Showing 10 of 22 results
This paper presents for the first time a precise measurement of the production properties of the Z boson in the full phase space of the decay leptons. This is in contrast to the many previous precise unfolded measurements performed in the fiducial phase space of the decay leptons. The measurement is obtained from proton-proton collision data collected by the ATLAS experiment in 2012 at $\sqrt s$ = 8 TeV at the LHC and corresponding to an integrated luminosity of 20.2 fb$^{-1}$. The results, based on a total of 15.3 million Z-boson decays to electron and muon pairs, extend and improve a previous measurement of the full set of angular coefficients describing Z-boson decay. The double-differential cross-section distributions in Z-boson transverse momentum p$_T$ and rapidity y are measured in the pole region, defined as 80 $<$ m $<$ 100 GeV, over the range $|y| <$ 3.6. The total uncertainty of the normalised cross-section measurements in the peak region of the p$_T$ distribution is dominated by statistical uncertainties over the full range and increases as a function of rapidity from 0.5-1.0% for $|y| <$ 2.0 to 2-7% at higher rapidities. The results for the rapidity-dependent transverse momentum distributions are compared to state-of-the-art QCD predictions, which combine in the best cases approximate N$^4$LL resummation with N$^3$LO fixed-order perturbative calculations. The differential rapidity distributions integrated over p$_T$ are even more precise, with accuracies from 0.2-0.3% for $|y| <$ 2.0 to 0.4-0.9% at higher rapidities, and are compared to fixed-order QCD predictions using the most recent parton distribution functions. The agreement between data and predictions is quite good in most cases.
Measured $p_T$ cross sections in full-lepton phase space for |y| < 0.4.
Measured $p_T$ cross sections in full-lepton phase space for 0.4 < |y| < 0.8.
Measured $p_T$ cross sections in full-lepton phase space for 0.8 < |y| < 1.2.
Measured $p_T$ cross sections in full-lepton phase space for 1.2 < |y| < 1.6.
Measured $p_T$ cross sections in full-lepton phase space for 1.6 < |y| < 2.0.
Measured $p_T$ cross sections in full-lepton phase space for 2.0 < |y| < 2.4.
Measured $p_T$ cross sections in full-lepton phase space for 2.4 < |y| < 2.8.
Measured $p_T$ cross sections in full-lepton phase space for 2.8 < |y| < 3.6.
Measured cross sections in full-lepton phase space as a function of |y|.
Normalised measured $p_T$ cross sections in full-lepton phase space for |y| < 1.6.
A measurement of the jet mass distribution in hadronic decays of Lorentz-boosted top quarks is presented. The measurement is performed in the lepton+jets channel of top quark pair production ($\mathrm{t\bar{t}}$) events, where the lepton is an electron or muon. The products of the hadronic top quark decay are reconstructed using a single large-radius jet with transverse momentum greater than 400 GeV. The data were collected with the CMS detector at the LHC in proton-proton collisions and correspond to an integrated luminosity of 138 fb$^{-1}$. The differential $\mathrm{t\bar{t}}$ production cross section as a function of the jet mass is unfolded to the particle level and is used to extract the top quark mass. The jet mass scale is calibrated using the hadronic W boson decay within the large-radius jet. The uncertainties in the modelling of the final state radiation are reduced by studying angular correlations in the jet substructure. These developments lead to a significant increase in precision, and a top quark mass of 173.06 $\pm$ 0.84 GeV.
The particle-level $\mathrm{t}\overline{\mathrm{t}}$ differential cross section in the fiducial region as a function of the XCone-jet mass.
Correlations between bins in the particle-level $\mathrm{t}\overline{\mathrm{t}}$ differential cross section as a function of the XCone-jet mass.
The covariance matrix containing the statistical uncertainties of the particle-level $\mathrm{t}\overline{\mathrm{t}}$ differential cross section as a function of the XCone-jet mass.
The covariance matrix containing the experimental uncertainties of the particle-level $\mathrm{t}\overline{\mathrm{t}}$ differential cross section as a function of the XCone-jet mass.
The covariance matrix containing the model uncertainties of the particle-level $\mathrm{t}\overline{\mathrm{t}}$ differential cross section as a function of the XCone-jet mass.
The normalized particle-level $\mathrm{t}\overline{\mathrm{t}}$ differential cross section in the fiducial region as a function of the XCone-jet mass.
Correlations between bins in the normalized particle-level $\mathrm{t}\overline{\mathrm{t}}$ differential cross section as a function of the XCone-jet mass.
The covariance matrix containing the statistical uncertainties of the normalized particle-level $\mathrm{t}\overline{\mathrm{t}}$ differential cross section as a function of the XCone-jet mass.
The covariance matrix containing the experimental uncertainties of the normalized particle-level $\mathrm{t}\overline{\mathrm{t}}$ differential cross section as a function of the XCone-jet mass.
The covariance matrix containing the model uncertainties of the normalized particle-level $\mathrm{t}\overline{\mathrm{t}}$ differential cross section as a function of the XCone-jet mass.
Relative experimental uncertainties of the particle-level $\mathrm{t}\overline{\mathrm{t}}$ differential cross section in the fiducial region as a function of the XCone-jet mass.
Relative model uncertainties of the particle-level $\mathrm{t}\overline{\mathrm{t}}$ differential cross section in the fiducial region as a function of the XCone-jet mass.
Relative experimental uncertainties of the normalized particle-level $\mathrm{t}\overline{\mathrm{t}}$ differential cross section in the fiducial region as a function of the XCone-jet mass.
Relative model uncertainties of the normalized particle-level $\mathrm{t}\overline{\mathrm{t}}$ differential cross section in the fiducial region as a function of the XCone-jet mass.
Multijet events at large transverse momentum ($p_\mathrm{T}$) are measured at $\sqrt{s}$ = 13 TeV using data recorded with the CMS detector at the LHC, corresponding to an integrated luminosity of 36.3 fb$^{-1}$. The multiplicity of jets with $p_\mathrm{T}$$>$ 50 GeV that are produced in association with a high-$p_\mathrm{T}$ dijet system is measured in various ranges of the $p_\mathrm{T}$ of the jet with the highest transverse momentum and as a function of the azimuthal angle difference $\Delta\phi_{1,2}$ between the two highest $p_\mathrm{T}$ jets in the dijet system. The differential production cross sections are measured as a function of the transverse momenta of the four highest $p_\mathrm{T}$ jets. The measurements are compared with leading and next-to-leading order matrix element calculations supplemented with simulations of parton shower, hadronization, and multiparton interactions. In addition, the measurements are compared with next-to-leading order matrix element calculations combined with transverse-momentum dependent parton densities and transverse-momentum dependent parton shower.
Jet multiplicity measured for a leading-pT jet ($p_{T1}$) with 200 < $p_{T1}$ < 400 GeV and for an azimuthal separation between the two leading jets of $0 < \Delta\Phi_{1,2} < 150^{\circ}$. The full breakdown of the uncertainties is displayed, with PU corresponding to Pileup, PREF to Trigger Prefering, PTHAT to the hard-scale (renormalization and factorization scales), MISS and FAKE to the inefficienties and background, LUMI to integrated luminosity. With JES, JER and stat. unc. following the notation in the paper.
Jet multiplicity measured for a leading-pT jet ($p_{T1}$) with 200 < $p_{T1}$ < 400 GeV and for an azimuthal separation between the two leading jets of $150 < \Delta\Phi_{1,2} < 170^{\circ}$. The full breakdown of the uncertainties is displayed, with PU corresponding to Pileup, PREF to Trigger Prefering, PTHAT to the hard-scale (renormalization and factorization scales), MISS and FAKE to the inefficienties and background, LUMI to integrated luminosity. With JES, JER and stat. unc. following the notation in the paper.
Jet multiplicity measured for a leading-pT jet ($p_{T1}$) with 200 < $p_{T1}$ < 400 GeV and for an azimuthal separation between the two leading jets of $170 < \Delta\Phi_{1,2} < 180^{\circ}$. The full breakdown of the uncertainties is displayed, with PU corresponding to Pileup, PREF to Trigger Prefering, PTHAT to the hard-scale (renormalization and factorization scales), MISS and FAKE to the inefficienties and background, LUMI to integrated luminosity. With JES, JER and stat. unc. following the notation in the paper.
Jet multiplicity measured for a leading-pT jet ($p_{T1}$) with 400 < $p_{T1}$ < 800 GeV and for an azimuthal separation between the two leading jets of $0 < \Delta\Phi_{1,2} < 150^{\circ}$. The full breakdown of the uncertainties is displayed, with PU corresponding to Pileup, PREF to Trigger Prefering, PTHAT to the hard-scale (renormalization and factorization scales), MISS and FAKE to the inefficienties and background, LUMI to integrated luminosity. With JES, JER and stat. unc. following the notation in the paper.
Jet multiplicity measured for a leading-pT jet ($p_{T1}$) with 400 < $p_{T1}$ < 800 GeV and for an azimuthal separation between the two leading jets of $150 < \Delta\Phi_{1,2} < 170^{\circ}$. The full breakdown of the uncertainties is displayed, with PU corresponding to Pileup, PREF to Trigger Prefering, PTHAT to the hard-scale (renormalization and factorization scales), MISS and FAKE to the inefficienties and background, LUMI to integrated luminosity. With JES, JER and stat. unc. following the notation in the paper.
Jet multiplicity measured for a leading-pT jet ($p_{T1}$) with 400 < $p_{T1}$ < 800 GeV and for an azimuthal separation between the two leading jets of $170 < \Delta\Phi_{1,2} < 180^{\circ}$. The full breakdown of the uncertainties is displayed, with PU corresponding to Pileup, PREF to Trigger Prefering, PTHAT to the hard-scale (renormalization and factorization scales), MISS and FAKE to the inefficienties and background, LUMI to integrated luminosity. With JES, JER and stat. unc. following the notation in the paper.
Jet multiplicity measured for a leading-pT jet ($p_{T1}$) with $p_{T1}$ > 800 and for an azimuthal separation between the two leading jets of $0 < \Delta\Phi_{1,2} < 150^{\circ}$. The full breakdown of the uncertainties is displayed, with PU corresponding to Pileup, PREF to Trigger Prefering, PTHAT to the hard-scale (renormalization and factorization scales), MISS and FAKE to the inefficienties and background, LUMI to integrated luminosity. With JES, JER and stat. unc. following the notation in the paper.
Jet multiplicity measured for a leading-pT jet ($p_{T1}$) with $p_{T1}$ > 800 and for an azimuthal separation between the two leading jets of $150 < \Delta\Phi_{1,2} < 170^{\circ}$. The full breakdown of the uncertainties is displayed, with PU corresponding to Pileup, PREF to Trigger Prefering, PTHAT to the hard-scale (renormalization and factorization scales), MISS and FAKE to the inefficienties and background, LUMI to integrated luminosity. With JES, JER and stat. unc. following the notation in the paper.
Jet multiplicity measured for a leading-pT jet ($p_{T1}$) with $p_{T1}$ > 800 and for an azimuthal separation between the two leading jets of $170 < \Delta\Phi_{1,2} < 180^{\circ}$. The full breakdown of the uncertainties is displayed, with PU corresponding to Pileup, PREF to Trigger Prefering, PTHAT to the hard-scale (renormalization and factorization scales), MISS and FAKE to the inefficienties and background, LUMI to integrated luminosity. With JES, JER and stat. unc. following the notation in the paper.
Measured transverse momentum of the leading $p_{T}$ jet ($p_{T1}$). The full breakdown of the uncertainties is displayed, with PU corresponding to Pileup, PREF to Trigger Prefering, PTHAT to the hard-scale (renormalization and factorization scales), MISS and FAKE to the inefficienties and background, LUMI to integrated luminosity. With JES, JER and stat. unc. following the notation in the paper.
Measured transverse momentum of the subleading $p_{T}$ jet ($p_{T2}$). The full breakdown of the uncertainties is displayed, with PU corresponding to Pileup, PREF to Trigger Prefering, PTHAT to the hard-scale (renormalization and factorization scales), MISS and FAKE to the inefficienties and background, LUMI to integrated luminosity. With JES, JER and stat. unc. following the notation in the paper.
Measured transverse momentum of the third leading $p_{T}$ jet ($p_{T3}$). The full breakdown of the uncertainties is displayed, with PU corresponding to Pileup, PREF to Trigger Prefering, PTHAT to the hard-scale (renormalization and factorization scales), MISS and FAKE to the inefficienties and background, LUMI to integrated luminosity. With JES, JER and stat. unc. following the notation in the paper.
Measured transverse momentum of the fourth leading $p_{T}$ jet ($p_{T4}$). The full breakdown of the uncertainties is displayed, with PU corresponding to Pileup, PREF to Trigger Prefering, PTHAT to the hard-scale (renormalization and factorization scales), MISS and FAKE to the inefficienties and background, LUMI to integrated luminosity. With JES, JER and stat. unc. following the notation in the paper.
Jet multiplicity distribution in TUnfold binning ($N_{jets},\Delta\phi_{1,2},p_{T1}$) as indicated in the XML file provided as additional resource. The uncertainties follow the notation of Table 1.
Correlation matrix at particle level for the measured jet multiplicity in TUnfold binning ($N_{jets},\Delta\phi_{1,2},p_{T1}$) as indicated in the XML file provided as additional resource.
Jet $p_{T}$ distributions in TUnfold binning ($p_{T1},p_{T2},p_{T3},p_{T4}$) as indicated in the XML file provided as additional resource. The uncertainties follow the notation of Table 1.
Correlation matrix at particle level for the measured jet $p_{T}$ distributions in TUnfold binning ($p_{T1},p_{T2},p_{T3},p_{T4}$) as indicated in the XML file provided as additional resource.
Three searches are presented for signatures of physics beyond the standard model (SM) in $\tau\tau$ final states in proton-proton collisions at the LHC, using a data sample collected with the CMS detector at $\sqrt{s}$ = 13 TeV, corresponding to an integrated luminosity of 138 fb$^{-1}$. Upper limits at 95% confidence level (CL) are set on the products of the branching fraction for the decay into $\tau$ leptons and the cross sections for the production of a new boson $\phi$, in addition to the H(125) boson, via gluon fusion (gg$\phi$) or in association with b quarks, ranging from $\mathcal{O}$(10 pb) for a mass of 60 GeV to 0.3 fb for a mass of 3.5 TeV each. The data reveal two excesses for gg$\phi$ production with local $p$-values equivalent to about three standard deviations at $m_\phi$ = 0.1 and 1.2 TeV. In a search for $t$-channel exchange of a vector leptoquark U$_1$, 95% CL upper limits are set on the dimensionless U$_1$ leptoquark coupling to quarks and $\tau$ leptons ranging from 1 for a mass of 1 TeV to 6 for a mass of 5 TeV, depending on the scenario. In the interpretations of the $M_\mathrm{h}^{125}$ and $M_\mathrm{h, EFT}^{125}$ minimal supersymmetric SM benchmark scenarios, additional Higgs bosons with masses below 350 GeV are excluded at 95% CL.
Expected and observed $95\%\text{ CL}$ upper limits on the product of the cross sections and branching fraction for the decay into $\tau$ leptons for $gg\phi$ production in a mass range of $60\leq m_\phi\leq 3500\text{ GeV}$, in addition to $\text{H}(125)$. The central $68$ and $95\%$ intervals are given in addition to the expected median value. In this case, $bb\phi$ production rate has been profiled. The peak in the expected $gg\phi$ limit is tribute to a loss of sensitivity around $90\text{ GeV}$ due to the background from $Z/\gamma^\ast\rightarrow\tau\tau$ events. Numerical values provided in this table correspond to Figure 10a of the publication.
Expected and observed $95\%\text{ CL}$ upper limits on the product of the cross sections and branching fraction for the decay into $\tau$ leptons for $bb\phi$ production in a mass range of $60\leq m_\phi\leq 3500\text{ GeV}$, in addition to $\text{H}(125)$. The central $68$ and $95\%$ intervals are given in addition to the expected median value. In this case, $gg\phi$ production rate has been profiled. Numerical values provided in this table correspond to Figure 10b of the publication.
Expected and observed $95\%\text{ CL}$ upper limits on the product of the cross sections and branching fraction for the decay into $\tau$ leptons for $gg\phi$ production in a mass range of $60\leq m_\phi\leq 3500\text{ GeV}$, in addition to $\text{H}(125)$. The central $68$ and $95\%$ intervals are given in addition to the expected median value. In this case, $bb\phi$ production rate has been fixed to zero. Numerical values provided in this table correspond to Figure 37 of the auxilliary material of the publication.
Expected and observed $95\%\text{ CL}$ upper limits on the product of the cross sections and branching fraction for the decay into $\tau$ leptons for $bb\phi$ production in a mass range of $60\leq m_\phi\leq 3500\text{ GeV}$, in addition to $\text{H}(125)$. The central $68$ and $95\%$ intervals are given in addition to the expected median value. In this case, $gg\phi$ production rate has been fixed to zero. Numerical values provided in this table correspond to Figure 38 of the auxilliary material of the publication.
Expected and observed $95\%\text{ CL}$ upper limits on the product of the cross sections and branching fraction for the decay into $\tau$ leptons for $gg\phi$ production in a mass range of $60\leq m_\phi\leq 3500\text{ GeV}$, in addition to $\text{H}(125)$. The central $68$ and $95\%$ intervals are given in addition to the expected median value. In this case, $bb\phi$ production rate has been profiled and only top quarks have been considered in the $gg\phi$ loop. Numerical values provided in this table correspond to Figure 39 of the auxilliary material of the publication.
Expected and observed $95\%\text{ CL}$ upper limits on the product of the cross sections and branching fraction for the decay into $\tau$ leptons for $gg\phi$ production in a mass range of $60\leq m_\phi\leq 3500\text{ GeV}$, in addition to $\text{H}(125)$. The central $68$ and $95\%$ intervals are given in addition to the expected median value. In this case, $bb\phi$ production rate has been profiled and only bottom quarks have been considered in the $gg\phi$ loop. Numerical values provided in this table correspond to Figure 40 of the auxilliary material of the publication.
Local significance for a $gg\phi$ signal in a mass range of $60\leq m_\phi\leq 3500\text{ GeV}$. In this case, $bb\phi$ production rate has been profiled. Numerical values provided in this table correspond to Figure 31 of the auxilliary material of the publication.
Local significance for a $bb\phi$ signal in a mass range of $60\leq m_\phi\leq 3500\text{ GeV}$. In this case, $gg\phi$ production rate has been profiled. Numerical values provided in this table correspond to Figure 32 of the auxilliary material of the publication.
Local significance for a $gg\phi$ signal in a mass range of $60\leq m_\phi\leq 3500\text{ GeV}$. In this case, $bb\phi$ production rate has been fixed to zero. Numerical values provided in this table correspond to Figure 33 of the auxilliary material of the publication.
Local significance for a $bb\phi$ signal in a mass range of $60\leq m_\phi\leq 3500\text{ GeV}$. In this case, $gg\phi$ production rate has been fixed to zero. Numerical values provided in this table correspond to Figure 34 of the auxilliary material of the publication.
Local significance for a $gg\phi$ signal in a mass range of $60\leq m_\phi\leq 3500\text{ GeV}$. In this case, $bb\phi$ production rate has been profiled and only top quarks have been considered in the $gg\phi$ loop. Numerical values provided in this table correspond to Figure 35 of the auxilliary material of the publication.
Local significance for a $gg\phi$ signal in a mass range of $60\leq m_\phi\leq 3500\text{ GeV}$. In this case, $bb\phi$ production rate has been profiled and only bottom quarks have been considered in the $gg\phi$ loop. Numerical values provided in this table correspond to Figure 36 of the auxilliary material of the publication.
Scan of the likelihood function for the search for a resonance ($\phi$) with a mass of $95\text{ GeV}$, produced via gluon-fusion ($gg\phi$), via vector boson fusion ($qq\phi$) or in association with b quarks ($bb\phi$). In this case, $bb\phi$ production rate is profiled, whereas the scan is performed in the $gg\phi$ and $qq\phi$ production cross-sections, both multiplied with the branching fraction for the $\phi\rightarrow\tau\tau$ decay process. Numerical values provided in this table correspond to Figure 64 of the auxilliary material of the publication.
Scan of the likelihood function for the search for a scalar resonance ($H$) with a mass of $60\text{ GeV}$, produced via gluon-fusion or in association with b quarks. For this scan, we assume the $ggH$ and $bbH$ processes are only influenced by the Yukawa couplings to the top and bottom quarks and we scale the cross sections predicted for a SM-like Higgs boson of the same mass depending on these couplings. The scans are displayed for the product of the reduced Yukawa couplings $g_{b,\,t}^{H}$ and the square root of the branching fraction for the $H\rightarrow\tau\tau$ decay process, where the former is defined as the ratio of the Yukawa coupling of $H$ to the Yukawa coupling expected for a SM-like Higgs boson. Numerical values provided in this table correspond to Figure 65 of the auxilliary material of the publication.
Scan of the likelihood function for the search for a pseudoscalar resonance ($A$) with a mass of $60\text{ GeV}$, produced via gluon-fusion or in association with b quarks. For this scan, we assume the $ggA$ and $bbA$ processes are only influenced by the Yukawa couplings to the top and bottom quarks and we scale the cross sections predicted for a SM-like Higgs boson of the same mass depending on these couplings. For the $ggA$ process, there is also an enhancement to the cross section for a pseudoscalar resonance compared to the equivalent process for the production of a scalar. This enhancement is taken into account when scaling the cross sections for the SM-like Higgs boson. The scans are displayed for the product of the reduced Yukawa couplings $g_{b,\,t}^{A}$ and the square root of the branching fraction for the $A\rightarrow\tau\tau$ decay process, where the former is defined as the ratio of the Yukawa coupling of $A$ to the Yukawa coupling expected for a SM-like Higgs boson. Numerical values provided in this table correspond to Figure 66 of the auxilliary material of the publication.
