Topological and channel cross sections are given for the more common final states produced in K − p interactions at 8.25 GeV/ c together with the single particle inclusive cross sections. We present cross sections for prominent resonances occurring in final states K N (nπ) and find the resonance fractions to be roughly independent of multiplicity.
SE FOLDED.
No description provided.
No description provided.
The differential cross section for the charge exchange p p → n n has been measured with high statistics at 7.76 GeV/ c and at 5.0 GeV/ c . The 7.76 GeV/ c data show a very narrow [ Δt ⪅ 0.01 (GeV/ c ) 2 ] forward peak superposed on a slow exponential fall-off.
No description provided.
No description provided.
INTEGRATED CROSS SECTIONS FROM EXPONENTIAL FIT.
For the reaction π + p → ωΔ ++ data on the total cross section ( σ = 61 ± 12 μ b), differential cross sections, spin density matrix elements and statistical tensor elements are given. We observe natural and unnatural parity exchange contributions to the total cross section. We note that the value of ϱ 00 is not zero and in the helicity frame exhibits a dip at t ≈ −0.25 (GeV/ c ) 2 . A qualitative theoretical discussion of our results is presented.
CORRECTED FOR BACKGROUND, RESONANCE TAILS AND UNSEEN OMEGA DECAY MODES.
NORMALIZED TO THE TOTAL CROSS SECTION. SOME BACKGROUND IS PRESENT.
NORMALIZED TO THE TOTAL CROSS SECTION. SOME BACKGROUND IS PRESENT.
The reaction π-p→pωπ- has been studied at 9.1 GeV/c, its total cross-section is σ=(123±22) μb. The pB− and the quasi-three-body channels contribute with cross-section of σ=(24±7) μb and σ=(94±23) μb, respectively. The main features of the quasi-three-body pωπ- channel, displayed by some techniques of data presentation, are satisfactorily described by a double-Regge-pole model. In this model pomeron-meson and meson-meson exchanges are taken into account. An OPE modelà la Veneziano predicts a total cross-section too high and reproduces very poorly the observed features.
BREIT-WIGNER PLUS BACKGROUND FITS FOR B(1235)- AND OMEGA MESONS.
We have measured the total cross section for electron-positron annihilation into three or more hadrons, with at least two charged particles in the final state. The measurement was made at a center-of-mass energy of 4 GeV with a 2π−sr nonmagnetic detector. With 88 events detected, we obtain a model-independent lower limit on the hadron production cross section of 9.6 ± 1.4 nb; a calculation of detection efficiency based on invariant phase-space production of pions leads to a total cross section of 26 ± 6 nb. This cross section is 4.7 ± 1.1 times the theoretical total cross section for e+e−→μ+μ−. The average charged multiplicity is n¯=4.2±0.6.
No description provided.
The slope b(s) of the forward diffraction peak of p−p elastic scattering has been measured in the momentum-transfer-squared range 0.005≲|t|≲0.09 (GeV/c)2 and at incident proton energies from 8 to 400 GeV. We find that b(s) increases with s, and in the interval 100≲s≲750 (GeV)2 it can be fitted by the form b(s)=b0+2α′lns with b0=8.23±0.27, α′=0.278±0.024 (GeV/c)−2.
MOMENTUM BINS ARE APPROX 20 GEV WIDE CENTRED AT THE GIVEN PLAB EXCEPT FOR THE 9 AND 12 GEV POINTS WHICH HAVE WIDTHS OF APPROX 1 AND 4 GEV RESPECTIVELY.
Angular distributions of proton-proton elastic scattering have been measured for incident beam momenta of 10.0, 12.0, 14.2 and 24.0 GeV/ c over a range of lab scattering angles from 12 to 152 mrad. This is equivalent to a range of four-momentum transfer squared from about 0.1 to 6.7 GeV 2 at the highest momentum. Nucleon resonance production in the two-body reaction p + p → p + X has been studied at 24.0 GeV/ c incident momentum from 13.5 to 112 mrad by measuring the proton momentum spectra from the elastic peak down to a momentum corresponding to a missing mass of about 2.6 GeV. The new data are compared with previous results and theoretical models.
ESTIMATED 8 PCT RANDOM ERROR.
ESTIMATED 8 PCT RANDOM ERROR.
ESTIMATED 8 PCT RANDOM ERROR.
We have measured the asymmetry parameter Σ=(σ∥−σ⊥)(σ∥+σ⊥) for the photoproduction of ϕ mesons with photons polarized parallel and perpendicular to the plane of decay for the reaction γp→ϕp→K+K−p. We find Σ=0.985±0.12 at a photon energy of 8.14 GeV and |t| of 0.2 (GeVc)2, consistent with pure diffraction production, or pure naturalparity Regge exchange.
No description provided.
Lambda production is studied in K − p interactions at 10.1 GeV/ c , where the dominant reaction is K − p → Λ + pions. General characteristics such as the distributions of the double differential cross section in the lab system, of the variable x = p L ∗ p max ∗ , of p ⊥ 2 and of the missing mass to the lambda are presented. Total cross sections for Λ production and for the various channels are given. Differential cross sections d σ d t , d σ d t′ and d σ d u′ are presented. Forward and backward peaks are observed in the d σ d t′ and d σ d u′ distributions, respectively. It is found that the exponential slope of these distributions decreases with increasing missing mass to the lambda and, for d σ d t′ , also for increasing multiplicity in the final state. The polarization of the lambdas is studied as a function of multiplicity, p L ∗ , (Λπ ± ) effective mass, t ′ and u ′. The forward lambdas show
No description provided.
POSSIBLE FORWARD DIP.
The K ∗− spectrum in the reaction K − +p → K ∗− +p has been measured at beam momenta 10.9, 13.4 and 15.9 GeV/ c using the missing mass technique. Production of the L(1770), and a Q-K ∗ (1420) enhancement are observed. Differential cross sections in the range of momentum transfer 0.12 < | t pp | < 0.40 (GeV/ c ) 2 are given. The L meson is observed with a width Γ = 100 ± 26 MeV. The mass spectrum between the L and 2.5 GeV does not show significant structure.
No description provided.
No description provided.