓) for the reactions γ p → π + n and γ n → π − p at a fixed photon energy of 850 MeV and pion c.m. angles between 70° and 150° are reported. The data are compared to the previously measured angular distribution at 700 MeV.

2 data tables

No description provided.

No description provided.


Positive Pion Photoproduction From Hydrogen at Photon Energies Between 500-{MeV} and 1400-{MeV} in Forward Direction

Althoff, K.H. ; Anton, G. ; Bock, B. ; et al.
Z.Phys.C 18 (1983) 199, 1983.
Inspire Record 189703 DOI 10.17182/hepdata.16352

The differential cross section of the reactionγ+p→π+ was measured at pion CM-angles of 20° and 30° for photon energies between 500 MeV and 1,400 MeV. The pions were detected in a magnetic spectrometer. By measuring each pion trajectory and by offline calculation of the initial pion parameters an energy resolution of about 2.5% FWHM was achieved. The results complete a set of data which were measured in recent years at the Bonn 2.5 GeV synchrotron. In comparison to photoproduction analyses two effects were revealed: The η cusp appears in the energy dependence of the cross section as a sharp drop atKγ=710 MeV. In the region of the third resonance the data show a greater enhancement than predicted by most of the analyses.

1 data table

No description provided.