Scan of the likelihood function for the search for a scalar resonance ($H$) with a mass of $80\text{ GeV}$, produced via gluon-fusion or in association with b quarks. For this scan, we assume the $ggH$ and $bbH$ processes are only influenced by the Yukawa couplings to the top and bottom quarks and we scale the cross sections predicted for a SM-like Higgs boson of the same mass depending on these couplings. The scans are displayed for the product of the reduced Yukawa couplings $g_{b,\,t}^{H}$ and the square root of the branching fraction for the $H\rightarrow\tau\tau$ decay process, where the former is defined as the ratio of the Yukawa coupling of $H$ to the Yukawa coupling expected for a SM-like Higgs boson. Numerical values provided in this table correspond to Figure 67 of the auxilliary material of the publication.
Scan of the likelihood function for the search for a pseudoscalar resonance ($A$) with a mass of $80\text{ GeV}$, produced via gluon-fusion or in association with b quarks. For this scan, we assume the $ggA$ and $bbA$ processes are only influenced by the Yukawa couplings to the top and bottom quarks and we scale the cross sections predicted for a SM-like Higgs boson of the same mass depending on these couplings. For the $ggA$ process, there is also an enhancement to the cross section for a pseudoscalar resonance compared to the equivalent process for the production of a scalar. This enhancement is taken into account when scaling the cross sections for the SM-like Higgs boson. The scans are displayed for the product of the reduced Yukawa couplings $g_{b,\,t}^{A}$ and the square root of the branching fraction for the $A\rightarrow\tau\tau$ decay process, where the former is defined as the ratio of the Yukawa coupling of $A$ to the Yukawa coupling expected for a SM-like Higgs boson. Numerical values provided in this table correspond to Figure 68 of the auxilliary material of the publication.
Scan of the likelihood function for the search for a scalar resonance ($H$) with a mass of $95\text{ GeV}$, produced via gluon-fusion or in association with b quarks. For this scan, we assume the $ggH$ and $bbH$ processes are only influenced by the Yukawa couplings to the top and bottom quarks and we scale the cross sections predicted for a SM-like Higgs boson of the same mass depending on these couplings. The scans are displayed for the product of the reduced Yukawa couplings $g_{b,\,t}^{H}$ and the square root of the branching fraction for the $H\rightarrow\tau\tau$ decay process, where the former is defined as the ratio of the Yukawa coupling of $H$ to the Yukawa coupling expected for a SM-like Higgs boson. Numerical values provided in this table correspond to Figure 69 of the auxilliary material of the publication.
Scan of the likelihood function for the search for a pseudoscalar resonance ($A$) with a mass of $95\text{ GeV}$, produced via gluon-fusion or in association with b quarks. For this scan, we assume the $ggA$ and $bbA$ processes are only influenced by the Yukawa couplings to the top and bottom quarks and we scale the cross sections predicted for a SM-like Higgs boson of the same mass depending on these couplings. For the $ggA$ process, there is also an enhancement to the cross section for a pseudoscalar resonance compared to the equivalent process for the production of a scalar. This enhancement is taken into account when scaling the cross sections for the SM-like Higgs boson. The scans are displayed for the product of the reduced Yukawa couplings $g_{b,\,t}^{A}$ and the square root of the branching fraction for the $A\rightarrow\tau\tau$ decay process, where the former is defined as the ratio of the Yukawa coupling of $A$ to the Yukawa coupling expected for a SM-like Higgs boson. Numerical values provided in this table correspond to Figure 70 of the auxilliary material of the publication.
Scan of the likelihood function for the search for a scalar resonance ($H$) with a mass of $100\text{ GeV}$, produced via gluon-fusion or in association with b quarks. For this scan, we assume the $ggH$ and $bbH$ processes are only influenced by the Yukawa couplings to the top and bottom quarks and we scale the cross sections predicted for a SM-like Higgs boson of the same mass depending on these couplings. The scans are displayed for the product of the reduced Yukawa couplings $g_{b,\,t}^{H}$ and the square root of the branching fraction for the $H\rightarrow\tau\tau$ decay process, where the former is defined as the ratio of the Yukawa coupling of $H$ to the Yukawa coupling expected for a SM-like Higgs boson. Numerical values provided in this table correspond to Figure 71 of the auxilliary material of the publication.
Scan of the likelihood function for the search for a pseudoscalar resonance ($A$) with a mass of $100\text{ GeV}$, produced via gluon-fusion or in association with b quarks. For this scan, we assume the $ggA$ and $bbA$ processes are only influenced by the Yukawa couplings to the top and bottom quarks and we scale the cross sections predicted for a SM-like Higgs boson of the same mass depending on these couplings. For the $ggA$ process, there is also an enhancement to the cross section for a pseudoscalar resonance compared to the equivalent process for the production of a scalar. This enhancement is taken into account when scaling the cross sections for the SM-like Higgs boson. The scans are displayed for the product of the reduced Yukawa couplings $g_{b,\,t}^{A}$ and the square root of the branching fraction for the $A\rightarrow\tau\tau$ decay process, where the former is defined as the ratio of the Yukawa coupling of $A$ to the Yukawa coupling expected for a SM-like Higgs boson. Numerical values provided in this table correspond to Figure 72 of the auxilliary material of the publication.
Scan of the likelihood function for the search for a scalar resonance ($H$) with a mass of $120\text{ GeV}$, produced via gluon-fusion or in association with b quarks. For this scan, we assume the $ggH$ and $bbH$ processes are only influenced by the Yukawa couplings to the top and bottom quarks and we scale the cross sections predicted for a SM-like Higgs boson of the same mass depending on these couplings. The scans are displayed for the product of the reduced Yukawa couplings $g_{b,\,t}^{H}$ and the square root of the branching fraction for the $H\rightarrow\tau\tau$ decay process, where the former is defined as the ratio of the Yukawa coupling of $H$ to the Yukawa coupling expected for a SM-like Higgs boson. Numerical values provided in this table correspond to Figure 73 of the auxilliary material of the publication.
Scan of the likelihood function for the search for a pseudoscalar resonance ($A$) with a mass of $120\text{ GeV}$, produced via gluon-fusion or in association with b quarks. For this scan, we assume the $ggA$ and $bbA$ processes are only influenced by the Yukawa couplings to the top and bottom quarks and we scale the cross sections predicted for a SM-like Higgs boson of the same mass depending on these couplings. For the $ggA$ process, there is also an enhancement to the cross section for a pseudoscalar resonance compared to the equivalent process for the production of a scalar. This enhancement is taken into account when scaling the cross sections for the SM-like Higgs boson. The scans are displayed for the product of the reduced Yukawa couplings $g_{b,\,t}^{A}$ and the square root of the branching fraction for the $A\rightarrow\tau\tau$ decay process, where the former is defined as the ratio of the Yukawa coupling of $A$ to the Yukawa coupling expected for a SM-like Higgs boson. Numerical values provided in this table correspond to Figure 74 of the auxilliary material of the publication.
Scan of the likelihood function for the search for a scalar resonance ($H$) with a mass of $125\text{ GeV}$, produced via gluon-fusion or in association with b quarks. For this scan, we assume the $ggH$ and $bbH$ processes are only influenced by the Yukawa couplings to the top and bottom quarks and we scale the cross sections predicted for a SM-like Higgs boson of the same mass depending on these couplings. The scans are displayed for the product of the reduced Yukawa couplings $g_{b,\,t}^{H}$ and the square root of the branching fraction for the $H\rightarrow\tau\tau$ decay process, where the former is defined as the ratio of the Yukawa coupling of $H$ to the Yukawa coupling expected for a SM-like Higgs boson. Numerical values provided in this table correspond to Figure 75 of the auxilliary material of the publication.
Scan of the likelihood function for the search for a pseudoscalar resonance ($A$) with a mass of $125\text{ GeV}$, produced via gluon-fusion or in association with b quarks. For this scan, we assume the $ggA$ and $bbA$ processes are only influenced by the Yukawa couplings to the top and bottom quarks and we scale the cross sections predicted for a SM-like Higgs boson of the same mass depending on these couplings. For the $ggA$ process, there is also an enhancement to the cross section for a pseudoscalar resonance compared to the equivalent process for the production of a scalar. This enhancement is taken into account when scaling the cross sections for the SM-like Higgs boson. The scans are displayed for the product of the reduced Yukawa couplings $g_{b,\,t}^{A}$ and the square root of the branching fraction for the $A\rightarrow\tau\tau$ decay process, where the former is defined as the ratio of the Yukawa coupling of $A$ to the Yukawa coupling expected for a SM-like Higgs boson. Numerical values provided in this table correspond to Figure 76 of the auxilliary material of the publication.
Scan of the likelihood function for the search for a scalar resonance ($H$) with a mass of $130\text{ GeV}$, produced via gluon-fusion or in association with b quarks. For this scan, we assume the $ggH$ and $bbH$ processes are only influenced by the Yukawa couplings to the top and bottom quarks and we scale the cross sections predicted for a SM-like Higgs boson of the same mass depending on these couplings. The scans are displayed for the product of the reduced Yukawa couplings $g_{b,\,t}^{H}$ and the square root of the branching fraction for the $H\rightarrow\tau\tau$ decay process, where the former is defined as the ratio of the Yukawa coupling of $H$ to the Yukawa coupling expected for a SM-like Higgs boson. Numerical values provided in this table correspond to Figure 77 of the auxilliary material of the publication.
Scan of the likelihood function for the search for a pseudoscalar resonance ($A$) with a mass of $130\text{ GeV}$, produced via gluon-fusion or in association with b quarks. For this scan, we assume the $ggA$ and $bbA$ processes are only influenced by the Yukawa couplings to the top and bottom quarks and we scale the cross sections predicted for a SM-like Higgs boson of the same mass depending on these couplings. For the $ggA$ process, there is also an enhancement to the cross section for a pseudoscalar resonance compared to the equivalent process for the production of a scalar. This enhancement is taken into account when scaling the cross sections for the SM-like Higgs boson. The scans are displayed for the product of the reduced Yukawa couplings $g_{b,\,t}^{A}$ and the square root of the branching fraction for the $A\rightarrow\tau\tau$ decay process, where the former is defined as the ratio of the Yukawa coupling of $A$ to the Yukawa coupling expected for a SM-like Higgs boson. Numerical values provided in this table correspond to Figure 78 of the auxilliary material of the publication.
Scan of the likelihood function for the search for a scalar resonance ($H$) with a mass of $140\text{ GeV}$, produced via gluon-fusion or in association with b quarks. For this scan, we assume the $ggH$ and $bbH$ processes are only influenced by the Yukawa couplings to the top and bottom quarks and we scale the cross sections predicted for a SM-like Higgs boson of the same mass depending on these couplings. The scans are displayed for the product of the reduced Yukawa couplings $g_{b,\,t}^{H}$ and the square root of the branching fraction for the $H\rightarrow\tau\tau$ decay process, where the former is defined as the ratio of the Yukawa coupling of $H$ to the Yukawa coupling expected for a SM-like Higgs boson. Numerical values provided in this table correspond to Figure 79 of the auxilliary material of the publication.
Scan of the likelihood function for the search for a pseudoscalar resonance ($A$) with a mass of $140\text{ GeV}$, produced via gluon-fusion or in association with b quarks. For this scan, we assume the $ggA$ and $bbA$ processes are only influenced by the Yukawa couplings to the top and bottom quarks and we scale the cross sections predicted for a SM-like Higgs boson of the same mass depending on these couplings. For the $ggA$ process, there is also an enhancement to the cross section for a pseudoscalar resonance compared to the equivalent process for the production of a scalar. This enhancement is taken into account when scaling the cross sections for the SM-like Higgs boson. The scans are displayed for the product of the reduced Yukawa couplings $g_{b,\,t}^{A}$ and the square root of the branching fraction for the $A\rightarrow\tau\tau$ decay process, where the former is defined as the ratio of the Yukawa coupling of $A$ to the Yukawa coupling expected for a SM-like Higgs boson. Numerical values provided in this table correspond to Figure 80 of the auxilliary material of the publication.
Scan of the likelihood function for the search for a scalar resonance ($H$) with a mass of $160\text{ GeV}$, produced via gluon-fusion or in association with b quarks. For this scan, we assume the $ggH$ and $bbH$ processes are only influenced by the Yukawa couplings to the top and bottom quarks and we scale the cross sections predicted for a SM-like Higgs boson of the same mass depending on these couplings. The scans are displayed for the product of the reduced Yukawa couplings $g_{b,\,t}^{H}$ and the square root of the branching fraction for the $H\rightarrow\tau\tau$ decay process, where the former is defined as the ratio of the Yukawa coupling of $H$ to the Yukawa coupling expected for a SM-like Higgs boson. Numerical values provided in this table correspond to Figure 81 of the auxilliary material of the publication.
Scan of the likelihood function for the search for a pseudoscalar resonance ($A$) with a mass of $160\text{ GeV}$, produced via gluon-fusion or in association with b quarks. For this scan, we assume the $ggA$ and $bbA$ processes are only influenced by the Yukawa couplings to the top and bottom quarks and we scale the cross sections predicted for a SM-like Higgs boson of the same mass depending on these couplings. For the $ggA$ process, there is also an enhancement to the cross section for a pseudoscalar resonance compared to the equivalent process for the production of a scalar. This enhancement is taken into account when scaling the cross sections for the SM-like Higgs boson. The scans are displayed for the product of the reduced Yukawa couplings $g_{b,\,t}^{A}$ and the square root of the branching fraction for the $A\rightarrow\tau\tau$ decay process, where the former is defined as the ratio of the Yukawa coupling of $A$ to the Yukawa coupling expected for a SM-like Higgs boson. Numerical values provided in this table correspond to Figure 82 of the auxilliary material of the publication.
Scan of the likelihood function for the search for a scalar resonance ($H$) with a mass of $180\text{ GeV}$, produced via gluon-fusion or in association with b quarks. For this scan, we assume the $ggH$ and $bbH$ processes are only influenced by the Yukawa couplings to the top and bottom quarks and we scale the cross sections predicted for a SM-like Higgs boson of the same mass depending on these couplings. The scans are displayed for the product of the reduced Yukawa couplings $g_{b,\,t}^{H}$ and the square root of the branching fraction for the $H\rightarrow\tau\tau$ decay process, where the former is defined as the ratio of the Yukawa coupling of $H$ to the Yukawa coupling expected for a SM-like Higgs boson. Numerical values provided in this table correspond to Figure 83 of the auxilliary material of the publication.
Scan of the likelihood function for the search for a pseudoscalar resonance ($A$) with a mass of $180\text{ GeV}$, produced via gluon-fusion or in association with b quarks. For this scan, we assume the $ggA$ and $bbA$ processes are only influenced by the Yukawa couplings to the top and bottom quarks and we scale the cross sections predicted for a SM-like Higgs boson of the same mass depending on these couplings. For the $ggA$ process, there is also an enhancement to the cross section for a pseudoscalar resonance compared to the equivalent process for the production of a scalar. This enhancement is taken into account when scaling the cross sections for the SM-like Higgs boson. The scans are displayed for the product of the reduced Yukawa couplings $g_{b,\,t}^{A}$ and the square root of the branching fraction for the $A\rightarrow\tau\tau$ decay process, where the former is defined as the ratio of the Yukawa coupling of $A$ to the Yukawa coupling expected for a SM-like Higgs boson. Numerical values provided in this table correspond to Figure 84 of the auxilliary material of the publication.
Scan of the likelihood function for the search for a scalar resonance ($H$) with a mass of $200\text{ GeV}$, produced via gluon-fusion or in association with b quarks. For this scan, we assume the $ggH$ and $bbH$ processes are only influenced by the Yukawa couplings to the top and bottom quarks and we scale the cross sections predicted for a SM-like Higgs boson of the same mass depending on these couplings. The scans are displayed for the product of the reduced Yukawa couplings $g_{b,\,t}^{H}$ and the square root of the branching fraction for the $H\rightarrow\tau\tau$ decay process, where the former is defined as the ratio of the Yukawa coupling of $H$ to the Yukawa coupling expected for a SM-like Higgs boson. Numerical values provided in this table correspond to Figure 85 of the auxilliary material of the publication.
Scan of the likelihood function for the search for a pseudoscalar resonance ($A$) with a mass of $200\text{ GeV}$, produced via gluon-fusion or in association with b quarks. For this scan, we assume the $ggA$ and $bbA$ processes are only influenced by the Yukawa couplings to the top and bottom quarks and we scale the cross sections predicted for a SM-like Higgs boson of the same mass depending on these couplings. For the $ggA$ process, there is also an enhancement to the cross section for a pseudoscalar resonance compared to the equivalent process for the production of a scalar. This enhancement is taken into account when scaling the cross sections for the SM-like Higgs boson. The scans are displayed for the product of the reduced Yukawa couplings $g_{b,\,t}^{A}$ and the square root of the branching fraction for the $A\rightarrow\tau\tau$ decay process, where the former is defined as the ratio of the Yukawa coupling of $A$ to the Yukawa coupling expected for a SM-like Higgs boson. Numerical values provided in this table correspond to Figure 86 of the auxilliary material of the publication.
Expected and observed $95\%\text{ CL}$ upper limits on $g_U$ in the VLQ BM 1 scenario in a mass range of $1\leq m_U\leq 5\text{ TeV}$. The central $68$ and $95\%$ intervals are given in addition to the expected median value. Numerical values provided in this table correspond to Figure 12a of the publication.
Expected and observed $95\%\text{ CL}$ upper limits on $g_U$ in the VLQ BM 2 scenario in a mass range of $1\leq m_U\leq 5\text{ TeV}$. The central $68$ and $95\%$ intervals are given in addition to the expected median value. Numerical values provided in this table correspond to Figure 12b of the publication.
Expected and observed $95\%\text{ CL}$ upper limits on $g_U$ in the VLQ BM 3 scenario in a mass range of $1\leq m_U\leq 5\text{ TeV}$. The central $68$ and $95\%$ intervals are given in addition to the expected median value. Numerical values provided in this table correspond to Figure 92 of the auxilliary material of the publication.
Scan of the likelihood function for the search for a resonance ($\phi$) with a mass of $60\text{ GeV}$, produced via gluon-fusion ($gg\phi$) or in association with b quarks ($bb\phi$). The scan is performed in the $gg\phi$ and $bb\phi$ production cross-sections, both multiplied with the branching fraction for the $\phi\rightarrow\tau\tau$ decay process. Numerical values provided in this table correspond to Figure 11a of the publication.
Scan of the likelihood function for the search for a resonance ($\phi$) with a mass of $80\text{ GeV}$, produced via gluon-fusion ($gg\phi$) or in association with b quarks ($bb\phi$). The scan is performed in the $gg\phi$ and $bb\phi$ production cross-sections, both multiplied with the branching fraction for the $\phi\rightarrow\tau\tau$ decay process. Numerical values provided in this table correspond to Figure 41 of the auxilliary material of the publication.
Scan of the likelihood function for the search for a resonance ($\phi$) with a mass of $95\text{ GeV}$, produced via gluon-fusion ($gg\phi$) or in association with b quarks ($bb\phi$). The scan is performed in the $gg\phi$ and $bb\phi$ production cross-sections, both multiplied with the branching fraction for the $\phi\rightarrow\tau\tau$ decay process. Numerical values provided in this table correspond to Figure 42 of the auxilliary material of the publication.
Scan of the likelihood function for the search for a resonance ($\phi$) with a mass of $100\text{ GeV}$, produced via gluon-fusion ($gg\phi$) or in association with b quarks ($bb\phi$). The scan is performed in the $gg\phi$ and $bb\phi$ production cross-sections, both multiplied with the branching fraction for the $\phi\rightarrow\tau\tau$ decay process. Numerical values provided in this table correspond to Figure 11b of the publication.
Scan of the likelihood function for the search for a resonance ($\phi$) with a mass of $120\text{ GeV}$, produced via gluon-fusion ($gg\phi$) or in association with b quarks ($bb\phi$). The scan is performed in the $gg\phi$ and $bb\phi$ production cross-sections, both multiplied with the branching fraction for the $\phi\rightarrow\tau\tau$ decay process. Numerical values provided in this table correspond to Figure 43 of the auxilliary material of the publication.
Scan of the likelihood function for the search for a resonance ($\phi$) with a mass of $125\text{ GeV}$, produced via gluon-fusion ($gg\phi$) or in association with b quarks ($bb\phi$). The scan is performed in the $gg\phi$ and $bb\phi$ production cross-sections, both multiplied with the branching fraction for the $\phi\rightarrow\tau\tau$ decay process. Numerical values provided in this table correspond to Figure 11c of the publication.
Scan of the likelihood function for the search for a resonance ($\phi$) with a mass of $130\text{ GeV}$, produced via gluon-fusion ($gg\phi$) or in association with b quarks ($bb\phi$). The scan is performed in the $gg\phi$ and $bb\phi$ production cross-sections, both multiplied with the branching fraction for the $\phi\rightarrow\tau\tau$ decay process. Numerical values provided in this table correspond to Figure 44 of the auxilliary material of the publication.
Scan of the likelihood function for the search for a resonance ($\phi$) with a mass of $140\text{ GeV}$, produced via gluon-fusion ($gg\phi$) or in association with b quarks ($bb\phi$). The scan is performed in the $gg\phi$ and $bb\phi$ production cross-sections, both multiplied with the branching fraction for the $\phi\rightarrow\tau\tau$ decay process. Numerical values provided in this table correspond to Figure 45 of the auxilliary material of the publication.
Scan of the likelihood function for the search for a resonance ($\phi$) with a mass of $160\text{ GeV}$, produced via gluon-fusion ($gg\phi$) or in association with b quarks ($bb\phi$). The scan is performed in the $gg\phi$ and $bb\phi$ production cross-sections, both multiplied with the branching fraction for the $\phi\rightarrow\tau\tau$ decay process. Numerical values provided in this table correspond to Figure 11d of the publication.
Scan of the likelihood function for the search for a resonance ($\phi$) with a mass of $180\text{ GeV}$, produced via gluon-fusion ($gg\phi$) or in association with b quarks ($bb\phi$). The scan is performed in the $gg\phi$ and $bb\phi$ production cross-sections, both multiplied with the branching fraction for the $\phi\rightarrow\tau\tau$ decay process. Numerical values provided in this table correspond to Figure 46 of the auxilliary material of the publication.
Scan of the likelihood function for the search for a resonance ($\phi$) with a mass of $200\text{ GeV}$, produced via gluon-fusion ($gg\phi$) or in association with b quarks ($bb\phi$). The scan is performed in the $gg\phi$ and $bb\phi$ production cross-sections, both multiplied with the branching fraction for the $\phi\rightarrow\tau\tau$ decay process. Numerical values provided in this table correspond to Figure 47 of the auxilliary material of the publication.
Scan of the likelihood function for the search for a resonance ($\phi$) with a mass of $250\text{ GeV}$, produced via gluon-fusion ($gg\phi$) or in association with b quarks ($bb\phi$). The scan is performed in the $gg\phi$ and $bb\phi$ production cross-sections, both multiplied with the branching fraction for the $\phi\rightarrow\tau\tau$ decay process. Numerical values provided in this table correspond to Figure 11e of the publication.
Scan of the likelihood function for the search for a resonance ($\phi$) with a mass of $300\text{ GeV}$, produced via gluon-fusion ($gg\phi$) or in association with b quarks ($bb\phi$). The scan is performed in the $gg\phi$ and $bb\phi$ production cross-sections, both multiplied with the branching fraction for the $\phi\rightarrow\tau\tau$ decay process. Numerical values provided in this table correspond to Figure 48 of the auxilliary material of the publication.
Scan of the likelihood function for the search for a resonance ($\phi$) with a mass of $350\text{ GeV}$, produced via gluon-fusion ($gg\phi$) or in association with b quarks ($bb\phi$). The scan is performed in the $gg\phi$ and $bb\phi$ production cross-sections, both multiplied with the branching fraction for the $\phi\rightarrow\tau\tau$ decay process. Numerical values provided in this table correspond to Figure 49 of the auxilliary material of the publication.
Scan of the likelihood function for the search for a resonance ($\phi$) with a mass of $400\text{ GeV}$, produced via gluon-fusion ($gg\phi$) or in association with b quarks ($bb\phi$). The scan is performed in the $gg\phi$ and $bb\phi$ production cross-sections, both multiplied with the branching fraction for the $\phi\rightarrow\tau\tau$ decay process. Numerical values provided in this table correspond to Figure 50 of the auxilliary material of the publication.
Scan of the likelihood function for the search for a resonance ($\phi$) with a mass of $450\text{ GeV}$, produced via gluon-fusion ($gg\phi$) or in association with b quarks ($bb\phi$). The scan is performed in the $gg\phi$ and $bb\phi$ production cross-sections, both multiplied with the branching fraction for the $\phi\rightarrow\tau\tau$ decay process. Numerical values provided in this table correspond to Figure 51 of the auxilliary material of the publication.
Scan of the likelihood function for the search for a resonance ($\phi$) with a mass of $500\text{ GeV}$, produced via gluon-fusion ($gg\phi$) or in association with b quarks ($bb\phi$). The scan is performed in the $gg\phi$ and $bb\phi$ production cross-sections, both multiplied with the branching fraction for the $\phi\rightarrow\tau\tau$ decay process. Numerical values provided in this table correspond to Figure 11f of the publication.
Scan of the likelihood function for the search for a resonance ($\phi$) with a mass of $600\text{ GeV}$, produced via gluon-fusion ($gg\phi$) or in association with b quarks ($bb\phi$). The scan is performed in the $gg\phi$ and $bb\phi$ production cross-sections, both multiplied with the branching fraction for the $\phi\rightarrow\tau\tau$ decay process. Numerical values provided in this table correspond to Figure 52 of the auxilliary material of the publication.
Scan of the likelihood function for the search for a resonance ($\phi$) with a mass of $700\text{ GeV}$, produced via gluon-fusion ($gg\phi$) or in association with b quarks ($bb\phi$). The scan is performed in the $gg\phi$ and $bb\phi$ production cross-sections, both multiplied with the branching fraction for the $\phi\rightarrow\tau\tau$ decay process. Numerical values provided in this table correspond to Figure 53 of the auxilliary material of the publication.
Scan of the likelihood function for the search for a resonance ($\phi$) with a mass of $800\text{ GeV}$, produced via gluon-fusion ($gg\phi$) or in association with b quarks ($bb\phi$). The scan is performed in the $gg\phi$ and $bb\phi$ production cross-sections, both multiplied with the branching fraction for the $\phi\rightarrow\tau\tau$ decay process. Numerical values provided in this table correspond to Figure 54 of the auxilliary material of the publication.
Scan of the likelihood function for the search for a resonance ($\phi$) with a mass of $900\text{ GeV}$, produced via gluon-fusion ($gg\phi$) or in association with b quarks ($bb\phi$). The scan is performed in the $gg\phi$ and $bb\phi$ production cross-sections, both multiplied with the branching fraction for the $\phi\rightarrow\tau\tau$ decay process. Numerical values provided in this table correspond to Figure 55 of the auxilliary material of the publication.
Scan of the likelihood function for the search for a resonance ($\phi$) with a mass of $1000\text{ GeV}$, produced via gluon-fusion ($gg\phi$) or in association with b quarks ($bb\phi$). The scan is performed in the $gg\phi$ and $bb\phi$ production cross-sections, both multiplied with the branching fraction for the $\phi\rightarrow\tau\tau$ decay process. Numerical values provided in this table correspond to Figure 11g of the publication.
Scan of the likelihood function for the search for a resonance ($\phi$) with a mass of $1200\text{ GeV}$, produced via gluon-fusion ($gg\phi$) or in association with b quarks ($bb\phi$). The scan is performed in the $gg\phi$ and $bb\phi$ production cross-sections, both multiplied with the branching fraction for the $\phi\rightarrow\tau\tau$ decay process. Numerical values provided in this table correspond to Figure 11h of the publication.
Scan of the likelihood function for the search for a resonance ($\phi$) with a mass of $1400\text{ GeV}$, produced via gluon-fusion ($gg\phi$) or in association with b quarks ($bb\phi$). The scan is performed in the $gg\phi$ and $bb\phi$ production cross-sections, both multiplied with the branching fraction for the $\phi\rightarrow\tau\tau$ decay process. Numerical values provided in this table correspond to Figure 56 of the auxilliary material of the publication.
Scan of the likelihood function for the search for a resonance ($\phi$) with a mass of $1600\text{ GeV}$, produced via gluon-fusion ($gg\phi$) or in association with b quarks ($bb\phi$). The scan is performed in the $gg\phi$ and $bb\phi$ production cross-sections, both multiplied with the branching fraction for the $\phi\rightarrow\tau\tau$ decay process. Numerical values provided in this table correspond to Figure 57 of the auxilliary material of the publication.
Scan of the likelihood function for the search for a resonance ($\phi$) with a mass of $1800\text{ GeV}$, produced via gluon-fusion ($gg\phi$) or in association with b quarks ($bb\phi$). The scan is performed in the $gg\phi$ and $bb\phi$ production cross-sections, both multiplied with the branching fraction for the $\phi\rightarrow\tau\tau$ decay process. Numerical values provided in this table correspond to Figure 58 of the auxilliary material of the publication.
Scan of the likelihood function for the search for a resonance ($\phi$) with a mass of $2000\text{ GeV}$, produced via gluon-fusion ($gg\phi$) or in association with b quarks ($bb\phi$). The scan is performed in the $gg\phi$ and $bb\phi$ production cross-sections, both multiplied with the branching fraction for the $\phi\rightarrow\tau\tau$ decay process. Numerical values provided in this table correspond to Figure 59 of the auxilliary material of the publication.
Scan of the likelihood function for the search for a resonance ($\phi$) with a mass of $2300\text{ GeV}$, produced via gluon-fusion ($gg\phi$) or in association with b quarks ($bb\phi$). The scan is performed in the $gg\phi$ and $bb\phi$ production cross-sections, both multiplied with the branching fraction for the $\phi\rightarrow\tau\tau$ decay process. Numerical values provided in this table correspond to Figure 60 of the auxilliary material of the publication.
Scan of the likelihood function for the search for a resonance ($\phi$) with a mass of $2600\text{ GeV}$, produced via gluon-fusion ($gg\phi$) or in association with b quarks ($bb\phi$). The scan is performed in the $gg\phi$ and $bb\phi$ production cross-sections, both multiplied with the branching fraction for the $\phi\rightarrow\tau\tau$ decay process. Numerical values provided in this table correspond to Figure 61 of the auxilliary material of the publication.
Scan of the likelihood function for the search for a resonance ($\phi$) with a mass of $2900\text{ GeV}$, produced via gluon-fusion ($gg\phi$) or in association with b quarks ($bb\phi$). The scan is performed in the $gg\phi$ and $bb\phi$ production cross-sections, both multiplied with the branching fraction for the $\phi\rightarrow\tau\tau$ decay process. Numerical values provided in this table correspond to Figure 62 of the auxilliary material of the publication.
Scan of the likelihood function for the search for a resonance ($\phi$) with a mass of $3200\text{ GeV}$, produced via gluon-fusion ($gg\phi$) or in association with b quarks ($bb\phi$). The scan is performed in the $gg\phi$ and $bb\phi$ production cross-sections, both multiplied with the branching fraction for the $\phi\rightarrow\tau\tau$ decay process. Numerical values provided in this table correspond to Figure 63 of the auxilliary material of the publication.
Scan of the likelihood function for the search for a resonance ($\phi$) with a mass of $3500\text{ GeV}$, produced via gluon-fusion ($gg\phi$) or in association with b quarks ($bb\phi$). The scan is performed in the $gg\phi$ and $bb\phi$ production cross-sections, both multiplied with the branching fraction for the $\phi\rightarrow\tau\tau$ decay process. Numerical values provided in this table correspond to Figure 11i of the publication.
Scan of the likelihood function for the search for a resonance ($\phi$) with a mass of $60\text{ GeV}$, produced via gluon-fusion ($gg\phi$) or in association with b quarks ($bb\phi$). The scan is performed in the $gg\phi$ and $bb\phi$ production cross-sections, both multiplied with the branching fraction for the $\phi\rightarrow\tau\tau$ decay process. Numerical values provided in this table correspond to Figure 11a of the publication, but evaluated on Asimov pseudodata.
Scan of the likelihood function for the search for a resonance ($\phi$) with a mass of $80\text{ GeV}$, produced via gluon-fusion ($gg\phi$) or in association with b quarks ($bb\phi$). The scan is performed in the $gg\phi$ and $bb\phi$ production cross-sections, both multiplied with the branching fraction for the $\phi\rightarrow\tau\tau$ decay process. Numerical values provided in this table correspond to Figure 41 of the auxilliary material of the publication, but evaluated on Asimov pseudodata.
Scan of the likelihood function for the search for a resonance ($\phi$) with a mass of $95\text{ GeV}$, produced via gluon-fusion ($gg\phi$) or in association with b quarks ($bb\phi$). The scan is performed in the $gg\phi$ and $bb\phi$ production cross-sections, both multiplied with the branching fraction for the $\phi\rightarrow\tau\tau$ decay process. Numerical values provided in this table correspond to Figure 42 of the auxilliary material of the publication, but evaluated on Asimov pseudodata.
Scan of the likelihood function for the search for a resonance ($\phi$) with a mass of $100\text{ GeV}$, produced via gluon-fusion ($gg\phi$) or in association with b quarks ($bb\phi$). The scan is performed in the $gg\phi$ and $bb\phi$ production cross-sections, both multiplied with the branching fraction for the $\phi\rightarrow\tau\tau$ decay process. Numerical values provided in this table correspond to Figure 11b of the publication, but evaluated on Asimov pseudodata.
Scan of the likelihood function for the search for a resonance ($\phi$) with a mass of $120\text{ GeV}$, produced via gluon-fusion ($gg\phi$) or in association with b quarks ($bb\phi$). The scan is performed in the $gg\phi$ and $bb\phi$ production cross-sections, both multiplied with the branching fraction for the $\phi\rightarrow\tau\tau$ decay process. Numerical values provided in this table correspond to Figure 43 of the auxilliary material of the publication, but evaluated on Asimov pseudodata.
Scan of the likelihood function for the search for a resonance ($\phi$) with a mass of $125\text{ GeV}$, produced via gluon-fusion ($gg\phi$) or in association with b quarks ($bb\phi$). The scan is performed in the $gg\phi$ and $bb\phi$ production cross-sections, both multiplied with the branching fraction for the $\phi\rightarrow\tau\tau$ decay process. Numerical values provided in this table correspond to Figure 11c of the publication, but evaluated on Asimov pseudodata.
Scan of the likelihood function for the search for a resonance ($\phi$) with a mass of $130\text{ GeV}$, produced via gluon-fusion ($gg\phi$) or in association with b quarks ($bb\phi$). The scan is performed in the $gg\phi$ and $bb\phi$ production cross-sections, both multiplied with the branching fraction for the $\phi\rightarrow\tau\tau$ decay process. Numerical values provided in this table correspond to Figure 44 of the auxilliary material of the publication, but evaluated on Asimov pseudodata.
Scan of the likelihood function for the search for a resonance ($\phi$) with a mass of $140\text{ GeV}$, produced via gluon-fusion ($gg\phi$) or in association with b quarks ($bb\phi$). The scan is performed in the $gg\phi$ and $bb\phi$ production cross-sections, both multiplied with the branching fraction for the $\phi\rightarrow\tau\tau$ decay process. Numerical values provided in this table correspond to Figure 45 of the auxilliary material of the publication, but evaluated on Asimov pseudodata.
Scan of the likelihood function for the search for a resonance ($\phi$) with a mass of $160\text{ GeV}$, produced via gluon-fusion ($gg\phi$) or in association with b quarks ($bb\phi$). The scan is performed in the $gg\phi$ and $bb\phi$ production cross-sections, both multiplied with the branching fraction for the $\phi\rightarrow\tau\tau$ decay process. Numerical values provided in this table correspond to Figure 11d of the publication, but evaluated on Asimov pseudodata.
Scan of the likelihood function for the search for a resonance ($\phi$) with a mass of $180\text{ GeV}$, produced via gluon-fusion ($gg\phi$) or in association with b quarks ($bb\phi$). The scan is performed in the $gg\phi$ and $bb\phi$ production cross-sections, both multiplied with the branching fraction for the $\phi\rightarrow\tau\tau$ decay process. Numerical values provided in this table correspond to Figure 46 of the auxilliary material of the publication, but evaluated on Asimov pseudodata.
Scan of the likelihood function for the search for a resonance ($\phi$) with a mass of $200\text{ GeV}$, produced via gluon-fusion ($gg\phi$) or in association with b quarks ($bb\phi$). The scan is performed in the $gg\phi$ and $bb\phi$ production cross-sections, both multiplied with the branching fraction for the $\phi\rightarrow\tau\tau$ decay process. Numerical values provided in this table correspond to Figure 47 of the auxilliary material of the publication, but evaluated on Asimov pseudodata.
Scan of the likelihood function for the search for a resonance ($\phi$) with a mass of $250\text{ GeV}$, produced via gluon-fusion ($gg\phi$) or in association with b quarks ($bb\phi$). The scan is performed in the $gg\phi$ and $bb\phi$ production cross-sections, both multiplied with the branching fraction for the $\phi\rightarrow\tau\tau$ decay process. Numerical values provided in this table correspond to Figure 11e of the publication, but evaluated on Asimov pseudodata.
Scan of the likelihood function for the search for a resonance ($\phi$) with a mass of $300\text{ GeV}$, produced via gluon-fusion ($gg\phi$) or in association with b quarks ($bb\phi$). The scan is performed in the $gg\phi$ and $bb\phi$ production cross-sections, both multiplied with the branching fraction for the $\phi\rightarrow\tau\tau$ decay process. Numerical values provided in this table correspond to Figure 48 of the auxilliary material of the publication, but evaluated on Asimov pseudodata.
Scan of the likelihood function for the search for a resonance ($\phi$) with a mass of $350\text{ GeV}$, produced via gluon-fusion ($gg\phi$) or in association with b quarks ($bb\phi$). The scan is performed in the $gg\phi$ and $bb\phi$ production cross-sections, both multiplied with the branching fraction for the $\phi\rightarrow\tau\tau$ decay process. Numerical values provided in this table correspond to Figure 49 of the auxilliary material of the publication, but evaluated on Asimov pseudodata.
Scan of the likelihood function for the search for a resonance ($\phi$) with a mass of $400\text{ GeV}$, produced via gluon-fusion ($gg\phi$) or in association with b quarks ($bb\phi$). The scan is performed in the $gg\phi$ and $bb\phi$ production cross-sections, both multiplied with the branching fraction for the $\phi\rightarrow\tau\tau$ decay process. Numerical values provided in this table correspond to Figure 50 of the auxilliary material of the publication, but evaluated on Asimov pseudodata.
Scan of the likelihood function for the search for a resonance ($\phi$) with a mass of $450\text{ GeV}$, produced via gluon-fusion ($gg\phi$) or in association with b quarks ($bb\phi$). The scan is performed in the $gg\phi$ and $bb\phi$ production cross-sections, both multiplied with the branching fraction for the $\phi\rightarrow\tau\tau$ decay process. Numerical values provided in this table correspond to Figure 51 of the auxilliary material of the publication, but evaluated on Asimov pseudodata.
Scan of the likelihood function for the search for a resonance ($\phi$) with a mass of $500\text{ GeV}$, produced via gluon-fusion ($gg\phi$) or in association with b quarks ($bb\phi$). The scan is performed in the $gg\phi$ and $bb\phi$ production cross-sections, both multiplied with the branching fraction for the $\phi\rightarrow\tau\tau$ decay process. Numerical values provided in this table correspond to Figure 11f of the publication, but evaluated on Asimov pseudodata.
Scan of the likelihood function for the search for a resonance ($\phi$) with a mass of $600\text{ GeV}$, produced via gluon-fusion ($gg\phi$) or in association with b quarks ($bb\phi$). The scan is performed in the $gg\phi$ and $bb\phi$ production cross-sections, both multiplied with the branching fraction for the $\phi\rightarrow\tau\tau$ decay process. Numerical values provided in this table correspond to Figure 52 of the auxilliary material of the publication, but evaluated on Asimov pseudodata.
Scan of the likelihood function for the search for a resonance ($\phi$) with a mass of $700\text{ GeV}$, produced via gluon-fusion ($gg\phi$) or in association with b quarks ($bb\phi$). The scan is performed in the $gg\phi$ and $bb\phi$ production cross-sections, both multiplied with the branching fraction for the $\phi\rightarrow\tau\tau$ decay process. Numerical values provided in this table correspond to Figure 53 of the auxilliary material of the publication, but evaluated on Asimov pseudodata.
Scan of the likelihood function for the search for a resonance ($\phi$) with a mass of $800\text{ GeV}$, produced via gluon-fusion ($gg\phi$) or in association with b quarks ($bb\phi$). The scan is performed in the $gg\phi$ and $bb\phi$ production cross-sections, both multiplied with the branching fraction for the $\phi\rightarrow\tau\tau$ decay process. Numerical values provided in this table correspond to Figure 54 of the auxilliary material of the publication, but evaluated on Asimov pseudodata.
Scan of the likelihood function for the search for a resonance ($\phi$) with a mass of $900\text{ GeV}$, produced via gluon-fusion ($gg\phi$) or in association with b quarks ($bb\phi$). The scan is performed in the $gg\phi$ and $bb\phi$ production cross-sections, both multiplied with the branching fraction for the $\phi\rightarrow\tau\tau$ decay process. Numerical values provided in this table correspond to Figure 55 of the auxilliary material of the publication, but evaluated on Asimov pseudodata.
Scan of the likelihood function for the search for a resonance ($\phi$) with a mass of $1000\text{ GeV}$, produced via gluon-fusion ($gg\phi$) or in association with b quarks ($bb\phi$). The scan is performed in the $gg\phi$ and $bb\phi$ production cross-sections, both multiplied with the branching fraction for the $\phi\rightarrow\tau\tau$ decay process. Numerical values provided in this table correspond to Figure 11g of the publication, but evaluated on Asimov pseudodata.
Scan of the likelihood function for the search for a resonance ($\phi$) with a mass of $1200\text{ GeV}$, produced via gluon-fusion ($gg\phi$) or in association with b quarks ($bb\phi$). The scan is performed in the $gg\phi$ and $bb\phi$ production cross-sections, both multiplied with the branching fraction for the $\phi\rightarrow\tau\tau$ decay process. Numerical values provided in this table correspond to Figure 11h of the publication, but evaluated on Asimov pseudodata.
Scan of the likelihood function for the search for a resonance ($\phi$) with a mass of $1400\text{ GeV}$, produced via gluon-fusion ($gg\phi$) or in association with b quarks ($bb\phi$). The scan is performed in the $gg\phi$ and $bb\phi$ production cross-sections, both multiplied with the branching fraction for the $\phi\rightarrow\tau\tau$ decay process. Numerical values provided in this table correspond to Figure 56 of the auxilliary material of the publication, but evaluated on Asimov pseudodata.
Scan of the likelihood function for the search for a resonance ($\phi$) with a mass of $1600\text{ GeV}$, produced via gluon-fusion ($gg\phi$) or in association with b quarks ($bb\phi$). The scan is performed in the $gg\phi$ and $bb\phi$ production cross-sections, both multiplied with the branching fraction for the $\phi\rightarrow\tau\tau$ decay process. Numerical values provided in this table correspond to Figure 57 of the auxilliary material of the publication, but evaluated on Asimov pseudodata.
Scan of the likelihood function for the search for a resonance ($\phi$) with a mass of $1800\text{ GeV}$, produced via gluon-fusion ($gg\phi$) or in association with b quarks ($bb\phi$). The scan is performed in the $gg\phi$ and $bb\phi$ production cross-sections, both multiplied with the branching fraction for the $\phi\rightarrow\tau\tau$ decay process. Numerical values provided in this table correspond to Figure 58 of the auxilliary material of the publication, but evaluated on Asimov pseudodata.
Scan of the likelihood function for the search for a resonance ($\phi$) with a mass of $2000\text{ GeV}$, produced via gluon-fusion ($gg\phi$) or in association with b quarks ($bb\phi$). The scan is performed in the $gg\phi$ and $bb\phi$ production cross-sections, both multiplied with the branching fraction for the $\phi\rightarrow\tau\tau$ decay process. Numerical values provided in this table correspond to Figure 59 of the auxilliary material of the publication, but evaluated on Asimov pseudodata.
Scan of the likelihood function for the search for a resonance ($\phi$) with a mass of $2300\text{ GeV}$, produced via gluon-fusion ($gg\phi$) or in association with b quarks ($bb\phi$). The scan is performed in the $gg\phi$ and $bb\phi$ production cross-sections, both multiplied with the branching fraction for the $\phi\rightarrow\tau\tau$ decay process. Numerical values provided in this table correspond to Figure 60 of the auxilliary material of the publication, but evaluated on Asimov pseudodata.
Scan of the likelihood function for the search for a resonance ($\phi$) with a mass of $2600\text{ GeV}$, produced via gluon-fusion ($gg\phi$) or in association with b quarks ($bb\phi$). The scan is performed in the $gg\phi$ and $bb\phi$ production cross-sections, both multiplied with the branching fraction for the $\phi\rightarrow\tau\tau$ decay process. Numerical values provided in this table correspond to Figure 61 of the auxilliary material of the publication, but evaluated on Asimov pseudodata.
Scan of the likelihood function for the search for a resonance ($\phi$) with a mass of $2900\text{ GeV}$, produced via gluon-fusion ($gg\phi$) or in association with b quarks ($bb\phi$). The scan is performed in the $gg\phi$ and $bb\phi$ production cross-sections, both multiplied with the branching fraction for the $\phi\rightarrow\tau\tau$ decay process. Numerical values provided in this table correspond to Figure 62 of the auxilliary material of the publication, but evaluated on Asimov pseudodata.
Scan of the likelihood function for the search for a resonance ($\phi$) with a mass of $3200\text{ GeV}$, produced via gluon-fusion ($gg\phi$) or in association with b quarks ($bb\phi$). The scan is performed in the $gg\phi$ and $bb\phi$ production cross-sections, both multiplied with the branching fraction for the $\phi\rightarrow\tau\tau$ decay process. Numerical values provided in this table correspond to Figure 63 of the auxilliary material of the publication, but evaluated on Asimov pseudodata.
Scan of the likelihood function for the search for a resonance ($\phi$) with a mass of $3500\text{ GeV}$, produced via gluon-fusion ($gg\phi$) or in association with b quarks ($bb\phi$). The scan is performed in the $gg\phi$ and $bb\phi$ production cross-sections, both multiplied with the branching fraction for the $\phi\rightarrow\tau\tau$ decay process. Numerical values provided in this table correspond to Figure 11i of the publication, but evaluated on Asimov pseudodata.
Scan of the likelihood function for the search for a vector leptoquark with $m_{U} = 1\text{ TeV}$, in the VLQ BM 1 scenario. The scan is performed in the $g_{U}$ coupling, for three different categorization strategies, combining only "No b tag" categories, only "b tag" categories, and all categories. Numerical values provided in this table correspond to Figure 99 of the auxilliary material of the publication.
Scan of the likelihood function for the search for a vector leptoquark with $m_{U} = 2\text{ TeV}$, in the VLQ BM 1 scenario. The scan is performed in the $g_{U}$ coupling, for three different categorization strategies, combining only "No b tag" categories, only "b tag" categories, and all categories. Numerical values provided in this table correspond to Figure 100 of the auxilliary material of the publication.
Scan of the likelihood function for the search for a vector leptoquark with $m_{U} = 3\text{ TeV}$, in the VLQ BM 1 scenario. The scan is performed in the $g_{U}$ coupling, for three different categorization strategies, combining only "No b tag" categories, only "b tag" categories, and all categories. Numerical values provided in this table correspond to Figure 101 of the auxilliary material of the publication.
Scan of the likelihood function for the search for a vector leptoquark with $m_{U} = 4\text{ TeV}$, in the VLQ BM 1 scenario. The scan is performed in the $g_{U}$ coupling, for three different categorization strategies, combining only "No b tag" categories, only "b tag" categories, and all categories. Numerical values provided in this table correspond to Figure 102 of the auxilliary material of the publication.
Scan of the likelihood function for the search for a vector leptoquark with $m_{U} = 5\text{ TeV}$, in the VLQ BM 1 scenario. The scan is performed in the $g_{U}$ coupling, for three different categorization strategies, combining only "No b tag" categories, only "b tag" categories, and all categories. Numerical values provided in this table correspond to Figure 103 of the auxilliary material of the publication.
Scan of the likelihood function for the search for a vector leptoquark with $m_{U} = 1\text{ TeV}$, in the VLQ BM 2 scenario. The scan is performed in the $g_{U}$ coupling, for three different categorization strategies, combining only "No b tag" categories, only "b tag" categories, and all categories. Numerical values provided in this table correspond to Figure 104 of the auxilliary material of the publication.
Scan of the likelihood function for the search for a vector leptoquark with $m_{U} = 2\text{ TeV}$, in the VLQ BM 2 scenario. The scan is performed in the $g_{U}$ coupling, for three different categorization strategies, combining only "No b tag" categories, only "b tag" categories, and all categories. Numerical values provided in this table correspond to Figure 105 of the auxilliary material of the publication.
Scan of the likelihood function for the search for a vector leptoquark with $m_{U} = 3\text{ TeV}$, in the VLQ BM 2 scenario. The scan is performed in the $g_{U}$ coupling, for three different categorization strategies, combining only "No b tag" categories, only "b tag" categories, and all categories. Numerical values provided in this table correspond to Figure 106 of the auxilliary material of the publication.
Scan of the likelihood function for the search for a vector leptoquark with $m_{U} = 4\text{ TeV}$, in the VLQ BM 2 scenario. The scan is performed in the $g_{U}$ coupling, for three different categorization strategies, combining only "No b tag" categories, only "b tag" categories, and all categories. Numerical values provided in this table correspond to Figure 107 of the auxilliary material of the publication.
Scan of the likelihood function for the search for a vector leptoquark with $m_{U} = 5\text{ TeV}$, in the VLQ BM 2 scenario. The scan is performed in the $g_{U}$ coupling, for three different categorization strategies, combining only "No b tag" categories, only "b tag" categories, and all categories. Numerical values provided in this table correspond to Figure 108 of the auxilliary material of the publication.
Scan of the likelihood function for the search for a vector leptoquark with $m_{U} = 1\text{ TeV}$, in the VLQ BM 3 scenario. The scan is performed in the $g_{U}$ coupling, for three different categorization strategies, combining only "No b tag" categories, only "b tag" categories, and all categories. Numerical values provided in this table correspond to Figure 109 of the auxilliary material of the publication.
Scan of the likelihood function for the search for a vector leptoquark with $m_{U} = 2\text{ TeV}$, in the VLQ BM 3 scenario. The scan is performed in the $g_{U}$ coupling, for three different categorization strategies, combining only "No b tag" categories, only "b tag" categories, and all categories. Numerical values provided in this table correspond to Figure 110 of the auxilliary material of the publication.
Scan of the likelihood function for the search for a vector leptoquark with $m_{U} = 3\text{ TeV}$, in the VLQ BM 3 scenario. The scan is performed in the $g_{U}$ coupling, for three different categorization strategies, combining only "No b tag" categories, only "b tag" categories, and all categories. Numerical values provided in this table correspond to Figure 111 of the auxilliary material of the publication.
Scan of the likelihood function for the search for a vector leptoquark with $m_{U} = 4\text{ TeV}$, in the VLQ BM 3 scenario. The scan is performed in the $g_{U}$ coupling, for three different categorization strategies, combining only "No b tag" categories, only "b tag" categories, and all categories. Numerical values provided in this table correspond to Figure 112 of the auxilliary material of the publication.
Scan of the likelihood function for the search for a vector leptoquark with $m_{U} = 5\text{ TeV}$, in the VLQ BM 3 scenario. The scan is performed in the $g_{U}$ coupling, for three different categorization strategies, combining only "No b tag" categories, only "b tag" categories, and all categories. Numerical values provided in this table correspond to Figure 113 of the auxilliary material of the publication.
Observed $95\%\text{ CL}$ exclusion contour in the MSSM $M_{h}^{125}$ scenario. Numerical values provided in this table correspond to the observed contour of Figure 13a of the publication.
Expected $95\%\text{ CL}$ exclusion contour in the MSSM $M_{h}^{125}$ scenario, evaluated at the median of the test-statistic distribution $f(\tilde{q}_\mu|\text{SM})$ under SM hypothesis. Numerical values provided in this table correspond to the expected median contour of Figure 13a of the publication.
Expected $95\%\text{ CL}$ exclusion contour in the MSSM $M_{h}^{125}$ scenario, evaluated at the $16\%$ quantile of the test-statistic distribution $f(\tilde{q}_\mu|\text{SM})$ under SM hypothesis. This contour is part of the $68\%$ confidence interval band. Numerical values provided in this table correspond to the expected $16\%$ quantile contour of Figure 13a of the publication.
Expected $95\%\text{ CL}$ exclusion contour in the MSSM $M_{h}^{125}$ scenario, evaluated at the $84\%$ quantile of the test-statistic distribution $f(\tilde{q}_\mu|\text{SM})$ under SM hypothesis. This contour is part of the $68\%$ confidence interval band. Numerical values provided in this table correspond to the expected $84\%$ quantile contour of Figure 13a of the publication.
Expected $95\%\text{ CL}$ exclusion contour in the MSSM $M_{h}^{125}$ scenario, evaluated at the $2.5\%$ quantile of the test-statistic distribution $f(\tilde{q}_\mu|\text{SM})$ under SM hypothesis. This contour is part of the $95\%$ confidence interval band. Numerical values provided in this table correspond to the expected $2.5\%$ quantile contour of Figure 13a of the publication.
Expected $95\%\text{ CL}$ exclusion contour in the MSSM $M_{h}^{125}$ scenario, evaluated at the $97.5\%$ quantile of the test-statistic distribution $f(\tilde{q}_\mu|\text{SM})$ under SM hypothesis. This contour is part of the $95\%$ confidence interval band. Numerical values provided in this table correspond to the expected $97.5\%$ quantile contour of Figure 13a of the publication.
Observed $95\%\text{ CL}$ exclusion contour in the MSSM $M_{h,\,\text{EFT}}^{125}$ scenario. Numerical values provided in this table correspond to the observed contour of Figure 13b of the publication.
Expected $95\%\text{ CL}$ exclusion contour in the MSSM $M_{h,\,\text{EFT}}^{125}$ scenario, evaluated at the median of the test-statistic distribution $f(\tilde{q}_\mu|\text{SM})$ under SM hypothesis. Numerical values provided in this table correspond to the expected median contour of Figure 13b of the publication.
Expected $95\%\text{ CL}$ exclusion contour in the MSSM $M_{h,\,\text{EFT}}^{125}$ scenario, evaluated at the $16\%$ quantile of the test-statistic distribution $f(\tilde{q}_\mu|\text{SM})$ under SM hypothesis. This contour is part of the $68\%$ confidence interval band. Numerical values provided in this table correspond to the expected $16\%$ quantile contour of Figure 13b of the publication.
Expected $95\%\text{ CL}$ exclusion contour in the MSSM $M_{h,\,\text{EFT}}^{125}$ scenario, evaluated at the $84\%$ quantile of the test-statistic distribution $f(\tilde{q}_\mu|\text{SM})$ under SM hypothesis. This contour is part of the $68\%$ confidence interval band. Numerical values provided in this table correspond to the expected $84\%$ quantile contour of Figure 13b of the publication.
Expected $95\%\text{ CL}$ exclusion contour in the MSSM $M_{h,\,\text{EFT}}^{125}$ scenario, evaluated at the $2.5\%$ quantile of the test-statistic distribution $f(\tilde{q}_\mu|\text{SM})$ under SM hypothesis. This contour is part of the $95\%$ confidence interval band. Numerical values provided in this table correspond to the expected $2.5\%$ quantile contour of Figure 13b of the publication.
Expected $95\%\text{ CL}$ exclusion contour in the MSSM $M_{h,\,\text{EFT}}^{125}$ scenario, evaluated at the $97.5\%$ quantile of the test-statistic distribution $f(\tilde{q}_\mu|\text{SM})$ under SM hypothesis. This contour is part of the $95\%$ confidence interval band. Numerical values provided in this table correspond to the expected $97.5\%$ quantile contour of Figure 13b of the publication.
Observed $95\%\text{ CL}$ exclusion contour in the MSSM $M_{h}^{125}(\tilde{\tau})$ scenario. Numerical values provided in this table correspond to the observed contour of Figure 114 of the auxilliary material of the publication.
Expected $95\%\text{ CL}$ exclusion contour in the MSSM $M_{h}^{125}(\tilde{\tau})$ scenario, evaluated at the median of the test-statistic distribution $f(\tilde{q}_\mu|\text{SM})$ under SM hypothesis. Numerical values provided in this table correspond to the expected median contour of Figure 114 of the auxilliary material of the publication.
Expected $95\%\text{ CL}$ exclusion contour in the MSSM $M_{h}^{125}(\tilde{\tau})$ scenario, evaluated at the $16\%$ quantile of the test-statistic distribution $f(\tilde{q}_\mu|\text{SM})$ under SM hypothesis. This contour is part of the $68\%$ confidence interval band. Numerical values provided in this table correspond to the expected $16\%$ contour of Figure 114 of the auxilliary material of the publication.
Expected $95\%\text{ CL}$ exclusion contour in the MSSM $M_{h}^{125}(\tilde{\tau})$ scenario, evaluated at the $84\%$ quantile of the test-statistic distribution $f(\tilde{q}_\mu|\text{SM})$ under SM hypothesis. This contour is part of the $68\%$ confidence interval band. Numerical values provided in this table correspond to the expected $84\%$ contour of Figure 114 of the auxilliary material of the publication.
Expected $95\%\text{ CL}$ exclusion contour in the MSSM $M_{h}^{125}(\tilde{\tau})$ scenario, evaluated at the $2.5\%$ quantile of the test-statistic distribution $f(\tilde{q}_\mu|\text{SM})$ under SM hypothesis. This contour is part of the $95\%$ confidence interval band. Numerical values provided in this table correspond to the expected $2.5\%$ contour of Figure 114 of the auxilliary material of the publication.
Expected $95\%\text{ CL}$ exclusion contour in the MSSM $M_{h}^{125}(\tilde{\tau})$ scenario, evaluated at the $97.5\%$ quantile of the test-statistic distribution $f(\tilde{q}_\mu|\text{SM})$ under SM hypothesis. This contour is part of the $95\%$ confidence interval band. Numerical values provided in this table correspond to the expected $97.5\%$ contour of Figure 114 of the auxilliary material of the publication.
Observed $95\%\text{ CL}$ exclusion contour in the MSSM $M_{h}^{125}(\tilde{\chi})$ scenario. Numerical values provided in this table correspond to the observed contour of Figure 115 of the auxilliary material of the publication.
Expected $95\%\text{ CL}$ exclusion contour in the MSSM $M_{h}^{125}(\tilde{\chi})$ scenario, evaluated at the median of the test-statistic distribution $f(\tilde{q}_\mu|\text{SM})$ under SM hypothesis. Numerical values provided in this table correspond to the expected median contour of Figure 115 of the auxilliary material of the publication.
Expected $95\%\text{ CL}$ exclusion contour in the MSSM $M_{h}^{125}(\tilde{\chi})$ scenario, evaluated at the $16\%$ quantile of the test-statistic distribution $f(\tilde{q}_\mu|\text{SM})$ under SM hypothesis. This contour is part of the $68\%$ confidence interval band. Numerical values provided in this table correspond to the expected $16\%$ contour of Figure 115 of the auxilliary material of the publication.
Expected $95\%\text{ CL}$ exclusion contour in the MSSM $M_{h}^{125}(\tilde{\chi})$ scenario, evaluated at the $84\%$ quantile of the test-statistic distribution $f(\tilde{q}_\mu|\text{SM})$ under SM hypothesis. This contour is part of the $68\%$ confidence interval band. Numerical values provided in this table correspond to the expected $84\%$ contour of Figure 115 of the auxilliary material of the publication.
Expected $95\%\text{ CL}$ exclusion contour in the MSSM $M_{h}^{125}(\tilde{\chi})$ scenario, evaluated at the $2.5\%$ quantile of the test-statistic distribution $f(\tilde{q}_\mu|\text{SM})$ under SM hypothesis. This contour is part of the $95\%$ confidence interval band. Numerical values provided in this table correspond to the expected $2.5\%$ contour of Figure 115 of the auxilliary material of the publication.
Expected $95\%\text{ CL}$ exclusion contour in the MSSM $M_{h}^{125}(\tilde{\chi})$ scenario, evaluated at the $97.5\%$ quantile of the test-statistic distribution $f(\tilde{q}_\mu|\text{SM})$ under SM hypothesis. This contour is part of the $95\%$ confidence interval band. Numerical values provided in this table correspond to the expected $97.5\%$ contour of Figure 115 of the auxilliary material of the publication.
Observed $95\%\text{ CL}$ exclusion contour in the MSSM $M_h^{125\,\mu_{1}-}$ scenario. Numerical values provided in this table correspond to the observed contour of Figure 116 of the auxilliary material of the publication.
Expected $95\%\text{ CL}$ exclusion contour in the MSSM $M_h^{125\,\mu_{1}-}$ scenario, evaluated at the median of the test-statistic distribution $f(\tilde{q}_\mu|\text{SM})$ under SM hypothesis. Numerical values provided in this table correspond to the expected median contour of Figure 116 of the auxilliary material of the publication.
Expected $95\%\text{ CL}$ exclusion contour in the MSSM $M_h^{125\,\mu_{1}-}$ scenario, evaluated at the $16\%$ quantile of the test-statistic distribution $f(\tilde{q}_\mu|\text{SM})$ under SM hypothesis. This contour is part of the $68\%$ confidence interval band. Numerical values provided in this table correspond to the expected $16\%$ contour of Figure 116 of the auxilliary material of the publication.
Expected $95\%\text{ CL}$ exclusion contour in the MSSM $M_h^{125\,\mu_{1}-}$ scenario, evaluated at the $84\%$ quantile of the test-statistic distribution $f(\tilde{q}_\mu|\text{SM})$ under SM hypothesis. This contour is part of the $68\%$ confidence interval band. Numerical values provided in this table correspond to the expected $84\%$ contour of Figure 116 of the auxilliary material of the publication.
Expected $95\%\text{ CL}$ exclusion contour in the MSSM $M_h^{125\,\mu_{1}-}$ scenario, evaluated at the $2.5\%$ quantile of the test-statistic distribution $f(\tilde{q}_\mu|\text{SM})$ under SM hypothesis. This contour is part of the $95\%$ confidence interval band. Numerical values provided in this table correspond to the expected $2.5\%$ contour of Figure 116 of the auxilliary material of the publication.
Expected $95\%\text{ CL}$ exclusion contour in the MSSM $M_h^{125\,\mu_{1}-}$ scenario, evaluated at the $97.5\%$ quantile of the test-statistic distribution $f(\tilde{q}_\mu|\text{SM})$ under SM hypothesis. This contour is part of the $95\%$ confidence interval band. Numerical values provided in this table correspond to the expected $97.5\%$ contour of Figure 116 of the auxilliary material of the publication.
Observed $95\%\text{ CL}$ exclusion contour in the MSSM $M_h^{125\,\mu_{2}-}$ scenario. Numerical values provided in this table correspond to the observed contour of Figure 117 of the auxilliary material of the publication.
Expected $95\%\text{ CL}$ exclusion contour in the MSSM $M_h^{125\,\mu_{2}-}$ scenario, evaluated at the median of the test-statistic distribution $f(\tilde{q}_\mu|\text{SM})$ under SM hypothesis. Numerical values provided in this table correspond to the expected median contour of Figure 117 of the auxilliary material of the publication.
Expected $95\%\text{ CL}$ exclusion contour in the MSSM $M_h^{125\,\mu_{2}-}$ scenario, evaluated at the $16\%$ quantile of the test-statistic distribution $f(\tilde{q}_\mu|\text{SM})$ under SM hypothesis. This contour is part of the $68\%$ confidence interval band. Numerical values provided in this table correspond to the expected $16\%$ contour of Figure 117 of the auxilliary material of the publication.
Expected $95\%\text{ CL}$ exclusion contour in the MSSM $M_h^{125\,\mu_{2}-}$ scenario, evaluated at the $84\%$ quantile of the test-statistic distribution $f(\tilde{q}_\mu|\text{SM})$ under SM hypothesis. This contour is part of the $68\%$ confidence interval band. Numerical values provided in this table correspond to the expected $84\%$ contour of Figure 117 of the auxilliary material of the publication.
Expected $95\%\text{ CL}$ exclusion contour in the MSSM $M_h^{125\,\mu_{2}-}$ scenario, evaluated at the $2.5\%$ quantile of the test-statistic distribution $f(\tilde{q}_\mu|\text{SM})$ under SM hypothesis. This contour is part of the $95\%$ confidence interval band. Numerical values provided in this table correspond to the expected $2.5\%$ contour of Figure 117 of the auxilliary material of the publication.
Expected $95\%\text{ CL}$ exclusion contour in the MSSM $M_h^{125\,\mu_{2}-}$ scenario, evaluated at the $97.5\%$ quantile of the test-statistic distribution $f(\tilde{q}_\mu|\text{SM})$ under SM hypothesis. This contour is part of the $95\%$ confidence interval band. Numerical values provided in this table correspond to the expected $97.5\%$ contour of Figure 117 of the auxilliary material of the publication.
Observed $95\%\text{ CL}$ exclusion contour in the MSSM $M_h^{125\,\mu_{3}-}$ scenario. Numerical values provided in this table correspond to the observed contour of Figure 118 of the auxilliary material of the publication.
Expected $95\%\text{ CL}$ exclusion contour in the MSSM $M_h^{125\,\mu_{3}-}$ scenario, evaluated at the median of the test-statistic distribution $f(\tilde{q}_\mu|\text{SM})$ under SM hypothesis. Numerical values provided in this table correspond to the expected median contour of Figure 118 of the auxilliary material of the publication.
Expected $95\%\text{ CL}$ exclusion contour in the MSSM $M_h^{125\,\mu_{3}-}$ scenario, evaluated at the $16\%$ quantile of the test-statistic distribution $f(\tilde{q}_\mu|\text{SM})$ under SM hypothesis. This contour is part of the $68\%$ confidence interval band. Numerical values provided in this table correspond to the expected $16\%$ contour of Figure 118 of the auxilliary material of the publication.
Expected $95\%\text{ CL}$ exclusion contour in the MSSM $M_h^{125\,\mu_{3}-}$ scenario, evaluated at the $84\%$ quantile of the test-statistic distribution $f(\tilde{q}_\mu|\text{SM})$ under SM hypothesis. This contour is part of the $68\%$ confidence interval band. Numerical values provided in this table correspond to the expected $84\%$ contour of Figure 118 of the auxilliary material of the publication.
Expected $95\%\text{ CL}$ exclusion contour in the MSSM $M_h^{125\,\mu_{3}-}$ scenario, evaluated at the $2.5\%$ quantile of the test-statistic distribution $f(\tilde{q}_\mu|\text{SM})$ under SM hypothesis. This contour is part of the $95\%$ confidence interval band. Numerical values provided in this table correspond to the expected $2.5\%$ contour of Figure 118 of the auxilliary material of the publication.
Expected $95\%\text{ CL}$ exclusion contour in the MSSM $M_h^{125\,\mu_{3}-}$ scenario, evaluated at the $97.5\%$ quantile of the test-statistic distribution $f(\tilde{q}_\mu|\text{SM})$ under SM hypothesis. This contour is part of the $95\%$ confidence interval band. Numerical values provided in this table correspond to the expected $97.5\%$ contour of Figure 118 of the auxilliary material of the publication.
Observed $95\%\text{ CL}$ exclusion contour in the MSSM $M_{h_{1}}^{125}(CPV)$ scenario. Numerical values provided in this table correspond to the observed contour of Figure 119 of the auxilliary material of the publication.
Expected $95\%\text{ CL}$ exclusion contour in the MSSM $M_{h_{1}}^{125}(CPV)$ scenario, evaluated at the median of the test-statistic distribution $f(\tilde{q}_\mu|\text{SM})$ under SM hypothesis. Numerical values provided in this table correspond to the expected median contour of Figure 119 of the auxilliary material of the publication.
Expected $95\%\text{ CL}$ exclusion contour in the MSSM $M_{h_{1}}^{125}(CPV)$ scenario, evaluated at the $16\%$ quantile of the test-statistic distribution $f(\tilde{q}_\mu|\text{SM})$ under SM hypothesis. This contour is part of the $68\%$ confidence interval band. Numerical values provided in this table correspond to the expected $16\%$ contour of Figure 119 of the auxilliary material of the publication.
Expected $95\%\text{ CL}$ exclusion contour in the MSSM $M_{h_{1}}^{125}(CPV)$ scenario, evaluated at the $84\%$ quantile of the test-statistic distribution $f(\tilde{q}_\mu|\text{SM})$ under SM hypothesis. This contour is part of the $68\%$ confidence interval band. Numerical values provided in this table correspond to the expected $84\%$ contour of Figure 119 of the auxilliary material of the publication.
Expected $95\%\text{ CL}$ exclusion contour in the MSSM $M_{h_{1}}^{125}(CPV)$ scenario, evaluated at the $2.5\%$ quantile of the test-statistic distribution $f(\tilde{q}_\mu|\text{SM})$ under SM hypothesis. This contour is part of the $95\%$ confidence interval band. Numerical values provided in this table correspond to the expected $2.5\%$ contour of Figure 119 of the auxilliary material of the publication.
Expected $95\%\text{ CL}$ exclusion contour in the MSSM $M_{h_{1}}^{125}(CPV)$ scenario, evaluated at the $97.5\%$ quantile of the test-statistic distribution $f(\tilde{q}_\mu|\text{SM})$ under SM hypothesis. This contour is part of the $95\%$ confidence interval band. Numerical values provided in this table correspond to the expected $97.5\%$ contour of Figure 119 of the auxilliary material of the publication.
Observed $95\%\text{ CL}$ exclusion contour in the MSSM hMSSM scenario. Numerical values provided in this table correspond to the observed contour of Figure 120 of the auxilliary material of the publication.
Expected $95\%\text{ CL}$ exclusion contour in the MSSM hMSSM scenario, evaluated at the median of the test-statistic distribution $f(\tilde{q}_\mu|\text{SM})$ under SM hypothesis. Numerical values provided in this table correspond to the expected median contour of Figure 120 of the auxilliary material of the publication.
Expected $95\%\text{ CL}$ exclusion contour in the MSSM hMSSM scenario, evaluated at the $16\%$ quantile of the test-statistic distribution $f(\tilde{q}_\mu|\text{SM})$ under SM hypothesis. This contour is part of the $68\%$ confidence interval band. Numerical values provided in this table correspond to the expected $16\%$ contour of Figure 120 of the auxilliary material of the publication.
Expected $95\%\text{ CL}$ exclusion contour in the MSSM hMSSM scenario, evaluated at the $84\%$ quantile of the test-statistic distribution $f(\tilde{q}_\mu|\text{SM})$ under SM hypothesis. This contour is part of the $68\%$ confidence interval band. Numerical values provided in this table correspond to the expected $84\%$ contour of Figure 120 of the auxilliary material of the publication.
Expected $95\%\text{ CL}$ exclusion contour in the MSSM hMSSM scenario, evaluated at the $2.5\%$ quantile of the test-statistic distribution $f(\tilde{q}_\mu|\text{SM})$ under SM hypothesis. This contour is part of the $95\%$ confidence interval band. Numerical values provided in this table correspond to the expected $2.5\%$ contour of Figure 120 of the auxilliary material of the publication.
Expected $95\%\text{ CL}$ exclusion contour in the MSSM hMSSM scenario, evaluated at the $97.5\%$ quantile of the test-statistic distribution $f(\tilde{q}_\mu|\text{SM})$ under SM hypothesis. This contour is part of the $95\%$ confidence interval band. Numerical values provided in this table correspond to the expected $97.5\%$ contour of Figure 120 of the auxilliary material of the publication.
Observed $95\%\text{ CL}$ exclusion contour in the MSSM $M_{h,\,\text{EFT}}^{125}(\tilde{\chi})$ scenario. Numerical values provided in this table correspond to the observed contour of Figure 122 of the auxilliary material of the publication.
Expected $95\%\text{ CL}$ exclusion contour in the MSSM $M_{h,\,\text{EFT}}^{125}(\tilde{\chi})$ scenario, evaluated at the median of the test-statistic distribution $f(\tilde{q}_\mu|\text{SM})$ under SM hypothesis. Numerical values provided in this table correspond to the expected median contour of Figure 122 of the auxilliary material of the publication.
Expected $95\%\text{ CL}$ exclusion contour in the MSSM $M_{h,\,\text{EFT}}^{125}(\tilde{\chi})$ scenario, evaluated at the $16\%$ quantile of the test-statistic distribution $f(\tilde{q}_\mu|\text{SM})$ under SM hypothesis. This contour is part of the $68\%$ confidence interval band. Numerical values provided in this table correspond to the expected $16\%$ contour of Figure 122 of the auxilliary material of the publication.
Expected $95\%\text{ CL}$ exclusion contour in the MSSM $M_{h,\,\text{EFT}}^{125}(\tilde{\chi})$ scenario, evaluated at the $84\%$ quantile of the test-statistic distribution $f(\tilde{q}_\mu|\text{SM})$ under SM hypothesis. This contour is part of the $68\%$ confidence interval band. Numerical values provided in this table correspond to the expected $84\%$ contour of Figure 122 of the auxilliary material of the publication.
Expected $95\%\text{ CL}$ exclusion contour in the MSSM $M_{h,\,\text{EFT}}^{125}(\tilde{\chi})$ scenario, evaluated at the $2.5\%$ quantile of the test-statistic distribution $f(\tilde{q}_\mu|\text{SM})$ under SM hypothesis. This contour is part of the $95\%$ confidence interval band. Numerical values provided in this table correspond to the expected $2.5\%$ contour of Figure 122 of the auxilliary material of the publication.
Expected $95\%\text{ CL}$ exclusion contour in the MSSM $M_{h,\,\text{EFT}}^{125}(\tilde{\chi})$ scenario, evaluated at the $97.5\%$ quantile of the test-statistic distribution $f(\tilde{q}_\mu|\text{SM})$ under SM hypothesis. This contour is part of the $95\%$ confidence interval band. Numerical values provided in this table correspond to the expected $97.5\%$ contour of Figure 122 of the auxilliary material of the publication.
Observed $95\%\text{ CL}$ exclusion contour in the MSSM $M_{h}^{125}(\text{alignment})$ scenario. Numerical values provided in this table correspond to the observed contour of Figure 123 of the auxilliary material of the publication.
Expected $95\%\text{ CL}$ exclusion contour in the MSSM $M_{h}^{125}(\text{alignment})$ scenario, evaluated at the median of the test-statistic distribution $f(\tilde{q}_\mu|\text{SM})$ under SM hypothesis. Numerical values provided in this table correspond to the expected median contour of Figure 123 of the auxilliary material of the publication.
Expected $95\%\text{ CL}$ exclusion contour in the MSSM $M_{h}^{125}(\text{alignment})$ scenario, evaluated at the $16\%$ quantile of the test-statistic distribution $f(\tilde{q}_\mu|\text{SM})$ under SM hypothesis. This contour is part of the $68\%$ confidence interval band. Numerical values provided in this table correspond to the expected $16\%$ contour of Figure 123 of the auxilliary material of the publication.
Expected $95\%\text{ CL}$ exclusion contour in the MSSM $M_{h}^{125}(\text{alignment})$ scenario, evaluated at the $84\%$ quantile of the test-statistic distribution $f(\tilde{q}_\mu|\text{SM})$ under SM hypothesis. This contour is part of the $68\%$ confidence interval band. Numerical values provided in this table correspond to the expected $84\%$ contour of Figure 123 of the auxilliary material of the publication.
Expected $95\%\text{ CL}$ exclusion contour in the MSSM $M_{h}^{125}(\text{alignment})$ scenario, evaluated at the $2.5\%$ quantile of the test-statistic distribution $f(\tilde{q}_\mu|\text{SM})$ under SM hypothesis. This contour is part of the $95\%$ confidence interval band. Numerical values provided in this table correspond to the expected $2.5\%$ contour of Figure 123 of the auxilliary material of the publication.
Expected $95\%\text{ CL}$ exclusion contour in the MSSM $M_{h}^{125}(\text{alignment})$ scenario, evaluated at the $97.5\%$ quantile of the test-statistic distribution $f(\tilde{q}_\mu|\text{SM})$ under SM hypothesis. This contour is part of the $95\%$ confidence interval band. Numerical values provided in this table correspond to the expected $97.5\%$ contour of Figure 123 of the auxilliary material of the publication.
Fractions of the cross-section $\sigma(gg\phi)$ as expected from SM for the loop contributions with only top quarks, only bottom quarks and from the top-bottom interference. These values are used to scale the corresponding signal components for a given mass $m_\phi$.
Observed and expected distributions of the variable chosen for statistical inference in the $t\bar{t}$ control region $m_{T}^{tot}$ for high-mass analysis. Numerical values provided in this table correspond to the $t\bar{t}$ control region of the publication, restricted to 2016 data-taking year. All distributions are considered after a fit to data is performed using a background-only model, which includes the $\text{H}(125)$ boson. Some details on how the distributions should be used: 1) All given uncertainties correspond to systematic variations of $\pm1\sigma$. 2) Upper values ('plus' in the yaml file) correspond to an upward systematic variation of the parameter ($+1\sigma$). 3) Lower values ('minus' in the yaml file) correspond to a downward systematic variation of the parameter ($-1\sigma$). 4) These variations can have both positive and negative values, depending on the modelled effect. 5) Uncertainties with the same name should be treated as correlated, consistently across the upper and lower variations. 6) Systematic uncertainties with 'prop_' in the name treat limited background statistics per histogram bin, and are deployed with 'Barlow-Beeston-lite' approach. Details in https://arxiv.org/abs/1103.0354 section 5 7) Remaining systematic uncertainties alter the normalization, the shape, or both for a distribution. The nuisance parameter for such an uncertainty is mapped separately on the normalization and the shape variation components of the uncertainty. For normalization, $\ln$ mapping is used, for shape a spline. Details in https://cms-analysis.github.io/HiggsAnalysis-CombinedLimit/part2/settinguptheanalysis/#binned-shape-analysis 8) All nuisance parameters for the systematic uncertainties are modelled with a Gaussian pdf. 9) Gluon fusion contributions are all scaled to 1 pb. Please combine them using either the scale factors from 'Table SM Gluon Fusion Fractions', or using your own composition.
Observed and expected distributions of the variable chosen for statistical inference in the $t\bar{t}$ control region $m_{T}^{tot}$ for high-mass analysis. Numerical values provided in this table correspond to the $t\bar{t}$ control region of the publication, restricted to 2017 data-taking year. All distributions are considered after a fit to data is performed using a background-only model, which includes the $\text{H}(125)$ boson. Some details on how the distributions should be used: 1) All given uncertainties correspond to systematic variations of $\pm1\sigma$. 2) Upper values ('plus' in the yaml file) correspond to an upward systematic variation of the parameter ($+1\sigma$). 3) Lower values ('minus' in the yaml file) correspond to a downward systematic variation of the parameter ($-1\sigma$). 4) These variations can have both positive and negative values, depending on the modelled effect. 5) Uncertainties with the same name should be treated as correlated, consistently across the upper and lower variations. 6) Systematic uncertainties with 'prop_' in the name treat limited background statistics per histogram bin, and are deployed with 'Barlow-Beeston-lite' approach. Details in https://arxiv.org/abs/1103.0354 section 5 7) Remaining systematic uncertainties alter the normalization, the shape, or both for a distribution. The nuisance parameter for such an uncertainty is mapped separately on the normalization and the shape variation components of the uncertainty. For normalization, $\ln$ mapping is used, for shape a spline. Details in https://cms-analysis.github.io/HiggsAnalysis-CombinedLimit/part2/settinguptheanalysis/#binned-shape-analysis 8) All nuisance parameters for the systematic uncertainties are modelled with a Gaussian pdf. 9) Gluon fusion contributions are all scaled to 1 pb. Please combine them using either the scale factors from 'Table SM Gluon Fusion Fractions', or using your own composition.
Observed and expected distributions of the variable chosen for statistical inference in the $t\bar{t}$ control region $m_{T}^{tot}$ for high-mass analysis. Numerical values provided in this table correspond to the $t\bar{t}$ control region of the publication, restricted to 2018 data-taking year. All distributions are considered after a fit to data is performed using a background-only model, which includes the $\text{H}(125)$ boson. Some details on how the distributions should be used: 1) All given uncertainties correspond to systematic variations of $\pm1\sigma$. 2) Upper values ('plus' in the yaml file) correspond to an upward systematic variation of the parameter ($+1\sigma$). 3) Lower values ('minus' in the yaml file) correspond to a downward systematic variation of the parameter ($-1\sigma$). 4) These variations can have both positive and negative values, depending on the modelled effect. 5) Uncertainties with the same name should be treated as correlated, consistently across the upper and lower variations. 6) Systematic uncertainties with 'prop_' in the name treat limited background statistics per histogram bin, and are deployed with 'Barlow-Beeston-lite' approach. Details in https://arxiv.org/abs/1103.0354 section 5 7) Remaining systematic uncertainties alter the normalization, the shape, or both for a distribution. The nuisance parameter for such an uncertainty is mapped separately on the normalization and the shape variation components of the uncertainty. For normalization, $\ln$ mapping is used, for shape a spline. Details in https://cms-analysis.github.io/HiggsAnalysis-CombinedLimit/part2/settinguptheanalysis/#binned-shape-analysis 8) All nuisance parameters for the systematic uncertainties are modelled with a Gaussian pdf. 9) Gluon fusion contributions are all scaled to 1 pb. Please combine them using either the scale factors from 'Table SM Gluon Fusion Fractions', or using your own composition.
Observed and expected distributions of the variable chosen for statistical inference in the high-mass analysis $m_{T}^{tot}$. Numerical values provided in this table correspond to Figure 25 of the auxilliary material of the publication, but restricted to 2016 data-taking year. All distributions are considered after a fit to data is performed using a background-only model, which includes the $\text{H}(125)$ boson. Some details on how the distributions should be used: 1) All given uncertainties correspond to systematic variations of $\pm1\sigma$. 2) Upper values ('plus' in the yaml file) correspond to an upward systematic variation of the parameter ($+1\sigma$). 3) Lower values ('minus' in the yaml file) correspond to a downward systematic variation of the parameter ($-1\sigma$). 4) These variations can have both positive and negative values, depending on the modelled effect. 5) Uncertainties with the same name should be treated as correlated, consistently across the upper and lower variations. 6) Systematic uncertainties with 'prop_' in the name treat limited background statistics per histogram bin, and are deployed with 'Barlow-Beeston-lite' approach. Details in https://arxiv.org/abs/1103.0354 section 5 7) Remaining systematic uncertainties alter the normalization, the shape, or both for a distribution. The nuisance parameter for such an uncertainty is mapped separately on the normalization and the shape variation components of the uncertainty. For normalization, $\ln$ mapping is used, for shape a spline. Details in https://cms-analysis.github.io/HiggsAnalysis-CombinedLimit/part2/settinguptheanalysis/#binned-shape-analysis 8) All nuisance parameters for the systematic uncertainties are modelled with a Gaussian pdf. 9) Gluon fusion contributions are all scaled to 1 pb. Please combine them using either the scale factors from 'Table SM Gluon Fusion Fractions', or using your own composition.
Observed and expected distributions of the variable chosen for statistical inference in the high-mass analysis $m_{T}^{tot}$. Numerical values provided in this table correspond to Figure 25 of the auxilliary material of the publication, but restricted to and 2017 data-taking year. All distributions are considered after a fit to data is performed using a background-only model, which includes the $\text{H}(125)$ boson. Some details on how the distributions should be used: 1) All given uncertainties correspond to systematic variations of $\pm1\sigma$. 2) Upper values ('plus' in the yaml file) correspond to an upward systematic variation of the parameter ($+1\sigma$). 3) Lower values ('minus' in the yaml file) correspond to a downward systematic variation of the parameter ($-1\sigma$). 4) These variations can have both positive and negative values, depending on the modelled effect. 5) Uncertainties with the same name should be treated as correlated, consistently across the upper and lower variations. 6) Systematic uncertainties with 'prop_' in the name treat limited background statistics per histogram bin, and are deployed with 'Barlow-Beeston-lite' approach. Details in https://arxiv.org/abs/1103.0354 section 5 7) Remaining systematic uncertainties alter the normalization, the shape, or both for a distribution. The nuisance parameter for such an uncertainty is mapped separately on the normalization and the shape variation components of the uncertainty. For normalization, $\ln$ mapping is used, for shape a spline. Details in https://cms-analysis.github.io/HiggsAnalysis-CombinedLimit/part2/settinguptheanalysis/#binned-shape-analysis 8) All nuisance parameters for the systematic uncertainties are modelled with a Gaussian pdf. 9) Gluon fusion contributions are all scaled to 1 pb. Please combine them using either the scale factors from 'Table SM Gluon Fusion Fractions', or using your own composition.
Observed and expected distributions of the variable chosen for statistical inference in the high-mass analysis $m_{T}^{tot}$. Numerical values provided in this table correspond to Figure 25 of the auxilliary material of the publication, but restricted to and 2018 data-taking year. All distributions are considered after a fit to data is performed using a background-only model, which includes the $\text{H}(125)$ boson. Some details on how the distributions should be used: 1) All given uncertainties correspond to systematic variations of $\pm1\sigma$. 2) Upper values ('plus' in the yaml file) correspond to an upward systematic variation of the parameter ($+1\sigma$). 3) Lower values ('minus' in the yaml file) correspond to a downward systematic variation of the parameter ($-1\sigma$). 4) These variations can have both positive and negative values, depending on the modelled effect. 5) Uncertainties with the same name should be treated as correlated, consistently across the upper and lower variations. 6) Systematic uncertainties with 'prop_' in the name treat limited background statistics per histogram bin, and are deployed with 'Barlow-Beeston-lite' approach. Details in https://arxiv.org/abs/1103.0354 section 5 7) Remaining systematic uncertainties alter the normalization, the shape, or both for a distribution. The nuisance parameter for such an uncertainty is mapped separately on the normalization and the shape variation components of the uncertainty. For normalization, $\ln$ mapping is used, for shape a spline. Details in https://cms-analysis.github.io/HiggsAnalysis-CombinedLimit/part2/settinguptheanalysis/#binned-shape-analysis 8) All nuisance parameters for the systematic uncertainties are modelled with a Gaussian pdf. 9) Gluon fusion contributions are all scaled to 1 pb. Please combine them using either the scale factors from 'Table SM Gluon Fusion Fractions', or using your own composition.
Observed and expected distributions of the variable chosen for statistical inference in the high-mass analysis $m_{T}^{tot}$. Numerical values provided in this table correspond to Figure 8a of the publication, but restricted to 2016 data-taking year. All distributions are considered after a fit to data is performed using a background-only model, which includes the $\text{H}(125)$ boson. Some details on how the distributions should be used: 1) All given uncertainties correspond to systematic variations of $\pm1\sigma$. 2) Upper values ('plus' in the yaml file) correspond to an upward systematic variation of the parameter ($+1\sigma$). 3) Lower values ('minus' in the yaml file) correspond to a downward systematic variation of the parameter ($-1\sigma$). 4) These variations can have both positive and negative values, depending on the modelled effect. 5) Uncertainties with the same name should be treated as correlated, consistently across the upper and lower variations. 6) Systematic uncertainties with 'prop_' in the name treat limited background statistics per histogram bin, and are deployed with 'Barlow-Beeston-lite' approach. Details in https://arxiv.org/abs/1103.0354 section 5 7) Remaining systematic uncertainties alter the normalization, the shape, or both for a distribution. The nuisance parameter for such an uncertainty is mapped separately on the normalization and the shape variation components of the uncertainty. For normalization, $\ln$ mapping is used, for shape a spline. Details in https://cms-analysis.github.io/HiggsAnalysis-CombinedLimit/part2/settinguptheanalysis/#binned-shape-analysis 8) All nuisance parameters for the systematic uncertainties are modelled with a Gaussian pdf. 9) Gluon fusion contributions are all scaled to 1 pb. Please combine them using either the scale factors from 'Table SM Gluon Fusion Fractions', or using your own composition.
Observed and expected distributions of the variable chosen for statistical inference in the high-mass analysis $m_{T}^{tot}$. Numerical values provided in this table correspond to Figure 8a of the publication, but restricted to and 2017 data-taking year. All distributions are considered after a fit to data is performed using a background-only model, which includes the $\text{H}(125)$ boson. Some details on how the distributions should be used: 1) All given uncertainties correspond to systematic variations of $\pm1\sigma$. 2) Upper values ('plus' in the yaml file) correspond to an upward systematic variation of the parameter ($+1\sigma$). 3) Lower values ('minus' in the yaml file) correspond to a downward systematic variation of the parameter ($-1\sigma$). 4) These variations can have both positive and negative values, depending on the modelled effect. 5) Uncertainties with the same name should be treated as correlated, consistently across the upper and lower variations. 6) Systematic uncertainties with 'prop_' in the name treat limited background statistics per histogram bin, and are deployed with 'Barlow-Beeston-lite' approach. Details in https://arxiv.org/abs/1103.0354 section 5 7) Remaining systematic uncertainties alter the normalization, the shape, or both for a distribution. The nuisance parameter for such an uncertainty is mapped separately on the normalization and the shape variation components of the uncertainty. For normalization, $\ln$ mapping is used, for shape a spline. Details in https://cms-analysis.github.io/HiggsAnalysis-CombinedLimit/part2/settinguptheanalysis/#binned-shape-analysis 8) All nuisance parameters for the systematic uncertainties are modelled with a Gaussian pdf. 9) Gluon fusion contributions are all scaled to 1 pb. Please combine them using either the scale factors from 'Table SM Gluon Fusion Fractions', or using your own composition.
Observed and expected distributions of the variable chosen for statistical inference in the high-mass analysis $m_{T}^{tot}$. Numerical values provided in this table correspond to Figure 8a of the publication, but restricted to and 2018 data-taking year. All distributions are considered after a fit to data is performed using a background-only model, which includes the $\text{H}(125)$ boson. Some details on how the distributions should be used: 1) All given uncertainties correspond to systematic variations of $\pm1\sigma$. 2) Upper values ('plus' in the yaml file) correspond to an upward systematic variation of the parameter ($+1\sigma$). 3) Lower values ('minus' in the yaml file) correspond to a downward systematic variation of the parameter ($-1\sigma$). 4) These variations can have both positive and negative values, depending on the modelled effect. 5) Uncertainties with the same name should be treated as correlated, consistently across the upper and lower variations. 6) Systematic uncertainties with 'prop_' in the name treat limited background statistics per histogram bin, and are deployed with 'Barlow-Beeston-lite' approach. Details in https://arxiv.org/abs/1103.0354 section 5 7) Remaining systematic uncertainties alter the normalization, the shape, or both for a distribution. The nuisance parameter for such an uncertainty is mapped separately on the normalization and the shape variation components of the uncertainty. For normalization, $\ln$ mapping is used, for shape a spline. Details in https://cms-analysis.github.io/HiggsAnalysis-CombinedLimit/part2/settinguptheanalysis/#binned-shape-analysis 8) All nuisance parameters for the systematic uncertainties are modelled with a Gaussian pdf. 9) Gluon fusion contributions are all scaled to 1 pb. Please combine them using either the scale factors from 'Table SM Gluon Fusion Fractions', or using your own composition.
Observed and expected distributions of the variable chosen for statistical inference in the high-mass analysis $m_{T}^{tot}$. Numerical values provided in this table correspond to Figure 26 of the auxilliary material of the publication, but restricted to 2016 data-taking year. All distributions are considered after a fit to data is performed using a background-only model, which includes the $\text{H}(125)$ boson. Some details on how the distributions should be used: 1) All given uncertainties correspond to systematic variations of $\pm1\sigma$. 2) Upper values ('plus' in the yaml file) correspond to an upward systematic variation of the parameter ($+1\sigma$). 3) Lower values ('minus' in the yaml file) correspond to a downward systematic variation of the parameter ($-1\sigma$). 4) These variations can have both positive and negative values, depending on the modelled effect. 5) Uncertainties with the same name should be treated as correlated, consistently across the upper and lower variations. 6) Systematic uncertainties with 'prop_' in the name treat limited background statistics per histogram bin, and are deployed with 'Barlow-Beeston-lite' approach. Details in https://arxiv.org/abs/1103.0354 section 5 7) Remaining systematic uncertainties alter the normalization, the shape, or both for a distribution. The nuisance parameter for such an uncertainty is mapped separately on the normalization and the shape variation components of the uncertainty. For normalization, $\ln$ mapping is used, for shape a spline. Details in https://cms-analysis.github.io/HiggsAnalysis-CombinedLimit/part2/settinguptheanalysis/#binned-shape-analysis 8) All nuisance parameters for the systematic uncertainties are modelled with a Gaussian pdf. 9) Gluon fusion contributions are all scaled to 1 pb. Please combine them using either the scale factors from 'Table SM Gluon Fusion Fractions', or using your own composition.
Observed and expected distributions of the variable chosen for statistical inference in the high-mass analysis $m_{T}^{tot}$. Numerical values provided in this table correspond to Figure 26 of the auxilliary material of the publication, but restricted to and 2017 data-taking year. All distributions are considered after a fit to data is performed using a background-only model, which includes the $\text{H}(125)$ boson. Some details on how the distributions should be used: 1) All given uncertainties correspond to systematic variations of $\pm1\sigma$. 2) Upper values ('plus' in the yaml file) correspond to an upward systematic variation of the parameter ($+1\sigma$). 3) Lower values ('minus' in the yaml file) correspond to a downward systematic variation of the parameter ($-1\sigma$). 4) These variations can have both positive and negative values, depending on the modelled effect. 5) Uncertainties with the same name should be treated as correlated, consistently across the upper and lower variations. 6) Systematic uncertainties with 'prop_' in the name treat limited background statistics per histogram bin, and are deployed with 'Barlow-Beeston-lite' approach. Details in https://arxiv.org/abs/1103.0354 section 5 7) Remaining systematic uncertainties alter the normalization, the shape, or both for a distribution. The nuisance parameter for such an uncertainty is mapped separately on the normalization and the shape variation components of the uncertainty. For normalization, $\ln$ mapping is used, for shape a spline. Details in https://cms-analysis.github.io/HiggsAnalysis-CombinedLimit/part2/settinguptheanalysis/#binned-shape-analysis 8) All nuisance parameters for the systematic uncertainties are modelled with a Gaussian pdf. 9) Gluon fusion contributions are all scaled to 1 pb. Please combine them using either the scale factors from 'Table SM Gluon Fusion Fractions', or using your own composition.
Observed and expected distributions of the variable chosen for statistical inference in the high-mass analysis $m_{T}^{tot}$. Numerical values provided in this table correspond to Figure 26 of the auxilliary material of the publication, but restricted to and 2018 data-taking year. All distributions are considered after a fit to data is performed using a background-only model, which includes the $\text{H}(125)$ boson. Some details on how the distributions should be used: 1) All given uncertainties correspond to systematic variations of $\pm1\sigma$. 2) Upper values ('plus' in the yaml file) correspond to an upward systematic variation of the parameter ($+1\sigma$). 3) Lower values ('minus' in the yaml file) correspond to a downward systematic variation of the parameter ($-1\sigma$). 4) These variations can have both positive and negative values, depending on the modelled effect. 5) Uncertainties with the same name should be treated as correlated, consistently across the upper and lower variations. 6) Systematic uncertainties with 'prop_' in the name treat limited background statistics per histogram bin, and are deployed with 'Barlow-Beeston-lite' approach. Details in https://arxiv.org/abs/1103.0354 section 5 7) Remaining systematic uncertainties alter the normalization, the shape, or both for a distribution. The nuisance parameter for such an uncertainty is mapped separately on the normalization and the shape variation components of the uncertainty. For normalization, $\ln$ mapping is used, for shape a spline. Details in https://cms-analysis.github.io/HiggsAnalysis-CombinedLimit/part2/settinguptheanalysis/#binned-shape-analysis 8) All nuisance parameters for the systematic uncertainties are modelled with a Gaussian pdf. 9) Gluon fusion contributions are all scaled to 1 pb. Please combine them using either the scale factors from 'Table SM Gluon Fusion Fractions', or using your own composition.
Observed and expected distributions of the variable chosen for statistical inference in the high-mass analysis $m_{T}^{tot}$. Numerical values provided in this table correspond to Figure 8b of the publication, but restricted to 2016 data-taking year. All distributions are considered after a fit to data is performed using a background-only model, which includes the $\text{H}(125)$ boson. Some details on how the distributions should be used: 1) All given uncertainties correspond to systematic variations of $\pm1\sigma$. 2) Upper values ('plus' in the yaml file) correspond to an upward systematic variation of the parameter ($+1\sigma$). 3) Lower values ('minus' in the yaml file) correspond to a downward systematic variation of the parameter ($-1\sigma$). 4) These variations can have both positive and negative values, depending on the modelled effect. 5) Uncertainties with the same name should be treated as correlated, consistently across the upper and lower variations. 6) Systematic uncertainties with 'prop_' in the name treat limited background statistics per histogram bin, and are deployed with 'Barlow-Beeston-lite' approach. Details in https://arxiv.org/abs/1103.0354 section 5 7) Remaining systematic uncertainties alter the normalization, the shape, or both for a distribution. The nuisance parameter for such an uncertainty is mapped separately on the normalization and the shape variation components of the uncertainty. For normalization, $\ln$ mapping is used, for shape a spline. Details in https://cms-analysis.github.io/HiggsAnalysis-CombinedLimit/part2/settinguptheanalysis/#binned-shape-analysis 8) All nuisance parameters for the systematic uncertainties are modelled with a Gaussian pdf. 9) Gluon fusion contributions are all scaled to 1 pb. Please combine them using either the scale factors from 'Table SM Gluon Fusion Fractions', or using your own composition.
Observed and expected distributions of the variable chosen for statistical inference in the high-mass analysis $m_{T}^{tot}$. Numerical values provided in this table correspond to Figure 8b of the publication, but restricted to and 2017 data-taking year. All distributions are considered after a fit to data is performed using a background-only model, which includes the $\text{H}(125)$ boson. Some details on how the distributions should be used: 1) All given uncertainties correspond to systematic variations of $\pm1\sigma$. 2) Upper values ('plus' in the yaml file) correspond to an upward systematic variation of the parameter ($+1\sigma$). 3) Lower values ('minus' in the yaml file) correspond to a downward systematic variation of the parameter ($-1\sigma$). 4) These variations can have both positive and negative values, depending on the modelled effect. 5) Uncertainties with the same name should be treated as correlated, consistently across the upper and lower variations. 6) Systematic uncertainties with 'prop_' in the name treat limited background statistics per histogram bin, and are deployed with 'Barlow-Beeston-lite' approach. Details in https://arxiv.org/abs/1103.0354 section 5 7) Remaining systematic uncertainties alter the normalization, the shape, or both for a distribution. The nuisance parameter for such an uncertainty is mapped separately on the normalization and the shape variation components of the uncertainty. For normalization, $\ln$ mapping is used, for shape a spline. Details in https://cms-analysis.github.io/HiggsAnalysis-CombinedLimit/part2/settinguptheanalysis/#binned-shape-analysis 8) All nuisance parameters for the systematic uncertainties are modelled with a Gaussian pdf. 9) Gluon fusion contributions are all scaled to 1 pb. Please combine them using either the scale factors from 'Table SM Gluon Fusion Fractions', or using your own composition.
Observed and expected distributions of the variable chosen for statistical inference in the high-mass analysis $m_{T}^{tot}$. Numerical values provided in this table correspond to Figure 8b of the publication, but restricted to and 2018 data-taking year. All distributions are considered after a fit to data is performed using a background-only model, which includes the $\text{H}(125)$ boson. Some details on how the distributions should be used: 1) All given uncertainties correspond to systematic variations of $\pm1\sigma$. 2) Upper values ('plus' in the yaml file) correspond to an upward systematic variation of the parameter ($+1\sigma$). 3) Lower values ('minus' in the yaml file) correspond to a downward systematic variation of the parameter ($-1\sigma$). 4) These variations can have both positive and negative values, depending on the modelled effect. 5) Uncertainties with the same name should be treated as correlated, consistently across the upper and lower variations. 6) Systematic uncertainties with 'prop_' in the name treat limited background statistics per histogram bin, and are deployed with 'Barlow-Beeston-lite' approach. Details in https://arxiv.org/abs/1103.0354 section 5 7) Remaining systematic uncertainties alter the normalization, the shape, or both for a distribution. The nuisance parameter for such an uncertainty is mapped separately on the normalization and the shape variation components of the uncertainty. For normalization, $\ln$ mapping is used, for shape a spline. Details in https://cms-analysis.github.io/HiggsAnalysis-CombinedLimit/part2/settinguptheanalysis/#binned-shape-analysis 8) All nuisance parameters for the systematic uncertainties are modelled with a Gaussian pdf. 9) Gluon fusion contributions are all scaled to 1 pb. Please combine them using either the scale factors from 'Table SM Gluon Fusion Fractions', or using your own composition.
Observed and expected distributions of the variable chosen for statistical inference in the high-mass analysis $m_{T}^{tot}$. Numerical values provided in this table correspond to Figure 27 of the auxilliary material of the publication, but restricted to 2016 data-taking year. All distributions are considered after a fit to data is performed using a background-only model, which includes the $\text{H}(125)$ boson. Some details on how the distributions should be used: 1) All given uncertainties correspond to systematic variations of $\pm1\sigma$. 2) Upper values ('plus' in the yaml file) correspond to an upward systematic variation of the parameter ($+1\sigma$). 3) Lower values ('minus' in the yaml file) correspond to a downward systematic variation of the parameter ($-1\sigma$). 4) These variations can have both positive and negative values, depending on the modelled effect. 5) Uncertainties with the same name should be treated as correlated, consistently across the upper and lower variations. 6) Systematic uncertainties with 'prop_' in the name treat limited background statistics per histogram bin, and are deployed with 'Barlow-Beeston-lite' approach. Details in https://arxiv.org/abs/1103.0354 section 5 7) Remaining systematic uncertainties alter the normalization, the shape, or both for a distribution. The nuisance parameter for such an uncertainty is mapped separately on the normalization and the shape variation components of the uncertainty. For normalization, $\ln$ mapping is used, for shape a spline. Details in https://cms-analysis.github.io/HiggsAnalysis-CombinedLimit/part2/settinguptheanalysis/#binned-shape-analysis 8) All nuisance parameters for the systematic uncertainties are modelled with a Gaussian pdf. 9) Gluon fusion contributions are all scaled to 1 pb. Please combine them using either the scale factors from 'Table SM Gluon Fusion Fractions', or using your own composition.
Observed and expected distributions of the variable chosen for statistical inference in the high-mass analysis $m_{T}^{tot}$. Numerical values provided in this table correspond to Figure 27 of the auxilliary material of the publication, but restricted to and 2017 data-taking year. All distributions are considered after a fit to data is performed using a background-only model, which includes the $\text{H}(125)$ boson. Some details on how the distributions should be used: 1) All given uncertainties correspond to systematic variations of $\pm1\sigma$. 2) Upper values ('plus' in the yaml file) correspond to an upward systematic variation of the parameter ($+1\sigma$). 3) Lower values ('minus' in the yaml file) correspond to a downward systematic variation of the parameter ($-1\sigma$). 4) These variations can have both positive and negative values, depending on the modelled effect. 5) Uncertainties with the same name should be treated as correlated, consistently across the upper and lower variations. 6) Systematic uncertainties with 'prop_' in the name treat limited background statistics per histogram bin, and are deployed with 'Barlow-Beeston-lite' approach. Details in https://arxiv.org/abs/1103.0354 section 5 7) Remaining systematic uncertainties alter the normalization, the shape, or both for a distribution. The nuisance parameter for such an uncertainty is mapped separately on the normalization and the shape variation components of the uncertainty. For normalization, $\ln$ mapping is used, for shape a spline. Details in https://cms-analysis.github.io/HiggsAnalysis-CombinedLimit/part2/settinguptheanalysis/#binned-shape-analysis 8) All nuisance parameters for the systematic uncertainties are modelled with a Gaussian pdf. 9) Gluon fusion contributions are all scaled to 1 pb. Please combine them using either the scale factors from 'Table SM Gluon Fusion Fractions', or using your own composition.
Observed and expected distributions of the variable chosen for statistical inference in the high-mass analysis $m_{T}^{tot}$. Numerical values provided in this table correspond to Figure 27 of the auxilliary material of the publication, but restricted to and 2018 data-taking year. All distributions are considered after a fit to data is performed using a background-only model, which includes the $\text{H}(125)$ boson. Some details on how the distributions should be used: 1) All given uncertainties correspond to systematic variations of $\pm1\sigma$. 2) Upper values ('plus' in the yaml file) correspond to an upward systematic variation of the parameter ($+1\sigma$). 3) Lower values ('minus' in the yaml file) correspond to a downward systematic variation of the parameter ($-1\sigma$). 4) These variations can have both positive and negative values, depending on the modelled effect. 5) Uncertainties with the same name should be treated as correlated, consistently across the upper and lower variations. 6) Systematic uncertainties with 'prop_' in the name treat limited background statistics per histogram bin, and are deployed with 'Barlow-Beeston-lite' approach. Details in https://arxiv.org/abs/1103.0354 section 5 7) Remaining systematic uncertainties alter the normalization, the shape, or both for a distribution. The nuisance parameter for such an uncertainty is mapped separately on the normalization and the shape variation components of the uncertainty. For normalization, $\ln$ mapping is used, for shape a spline. Details in https://cms-analysis.github.io/HiggsAnalysis-CombinedLimit/part2/settinguptheanalysis/#binned-shape-analysis 8) All nuisance parameters for the systematic uncertainties are modelled with a Gaussian pdf. 9) Gluon fusion contributions are all scaled to 1 pb. Please combine them using either the scale factors from 'Table SM Gluon Fusion Fractions', or using your own composition.
Observed and expected distributions of the variable chosen for statistical inference in the high-mass analysis $m_{T}^{tot}$. Numerical values provided in this table correspond to Figure 28 of the auxilliary material of the publication, but restricted to 2016 data-taking year. All distributions are considered after a fit to data is performed using a background-only model, which includes the $\text{H}(125)$ boson. Some details on how the distributions should be used: 1) All given uncertainties correspond to systematic variations of $\pm1\sigma$. 2) Upper values ('plus' in the yaml file) correspond to an upward systematic variation of the parameter ($+1\sigma$). 3) Lower values ('minus' in the yaml file) correspond to a downward systematic variation of the parameter ($-1\sigma$). 4) These variations can have both positive and negative values, depending on the modelled effect. 5) Uncertainties with the same name should be treated as correlated, consistently across the upper and lower variations. 6) Systematic uncertainties with 'prop_' in the name treat limited background statistics per histogram bin, and are deployed with 'Barlow-Beeston-lite' approach. Details in https://arxiv.org/abs/1103.0354 section 5 7) Remaining systematic uncertainties alter the normalization, the shape, or both for a distribution. The nuisance parameter for such an uncertainty is mapped separately on the normalization and the shape variation components of the uncertainty. For normalization, $\ln$ mapping is used, for shape a spline. Details in https://cms-analysis.github.io/HiggsAnalysis-CombinedLimit/part2/settinguptheanalysis/#binned-shape-analysis 8) All nuisance parameters for the systematic uncertainties are modelled with a Gaussian pdf. 9) Gluon fusion contributions are all scaled to 1 pb. Please combine them using either the scale factors from 'Table SM Gluon Fusion Fractions', or using your own composition.
Observed and expected distributions of the variable chosen for statistical inference in the high-mass analysis $m_{T}^{tot}$. Numerical values provided in this table correspond to Figure 28 of the auxilliary material of the publication, but restricted to and 2017 data-taking year. All distributions are considered after a fit to data is performed using a background-only model, which includes the $\text{H}(125)$ boson. Some details on how the distributions should be used: 1) All given uncertainties correspond to systematic variations of $\pm1\sigma$. 2) Upper values ('plus' in the yaml file) correspond to an upward systematic variation of the parameter ($+1\sigma$). 3) Lower values ('minus' in the yaml file) correspond to a downward systematic variation of the parameter ($-1\sigma$). 4) These variations can have both positive and negative values, depending on the modelled effect. 5) Uncertainties with the same name should be treated as correlated, consistently across the upper and lower variations. 6) Systematic uncertainties with 'prop_' in the name treat limited background statistics per histogram bin, and are deployed with 'Barlow-Beeston-lite' approach. Details in https://arxiv.org/abs/1103.0354 section 5 7) Remaining systematic uncertainties alter the normalization, the shape, or both for a distribution. The nuisance parameter for such an uncertainty is mapped separately on the normalization and the shape variation components of the uncertainty. For normalization, $\ln$ mapping is used, for shape a spline. Details in https://cms-analysis.github.io/HiggsAnalysis-CombinedLimit/part2/settinguptheanalysis/#binned-shape-analysis 8) All nuisance parameters for the systematic uncertainties are modelled with a Gaussian pdf. 9) Gluon fusion contributions are all scaled to 1 pb. Please combine them using either the scale factors from 'Table SM Gluon Fusion Fractions', or using your own composition.
Observed and expected distributions of the variable chosen for statistical inference in the high-mass analysis $m_{T}^{tot}$. Numerical values provided in this table correspond to Figure 28 of the auxilliary material of the publication, but restricted to and 2018 data-taking year. All distributions are considered after a fit to data is performed using a background-only model, which includes the $\text{H}(125)$ boson. Some details on how the distributions should be used: 1) All given uncertainties correspond to systematic variations of $\pm1\sigma$. 2) Upper values ('plus' in the yaml file) correspond to an upward systematic variation of the parameter ($+1\sigma$). 3) Lower values ('minus' in the yaml file) correspond to a downward systematic variation of the parameter ($-1\sigma$). 4) These variations can have both positive and negative values, depending on the modelled effect. 5) Uncertainties with the same name should be treated as correlated, consistently across the upper and lower variations. 6) Systematic uncertainties with 'prop_' in the name treat limited background statistics per histogram bin, and are deployed with 'Barlow-Beeston-lite' approach. Details in https://arxiv.org/abs/1103.0354 section 5 7) Remaining systematic uncertainties alter the normalization, the shape, or both for a distribution. The nuisance parameter for such an uncertainty is mapped separately on the normalization and the shape variation components of the uncertainty. For normalization, $\ln$ mapping is used, for shape a spline. Details in https://cms-analysis.github.io/HiggsAnalysis-CombinedLimit/part2/settinguptheanalysis/#binned-shape-analysis 8) All nuisance parameters for the systematic uncertainties are modelled with a Gaussian pdf. 9) Gluon fusion contributions are all scaled to 1 pb. Please combine them using either the scale factors from 'Table SM Gluon Fusion Fractions', or using your own composition.
Observed and expected distributions of the variable chosen for statistical inference in the high-mass analysis $m_{T}^{tot}$. Numerical values provided in this table correspond to Figure 8c of the publication, but restricted to $e\tau_{h}$ final state and 2016 data-taking year. All distributions are considered after a fit to data is performed using a background-only model, which includes the $\text{H}(125)$ boson. Some details on how the distributions should be used: 1) All given uncertainties correspond to systematic variations of $\pm1\sigma$. 2) Upper values ('plus' in the yaml file) correspond to an upward systematic variation of the parameter ($+1\sigma$). 3) Lower values ('minus' in the yaml file) correspond to a downward systematic variation of the parameter ($-1\sigma$). 4) These variations can have both positive and negative values, depending on the modelled effect. 5) Uncertainties with the same name should be treated as correlated, consistently across the upper and lower variations. 6) Systematic uncertainties with 'prop_' in the name treat limited background statistics per histogram bin, and are deployed with 'Barlow-Beeston-lite' approach. Details in https://arxiv.org/abs/1103.0354 section 5 7) Remaining systematic uncertainties alter the normalization, the shape, or both for a distribution. The nuisance parameter for such an uncertainty is mapped separately on the normalization and the shape variation components of the uncertainty. For normalization, $\ln$ mapping is used, for shape a spline. Details in https://cms-analysis.github.io/HiggsAnalysis-CombinedLimit/part2/settinguptheanalysis/#binned-shape-analysis 8) All nuisance parameters for the systematic uncertainties are modelled with a Gaussian pdf. 9) Gluon fusion contributions are all scaled to 1 pb. Please combine them using either the scale factors from 'Table SM Gluon Fusion Fractions', or using your own composition.
Observed and expected distributions of the variable chosen for statistical inference in the high-mass analysis $m_{T}^{tot}$. Numerical values provided in this table correspond to Figure 8c of the publication, but restricted to $e\tau_{h}$ final state and 2017 data-taking year. All distributions are considered after a fit to data is performed using a background-only model, which includes the $\text{H}(125)$ boson. Some details on how the distributions should be used: 1) All given uncertainties correspond to systematic variations of $\pm1\sigma$. 2) Upper values ('plus' in the yaml file) correspond to an upward systematic variation of the parameter ($+1\sigma$). 3) Lower values ('minus' in the yaml file) correspond to a downward systematic variation of the parameter ($-1\sigma$). 4) These variations can have both positive and negative values, depending on the modelled effect. 5) Uncertainties with the same name should be treated as correlated, consistently across the upper and lower variations. 6) Systematic uncertainties with 'prop_' in the name treat limited background statistics per histogram bin, and are deployed with 'Barlow-Beeston-lite' approach. Details in https://arxiv.org/abs/1103.0354 section 5 7) Remaining systematic uncertainties alter the normalization, the shape, or both for a distribution. The nuisance parameter for such an uncertainty is mapped separately on the normalization and the shape variation components of the uncertainty. For normalization, $\ln$ mapping is used, for shape a spline. Details in https://cms-analysis.github.io/HiggsAnalysis-CombinedLimit/part2/settinguptheanalysis/#binned-shape-analysis 8) All nuisance parameters for the systematic uncertainties are modelled with a Gaussian pdf. 9) Gluon fusion contributions are all scaled to 1 pb. Please combine them using either the scale factors from 'Table SM Gluon Fusion Fractions', or using your own composition.
Observed and expected distributions of the variable chosen for statistical inference in the high-mass analysis $m_{T}^{tot}$. Numerical values provided in this table correspond to Figure 8c of the publication, but restricted to $e\tau_{h}$ final state and 2018 data-taking year. All distributions are considered after a fit to data is performed using a background-only model, which includes the $\text{H}(125)$ boson. Some details on how the distributions should be used: 1) All given uncertainties correspond to systematic variations of $\pm1\sigma$. 2) Upper values ('plus' in the yaml file) correspond to an upward systematic variation of the parameter ($+1\sigma$). 3) Lower values ('minus' in the yaml file) correspond to a downward systematic variation of the parameter ($-1\sigma$). 4) These variations can have both positive and negative values, depending on the modelled effect. 5) Uncertainties with the same name should be treated as correlated, consistently across the upper and lower variations. 6) Systematic uncertainties with 'prop_' in the name treat limited background statistics per histogram bin, and are deployed with 'Barlow-Beeston-lite' approach. Details in https://arxiv.org/abs/1103.0354 section 5 7) Remaining systematic uncertainties alter the normalization, the shape, or both for a distribution. The nuisance parameter for such an uncertainty is mapped separately on the normalization and the shape variation components of the uncertainty. For normalization, $\ln$ mapping is used, for shape a spline. Details in https://cms-analysis.github.io/HiggsAnalysis-CombinedLimit/part2/settinguptheanalysis/#binned-shape-analysis 8) All nuisance parameters for the systematic uncertainties are modelled with a Gaussian pdf. 9) Gluon fusion contributions are all scaled to 1 pb. Please combine them using either the scale factors from 'Table SM Gluon Fusion Fractions', or using your own composition.
Observed and expected distributions of the variable chosen for statistical inference in the high-mass analysis $m_{T}^{tot}$. Numerical values provided in this table correspond to Figure 29 of the auxilliary material of the publication, but restricted to $e\tau_{h}$ final state and 2016 data-taking year. All distributions are considered after a fit to data is performed using a background-only model, which includes the $\text{H}(125)$ boson. Some details on how the distributions should be used: 1) All given uncertainties correspond to systematic variations of $\pm1\sigma$. 2) Upper values ('plus' in the yaml file) correspond to an upward systematic variation of the parameter ($+1\sigma$). 3) Lower values ('minus' in the yaml file) correspond to a downward systematic variation of the parameter ($-1\sigma$). 4) These variations can have both positive and negative values, depending on the modelled effect. 5) Uncertainties with the same name should be treated as correlated, consistently across the upper and lower variations. 6) Systematic uncertainties with 'prop_' in the name treat limited background statistics per histogram bin, and are deployed with 'Barlow-Beeston-lite' approach. Details in https://arxiv.org/abs/1103.0354 section 5 7) Remaining systematic uncertainties alter the normalization, the shape, or both for a distribution. The nuisance parameter for such an uncertainty is mapped separately on the normalization and the shape variation components of the uncertainty. For normalization, $\ln$ mapping is used, for shape a spline. Details in https://cms-analysis.github.io/HiggsAnalysis-CombinedLimit/part2/settinguptheanalysis/#binned-shape-analysis 8) All nuisance parameters for the systematic uncertainties are modelled with a Gaussian pdf. 9) Gluon fusion contributions are all scaled to 1 pb. Please combine them using either the scale factors from 'Table SM Gluon Fusion Fractions', or using your own composition.
Observed and expected distributions of the variable chosen for statistical inference in the high-mass analysis $m_{T}^{tot}$. Numerical values provided in this table correspond to Figure 29 of the auxilliary material of the publication, but restricted to $e\tau_{h}$ final state and 2017 data-taking year. All distributions are considered after a fit to data is performed using a background-only model, which includes the $\text{H}(125)$ boson. Some details on how the distributions should be used: 1) All given uncertainties correspond to systematic variations of $\pm1\sigma$. 2) Upper values ('plus' in the yaml file) correspond to an upward systematic variation of the parameter ($+1\sigma$). 3) Lower values ('minus' in the yaml file) correspond to a downward systematic variation of the parameter ($-1\sigma$). 4) These variations can have both positive and negative values, depending on the modelled effect. 5) Uncertainties with the same name should be treated as correlated, consistently across the upper and lower variations. 6) Systematic uncertainties with 'prop_' in the name treat limited background statistics per histogram bin, and are deployed with 'Barlow-Beeston-lite' approach. Details in https://arxiv.org/abs/1103.0354 section 5 7) Remaining systematic uncertainties alter the normalization, the shape, or both for a distribution. The nuisance parameter for such an uncertainty is mapped separately on the normalization and the shape variation components of the uncertainty. For normalization, $\ln$ mapping is used, for shape a spline. Details in https://cms-analysis.github.io/HiggsAnalysis-CombinedLimit/part2/settinguptheanalysis/#binned-shape-analysis 8) All nuisance parameters for the systematic uncertainties are modelled with a Gaussian pdf. 9) Gluon fusion contributions are all scaled to 1 pb. Please combine them using either the scale factors from 'Table SM Gluon Fusion Fractions', or using your own composition.
Observed and expected distributions of the variable chosen for statistical inference in the high-mass analysis $m_{T}^{tot}$. Numerical values provided in this table correspond to Figure 29 of the auxilliary material of the publication, but restricted to $e\tau_{h}$ final state and 2018 data-taking year. All distributions are considered after a fit to data is performed using a background-only model, which includes the $\text{H}(125)$ boson. Some details on how the distributions should be used: 1) All given uncertainties correspond to systematic variations of $\pm1\sigma$. 2) Upper values ('plus' in the yaml file) correspond to an upward systematic variation of the parameter ($+1\sigma$). 3) Lower values ('minus' in the yaml file) correspond to a downward systematic variation of the parameter ($-1\sigma$). 4) These variations can have both positive and negative values, depending on the modelled effect. 5) Uncertainties with the same name should be treated as correlated, consistently across the upper and lower variations. 6) Systematic uncertainties with 'prop_' in the name treat limited background statistics per histogram bin, and are deployed with 'Barlow-Beeston-lite' approach. Details in https://arxiv.org/abs/1103.0354 section 5 7) Remaining systematic uncertainties alter the normalization, the shape, or both for a distribution. The nuisance parameter for such an uncertainty is mapped separately on the normalization and the shape variation components of the uncertainty. For normalization, $\ln$ mapping is used, for shape a spline. Details in https://cms-analysis.github.io/HiggsAnalysis-CombinedLimit/part2/settinguptheanalysis/#binned-shape-analysis 8) All nuisance parameters for the systematic uncertainties are modelled with a Gaussian pdf. 9) Gluon fusion contributions are all scaled to 1 pb. Please combine them using either the scale factors from 'Table SM Gluon Fusion Fractions', or using your own composition.
Observed and expected distributions of the variable chosen for statistical inference in the high-mass analysis $m_{T}^{tot}$. Numerical values provided in this table correspond to Figure 8d of the publication, but restricted to $e\tau_{h}$ final state and 2016 data-taking year. All distributions are considered after a fit to data is performed using a background-only model, which includes the $\text{H}(125)$ boson. Some details on how the distributions should be used: 1) All given uncertainties correspond to systematic variations of $\pm1\sigma$. 2) Upper values ('plus' in the yaml file) correspond to an upward systematic variation of the parameter ($+1\sigma$). 3) Lower values ('minus' in the yaml file) correspond to a downward systematic variation of the parameter ($-1\sigma$). 4) These variations can have both positive and negative values, depending on the modelled effect. 5) Uncertainties with the same name should be treated as correlated, consistently across the upper and lower variations. 6) Systematic uncertainties with 'prop_' in the name treat limited background statistics per histogram bin, and are deployed with 'Barlow-Beeston-lite' approach. Details in https://arxiv.org/abs/1103.0354 section 5 7) Remaining systematic uncertainties alter the normalization, the shape, or both for a distribution. The nuisance parameter for such an uncertainty is mapped separately on the normalization and the shape variation components of the uncertainty. For normalization, $\ln$ mapping is used, for shape a spline. Details in https://cms-analysis.github.io/HiggsAnalysis-CombinedLimit/part2/settinguptheanalysis/#binned-shape-analysis 8) All nuisance parameters for the systematic uncertainties are modelled with a Gaussian pdf. 9) Gluon fusion contributions are all scaled to 1 pb. Please combine them using either the scale factors from 'Table SM Gluon Fusion Fractions', or using your own composition.
Observed and expected distributions of the variable chosen for statistical inference in the high-mass analysis $m_{T}^{tot}$. Numerical values provided in this table correspond to Figure 8d of the publication, but restricted to $e\tau_{h}$ final state and 2017 data-taking year. All distributions are considered after a fit to data is performed using a background-only model, which includes the $\text{H}(125)$ boson. Some details on how the distributions should be used: 1) All given uncertainties correspond to systematic variations of $\pm1\sigma$. 2) Upper values ('plus' in the yaml file) correspond to an upward systematic variation of the parameter ($+1\sigma$). 3) Lower values ('minus' in the yaml file) correspond to a downward systematic variation of the parameter ($-1\sigma$). 4) These variations can have both positive and negative values, depending on the modelled effect. 5) Uncertainties with the same name should be treated as correlated, consistently across the upper and lower variations. 6) Systematic uncertainties with 'prop_' in the name treat limited background statistics per histogram bin, and are deployed with 'Barlow-Beeston-lite' approach. Details in https://arxiv.org/abs/1103.0354 section 5 7) Remaining systematic uncertainties alter the normalization, the shape, or both for a distribution. The nuisance parameter for such an uncertainty is mapped separately on the normalization and the shape variation components of the uncertainty. For normalization, $\ln$ mapping is used, for shape a spline. Details in https://cms-analysis.github.io/HiggsAnalysis-CombinedLimit/part2/settinguptheanalysis/#binned-shape-analysis 8) All nuisance parameters for the systematic uncertainties are modelled with a Gaussian pdf. 9) Gluon fusion contributions are all scaled to 1 pb. Please combine them using either the scale factors from 'Table SM Gluon Fusion Fractions', or using your own composition.
Observed and expected distributions of the variable chosen for statistical inference in the high-mass analysis $m_{T}^{tot}$. Numerical values provided in this table correspond to Figure 8d of the publication, but restricted to $e\tau_{h}$ final state and 2018 data-taking year. All distributions are considered after a fit to data is performed using a background-only model, which includes the $\text{H}(125)$ boson. Some details on how the distributions should be used: 1) All given uncertainties correspond to systematic variations of $\pm1\sigma$. 2) Upper values ('plus' in the yaml file) correspond to an upward systematic variation of the parameter ($+1\sigma$). 3) Lower values ('minus' in the yaml file) correspond to a downward systematic variation of the parameter ($-1\sigma$). 4) These variations can have both positive and negative values, depending on the modelled effect. 5) Uncertainties with the same name should be treated as correlated, consistently across the upper and lower variations. 6) Systematic uncertainties with 'prop_' in the name treat limited background statistics per histogram bin, and are deployed with 'Barlow-Beeston-lite' approach. Details in https://arxiv.org/abs/1103.0354 section 5 7) Remaining systematic uncertainties alter the normalization, the shape, or both for a distribution. The nuisance parameter for such an uncertainty is mapped separately on the normalization and the shape variation components of the uncertainty. For normalization, $\ln$ mapping is used, for shape a spline. Details in https://cms-analysis.github.io/HiggsAnalysis-CombinedLimit/part2/settinguptheanalysis/#binned-shape-analysis 8) All nuisance parameters for the systematic uncertainties are modelled with a Gaussian pdf. 9) Gluon fusion contributions are all scaled to 1 pb. Please combine them using either the scale factors from 'Table SM Gluon Fusion Fractions', or using your own composition.
Observed and expected distributions of the variable chosen for statistical inference in the high-mass analysis $m_{T}^{tot}$. Numerical values provided in this table correspond to Figure 30 of the auxilliary material of the publication, but restricted to $e\tau_{h}$ final state and 2016 data-taking year. All distributions are considered after a fit to data is performed using a background-only model, which includes the $\text{H}(125)$ boson. Some details on how the distributions should be used: 1) All given uncertainties correspond to systematic variations of $\pm1\sigma$. 2) Upper values ('plus' in the yaml file) correspond to an upward systematic variation of the parameter ($+1\sigma$). 3) Lower values ('minus' in the yaml file) correspond to a downward systematic variation of the parameter ($-1\sigma$). 4) These variations can have both positive and negative values, depending on the modelled effect. 5) Uncertainties with the same name should be treated as correlated, consistently across the upper and lower variations. 6) Systematic uncertainties with 'prop_' in the name treat limited background statistics per histogram bin, and are deployed with 'Barlow-Beeston-lite' approach. Details in https://arxiv.org/abs/1103.0354 section 5 7) Remaining systematic uncertainties alter the normalization, the shape, or both for a distribution. The nuisance parameter for such an uncertainty is mapped separately on the normalization and the shape variation components of the uncertainty. For normalization, $\ln$ mapping is used, for shape a spline. Details in https://cms-analysis.github.io/HiggsAnalysis-CombinedLimit/part2/settinguptheanalysis/#binned-shape-analysis 8) All nuisance parameters for the systematic uncertainties are modelled with a Gaussian pdf. 9) Gluon fusion contributions are all scaled to 1 pb. Please combine them using either the scale factors from 'Table SM Gluon Fusion Fractions', or using your own composition.
Observed and expected distributions of the variable chosen for statistical inference in the high-mass analysis $m_{T}^{tot}$. Numerical values provided in this table correspond to Figure 30 of the auxilliary material of the publication, but restricted to $e\tau_{h}$ final state and 2017 data-taking year. All distributions are considered after a fit to data is performed using a background-only model, which includes the $\text{H}(125)$ boson. Some details on how the distributions should be used: 1) All given uncertainties correspond to systematic variations of $\pm1\sigma$. 2) Upper values ('plus' in the yaml file) correspond to an upward systematic variation of the parameter ($+1\sigma$). 3) Lower values ('minus' in the yaml file) correspond to a downward systematic variation of the parameter ($-1\sigma$). 4) These variations can have both positive and negative values, depending on the modelled effect. 5) Uncertainties with the same name should be treated as correlated, consistently across the upper and lower variations. 6) Systematic uncertainties with 'prop_' in the name treat limited background statistics per histogram bin, and are deployed with 'Barlow-Beeston-lite' approach. Details in https://arxiv.org/abs/1103.0354 section 5 7) Remaining systematic uncertainties alter the normalization, the shape, or both for a distribution. The nuisance parameter for such an uncertainty is mapped separately on the normalization and the shape variation components of the uncertainty. For normalization, $\ln$ mapping is used, for shape a spline. Details in https://cms-analysis.github.io/HiggsAnalysis-CombinedLimit/part2/settinguptheanalysis/#binned-shape-analysis 8) All nuisance parameters for the systematic uncertainties are modelled with a Gaussian pdf. 9) Gluon fusion contributions are all scaled to 1 pb. Please combine them using either the scale factors from 'Table SM Gluon Fusion Fractions', or using your own composition.
Observed and expected distributions of the variable chosen for statistical inference in the high-mass analysis $m_{T}^{tot}$. Numerical values provided in this table correspond to Figure 30 of the auxilliary material of the publication, but restricted to $e\tau_{h}$ final state and 2018 data-taking year. All distributions are considered after a fit to data is performed using a background-only model, which includes the $\text{H}(125)$ boson. Some details on how the distributions should be used: 1) All given uncertainties correspond to systematic variations of $\pm1\sigma$. 2) Upper values ('plus' in the yaml file) correspond to an upward systematic variation of the parameter ($+1\sigma$). 3) Lower values ('minus' in the yaml file) correspond to a downward systematic variation of the parameter ($-1\sigma$). 4) These variations can have both positive and negative values, depending on the modelled effect. 5) Uncertainties with the same name should be treated as correlated, consistently across the upper and lower variations. 6) Systematic uncertainties with 'prop_' in the name treat limited background statistics per histogram bin, and are deployed with 'Barlow-Beeston-lite' approach. Details in https://arxiv.org/abs/1103.0354 section 5 7) Remaining systematic uncertainties alter the normalization, the shape, or both for a distribution. The nuisance parameter for such an uncertainty is mapped separately on the normalization and the shape variation components of the uncertainty. For normalization, $\ln$ mapping is used, for shape a spline. Details in https://cms-analysis.github.io/HiggsAnalysis-CombinedLimit/part2/settinguptheanalysis/#binned-shape-analysis 8) All nuisance parameters for the systematic uncertainties are modelled with a Gaussian pdf. 9) Gluon fusion contributions are all scaled to 1 pb. Please combine them using either the scale factors from 'Table SM Gluon Fusion Fractions', or using your own composition.
Observed and expected distributions of the variable chosen for statistical inference in the high-mass analysis $m_{T}^{tot}$. Numerical values provided in this table correspond to Figure 8c of the publication, but restricted to $\mu\tau_{h}$ final state and 2016 data-taking year. All distributions are considered after a fit to data is performed using a background-only model, which includes the $\text{H}(125)$ boson. Some details on how the distributions should be used: 1) All given uncertainties correspond to systematic variations of $\pm1\sigma$. 2) Upper values ('plus' in the yaml file) correspond to an upward systematic variation of the parameter ($+1\sigma$). 3) Lower values ('minus' in the yaml file) correspond to a downward systematic variation of the parameter ($-1\sigma$). 4) These variations can have both positive and negative values, depending on the modelled effect. 5) Uncertainties with the same name should be treated as correlated, consistently across the upper and lower variations. 6) Systematic uncertainties with 'prop_' in the name treat limited background statistics per histogram bin, and are deployed with 'Barlow-Beeston-lite' approach. Details in https://arxiv.org/abs/1103.0354 section 5 7) Remaining systematic uncertainties alter the normalization, the shape, or both for a distribution. The nuisance parameter for such an uncertainty is mapped separately on the normalization and the shape variation components of the uncertainty. For normalization, $\ln$ mapping is used, for shape a spline. Details in https://cms-analysis.github.io/HiggsAnalysis-CombinedLimit/part2/settinguptheanalysis/#binned-shape-analysis 8) All nuisance parameters for the systematic uncertainties are modelled with a Gaussian pdf. 9) Gluon fusion contributions are all scaled to 1 pb. Please combine them using either the scale factors from 'Table SM Gluon Fusion Fractions', or using your own composition.
Observed and expected distributions of the variable chosen for statistical inference in the high-mass analysis $m_{T}^{tot}$. Numerical values provided in this table correspond to Figure 8c of the publication, but restricted to $\mu\tau_{h}$ final state and 2017 data-taking year. All distributions are considered after a fit to data is performed using a background-only model, which includes the $\text{H}(125)$ boson. Some details on how the distributions should be used: 1) All given uncertainties correspond to systematic variations of $\pm1\sigma$. 2) Upper values ('plus' in the yaml file) correspond to an upward systematic variation of the parameter ($+1\sigma$). 3) Lower values ('minus' in the yaml file) correspond to a downward systematic variation of the parameter ($-1\sigma$). 4) These variations can have both positive and negative values, depending on the modelled effect. 5) Uncertainties with the same name should be treated as correlated, consistently across the upper and lower variations. 6) Systematic uncertainties with 'prop_' in the name treat limited background statistics per histogram bin, and are deployed with 'Barlow-Beeston-lite' approach. Details in https://arxiv.org/abs/1103.0354 section 5 7) Remaining systematic uncertainties alter the normalization, the shape, or both for a distribution. The nuisance parameter for such an uncertainty is mapped separately on the normalization and the shape variation components of the uncertainty. For normalization, $\ln$ mapping is used, for shape a spline. Details in https://cms-analysis.github.io/HiggsAnalysis-CombinedLimit/part2/settinguptheanalysis/#binned-shape-analysis 8) All nuisance parameters for the systematic uncertainties are modelled with a Gaussian pdf. 9) Gluon fusion contributions are all scaled to 1 pb. Please combine them using either the scale factors from 'Table SM Gluon Fusion Fractions', or using your own composition.
Observed and expected distributions of the variable chosen for statistical inference in the high-mass analysis $m_{T}^{tot}$. Numerical values provided in this table correspond to Figure 8c of the publication, but restricted to $\mu\tau_{h}$ final state and 2018 data-taking year. All distributions are considered after a fit to data is performed using a background-only model, which includes the $\text{H}(125)$ boson. Some details on how the distributions should be used: 1) All given uncertainties correspond to systematic variations of $\pm1\sigma$. 2) Upper values ('plus' in the yaml file) correspond to an upward systematic variation of the parameter ($+1\sigma$). 3) Lower values ('minus' in the yaml file) correspond to a downward systematic variation of the parameter ($-1\sigma$). 4) These variations can have both positive and negative values, depending on the modelled effect. 5) Uncertainties with the same name should be treated as correlated, consistently across the upper and lower variations. 6) Systematic uncertainties with 'prop_' in the name treat limited background statistics per histogram bin, and are deployed with 'Barlow-Beeston-lite' approach. Details in https://arxiv.org/abs/1103.0354 section 5 7) Remaining systematic uncertainties alter the normalization, the shape, or both for a distribution. The nuisance parameter for such an uncertainty is mapped separately on the normalization and the shape variation components of the uncertainty. For normalization, $\ln$ mapping is used, for shape a spline. Details in https://cms-analysis.github.io/HiggsAnalysis-CombinedLimit/part2/settinguptheanalysis/#binned-shape-analysis 8) All nuisance parameters for the systematic uncertainties are modelled with a Gaussian pdf. 9) Gluon fusion contributions are all scaled to 1 pb. Please combine them using either the scale factors from 'Table SM Gluon Fusion Fractions', or using your own composition.
Observed and expected distributions of the variable chosen for statistical inference in the high-mass analysis $m_{T}^{tot}$. Numerical values provided in this table correspond to Figure 29 of the auxilliary material of the publication, but restricted to $\mu\tau_{h}$ final state and 2016 data-taking year. All distributions are considered after a fit to data is performed using a background-only model, which includes the $\text{H}(125)$ boson. Some details on how the distributions should be used: 1) All given uncertainties correspond to systematic variations of $\pm1\sigma$. 2) Upper values ('plus' in the yaml file) correspond to an upward systematic variation of the parameter ($+1\sigma$). 3) Lower values ('minus' in the yaml file) correspond to a downward systematic variation of the parameter ($-1\sigma$). 4) These variations can have both positive and negative values, depending on the modelled effect. 5) Uncertainties with the same name should be treated as correlated, consistently across the upper and lower variations. 6) Systematic uncertainties with 'prop_' in the name treat limited background statistics per histogram bin, and are deployed with 'Barlow-Beeston-lite' approach. Details in https://arxiv.org/abs/1103.0354 section 5 7) Remaining systematic uncertainties alter the normalization, the shape, or both for a distribution. The nuisance parameter for such an uncertainty is mapped separately on the normalization and the shape variation components of the uncertainty. For normalization, $\ln$ mapping is used, for shape a spline. Details in https://cms-analysis.github.io/HiggsAnalysis-CombinedLimit/part2/settinguptheanalysis/#binned-shape-analysis 8) All nuisance parameters for the systematic uncertainties are modelled with a Gaussian pdf. 9) Gluon fusion contributions are all scaled to 1 pb. Please combine them using either the scale factors from 'Table SM Gluon Fusion Fractions', or using your own composition.
Observed and expected distributions of the variable chosen for statistical inference in the high-mass analysis $m_{T}^{tot}$. Numerical values provided in this table correspond to Figure 29 of the auxilliary material of the publication, but restricted to $\mu\tau_{h}$ final state and 2017 data-taking year. All distributions are considered after a fit to data is performed using a background-only model, which includes the $\text{H}(125)$ boson. Some details on how the distributions should be used: 1) All given uncertainties correspond to systematic variations of $\pm1\sigma$. 2) Upper values ('plus' in the yaml file) correspond to an upward systematic variation of the parameter ($+1\sigma$). 3) Lower values ('minus' in the yaml file) correspond to a downward systematic variation of the parameter ($-1\sigma$). 4) These variations can have both positive and negative values, depending on the modelled effect. 5) Uncertainties with the same name should be treated as correlated, consistently across the upper and lower variations. 6) Systematic uncertainties with 'prop_' in the name treat limited background statistics per histogram bin, and are deployed with 'Barlow-Beeston-lite' approach. Details in https://arxiv.org/abs/1103.0354 section 5 7) Remaining systematic uncertainties alter the normalization, the shape, or both for a distribution. The nuisance parameter for such an uncertainty is mapped separately on the normalization and the shape variation components of the uncertainty. For normalization, $\ln$ mapping is used, for shape a spline. Details in https://cms-analysis.github.io/HiggsAnalysis-CombinedLimit/part2/settinguptheanalysis/#binned-shape-analysis 8) All nuisance parameters for the systematic uncertainties are modelled with a Gaussian pdf. 9) Gluon fusion contributions are all scaled to 1 pb. Please combine them using either the scale factors from 'Table SM Gluon Fusion Fractions', or using your own composition.
Observed and expected distributions of the variable chosen for statistical inference in the high-mass analysis $m_{T}^{tot}$. Numerical values provided in this table correspond to Figure 29 of the auxilliary material of the publication, but restricted to $\mu\tau_{h}$ final state and 2018 data-taking year. All distributions are considered after a fit to data is performed using a background-only model, which includes the $\text{H}(125)$ boson. Some details on how the distributions should be used: 1) All given uncertainties correspond to systematic variations of $\pm1\sigma$. 2) Upper values ('plus' in the yaml file) correspond to an upward systematic variation of the parameter ($+1\sigma$). 3) Lower values ('minus' in the yaml file) correspond to a downward systematic variation of the parameter ($-1\sigma$). 4) These variations can have both positive and negative values, depending on the modelled effect. 5) Uncertainties with the same name should be treated as correlated, consistently across the upper and lower variations. 6) Systematic uncertainties with 'prop_' in the name treat limited background statistics per histogram bin, and are deployed with 'Barlow-Beeston-lite' approach. Details in https://arxiv.org/abs/1103.0354 section 5 7) Remaining systematic uncertainties alter the normalization, the shape, or both for a distribution. The nuisance parameter for such an uncertainty is mapped separately on the normalization and the shape variation components of the uncertainty. For normalization, $\ln$ mapping is used, for shape a spline. Details in https://cms-analysis.github.io/HiggsAnalysis-CombinedLimit/part2/settinguptheanalysis/#binned-shape-analysis 8) All nuisance parameters for the systematic uncertainties are modelled with a Gaussian pdf. 9) Gluon fusion contributions are all scaled to 1 pb. Please combine them using either the scale factors from 'Table SM Gluon Fusion Fractions', or using your own composition.
Observed and expected distributions of the variable chosen for statistical inference in the high-mass analysis $m_{T}^{tot}$. Numerical values provided in this table correspond to Figure 8d of the publication, but restricted to $\mu\tau_{h}$ final state and 2016 data-taking year. All distributions are considered after a fit to data is performed using a background-only model, which includes the $\text{H}(125)$ boson. Some details on how the distributions should be used: 1) All given uncertainties correspond to systematic variations of $\pm1\sigma$. 2) Upper values ('plus' in the yaml file) correspond to an upward systematic variation of the parameter ($+1\sigma$). 3) Lower values ('minus' in the yaml file) correspond to a downward systematic variation of the parameter ($-1\sigma$). 4) These variations can have both positive and negative values, depending on the modelled effect. 5) Uncertainties with the same name should be treated as correlated, consistently across the upper and lower variations. 6) Systematic uncertainties with 'prop_' in the name treat limited background statistics per histogram bin, and are deployed with 'Barlow-Beeston-lite' approach. Details in https://arxiv.org/abs/1103.0354 section 5 7) Remaining systematic uncertainties alter the normalization, the shape, or both for a distribution. The nuisance parameter for such an uncertainty is mapped separately on the normalization and the shape variation components of the uncertainty. For normalization, $\ln$ mapping is used, for shape a spline. Details in https://cms-analysis.github.io/HiggsAnalysis-CombinedLimit/part2/settinguptheanalysis/#binned-shape-analysis 8) All nuisance parameters for the systematic uncertainties are modelled with a Gaussian pdf. 9) Gluon fusion contributions are all scaled to 1 pb. Please combine them using either the scale factors from 'Table SM Gluon Fusion Fractions', or using your own composition.
Observed and expected distributions of the variable chosen for statistical inference in the high-mass analysis $m_{T}^{tot}$. Numerical values provided in this table correspond to Figure 8d of the publication, but restricted to $\mu\tau_{h}$ final state and 2017 data-taking year. All distributions are considered after a fit to data is performed using a background-only model, which includes the $\text{H}(125)$ boson. Some details on how the distributions should be used: 1) All given uncertainties correspond to systematic variations of $\pm1\sigma$. 2) Upper values ('plus' in the yaml file) correspond to an upward systematic variation of the parameter ($+1\sigma$). 3) Lower values ('minus' in the yaml file) correspond to a downward systematic variation of the parameter ($-1\sigma$). 4) These variations can have both positive and negative values, depending on the modelled effect. 5) Uncertainties with the same name should be treated as correlated, consistently across the upper and lower variations. 6) Systematic uncertainties with 'prop_' in the name treat limited background statistics per histogram bin, and are deployed with 'Barlow-Beeston-lite' approach. Details in https://arxiv.org/abs/1103.0354 section 5 7) Remaining systematic uncertainties alter the normalization, the shape, or both for a distribution. The nuisance parameter for such an uncertainty is mapped separately on the normalization and the shape variation components of the uncertainty. For normalization, $\ln$ mapping is used, for shape a spline. Details in https://cms-analysis.github.io/HiggsAnalysis-CombinedLimit/part2/settinguptheanalysis/#binned-shape-analysis 8) All nuisance parameters for the systematic uncertainties are modelled with a Gaussian pdf. 9) Gluon fusion contributions are all scaled to 1 pb. Please combine them using either the scale factors from 'Table SM Gluon Fusion Fractions', or using your own composition.
Observed and expected distributions of the variable chosen for statistical inference in the high-mass analysis $m_{T}^{tot}$. Numerical values provided in this table correspond to Figure 8d of the publication, but restricted to $\mu\tau_{h}$ final state and 2018 data-taking year. All distributions are considered after a fit to data is performed using a background-only model, which includes the $\text{H}(125)$ boson. Some details on how the distributions should be used: 1) All given uncertainties correspond to systematic variations of $\pm1\sigma$. 2) Upper values ('plus' in the yaml file) correspond to an upward systematic variation of the parameter ($+1\sigma$). 3) Lower values ('minus' in the yaml file) correspond to a downward systematic variation of the parameter ($-1\sigma$). 4) These variations can have both positive and negative values, depending on the modelled effect. 5) Uncertainties with the same name should be treated as correlated, consistently across the upper and lower variations. 6) Systematic uncertainties with 'prop_' in the name treat limited background statistics per histogram bin, and are deployed with 'Barlow-Beeston-lite' approach. Details in https://arxiv.org/abs/1103.0354 section 5 7) Remaining systematic uncertainties alter the normalization, the shape, or both for a distribution. The nuisance parameter for such an uncertainty is mapped separately on the normalization and the shape variation components of the uncertainty. For normalization, $\ln$ mapping is used, for shape a spline. Details in https://cms-analysis.github.io/HiggsAnalysis-CombinedLimit/part2/settinguptheanalysis/#binned-shape-analysis 8) All nuisance parameters for the systematic uncertainties are modelled with a Gaussian pdf. 9) Gluon fusion contributions are all scaled to 1 pb. Please combine them using either the scale factors from 'Table SM Gluon Fusion Fractions', or using your own composition.
Observed and expected distributions of the variable chosen for statistical inference in the high-mass analysis $m_{T}^{tot}$. Numerical values provided in this table correspond to Figure 30 of the auxilliary material of the publication, but restricted to $\mu\tau_{h}$ final state and 2016 data-taking year. All distributions are considered after a fit to data is performed using a background-only model, which includes the $\text{H}(125)$ boson. Some details on how the distributions should be used: 1) All given uncertainties correspond to systematic variations of $\pm1\sigma$. 2) Upper values ('plus' in the yaml file) correspond to an upward systematic variation of the parameter ($+1\sigma$). 3) Lower values ('minus' in the yaml file) correspond to a downward systematic variation of the parameter ($-1\sigma$). 4) These variations can have both positive and negative values, depending on the modelled effect. 5) Uncertainties with the same name should be treated as correlated, consistently across the upper and lower variations. 6) Systematic uncertainties with 'prop_' in the name treat limited background statistics per histogram bin, and are deployed with 'Barlow-Beeston-lite' approach. Details in https://arxiv.org/abs/1103.0354 section 5 7) Remaining systematic uncertainties alter the normalization, the shape, or both for a distribution. The nuisance parameter for such an uncertainty is mapped separately on the normalization and the shape variation components of the uncertainty. For normalization, $\ln$ mapping is used, for shape a spline. Details in https://cms-analysis.github.io/HiggsAnalysis-CombinedLimit/part2/settinguptheanalysis/#binned-shape-analysis 8) All nuisance parameters for the systematic uncertainties are modelled with a Gaussian pdf. 9) Gluon fusion contributions are all scaled to 1 pb. Please combine them using either the scale factors from 'Table SM Gluon Fusion Fractions', or using your own composition.
Observed and expected distributions of the variable chosen for statistical inference in the high-mass analysis $m_{T}^{tot}$. Numerical values provided in this table correspond to Figure 30 of the auxilliary material of the publication, but restricted to $\mu\tau_{h}$ final state and 2017 data-taking year. All distributions are considered after a fit to data is performed using a background-only model, which includes the $\text{H}(125)$ boson. Some details on how the distributions should be used: 1) All given uncertainties correspond to systematic variations of $\pm1\sigma$. 2) Upper values ('plus' in the yaml file) correspond to an upward systematic variation of the parameter ($+1\sigma$). 3) Lower values ('minus' in the yaml file) correspond to a downward systematic variation of the parameter ($-1\sigma$). 4) These variations can have both positive and negative values, depending on the modelled effect. 5) Uncertainties with the same name should be treated as correlated, consistently across the upper and lower variations. 6) Systematic uncertainties with 'prop_' in the name treat limited background statistics per histogram bin, and are deployed with 'Barlow-Beeston-lite' approach. Details in https://arxiv.org/abs/1103.0354 section 5 7) Remaining systematic uncertainties alter the normalization, the shape, or both for a distribution. The nuisance parameter for such an uncertainty is mapped separately on the normalization and the shape variation components of the uncertainty. For normalization, $\ln$ mapping is used, for shape a spline. Details in https://cms-analysis.github.io/HiggsAnalysis-CombinedLimit/part2/settinguptheanalysis/#binned-shape-analysis 8) All nuisance parameters for the systematic uncertainties are modelled with a Gaussian pdf. 9) Gluon fusion contributions are all scaled to 1 pb. Please combine them using either the scale factors from 'Table SM Gluon Fusion Fractions', or using your own composition.
Observed and expected distributions of the variable chosen for statistical inference in the high-mass analysis $m_{T}^{tot}$. Numerical values provided in this table correspond to Figure 30 of the auxilliary material of the publication, but restricted to $\mu\tau_{h}$ final state and 2018 data-taking year. All distributions are considered after a fit to data is performed using a background-only model, which includes the $\text{H}(125)$ boson. Some details on how the distributions should be used: 1) All given uncertainties correspond to systematic variations of $\pm1\sigma$. 2) Upper values ('plus' in the yaml file) correspond to an upward systematic variation of the parameter ($+1\sigma$). 3) Lower values ('minus' in the yaml file) correspond to a downward systematic variation of the parameter ($-1\sigma$). 4) These variations can have both positive and negative values, depending on the modelled effect. 5) Uncertainties with the same name should be treated as correlated, consistently across the upper and lower variations. 6) Systematic uncertainties with 'prop_' in the name treat limited background statistics per histogram bin, and are deployed with 'Barlow-Beeston-lite' approach. Details in https://arxiv.org/abs/1103.0354 section 5 7) Remaining systematic uncertainties alter the normalization, the shape, or both for a distribution. The nuisance parameter for such an uncertainty is mapped separately on the normalization and the shape variation components of the uncertainty. For normalization, $\ln$ mapping is used, for shape a spline. Details in https://cms-analysis.github.io/HiggsAnalysis-CombinedLimit/part2/settinguptheanalysis/#binned-shape-analysis 8) All nuisance parameters for the systematic uncertainties are modelled with a Gaussian pdf. 9) Gluon fusion contributions are all scaled to 1 pb. Please combine them using either the scale factors from 'Table SM Gluon Fusion Fractions', or using your own composition.
Observed and expected distributions of the variable chosen for statistical inference in the high-mass analysis $m_{T}^{tot}$. Numerical values provided in this table correspond to Figure 8e of the publication, but restricted to 2016 data-taking year. All distributions are considered after a fit to data is performed using a background-only model, which includes the $\text{H}(125)$ boson. Some details on how the distributions should be used: 1) All given uncertainties correspond to systematic variations of $\pm1\sigma$. 2) Upper values ('plus' in the yaml file) correspond to an upward systematic variation of the parameter ($+1\sigma$). 3) Lower values ('minus' in the yaml file) correspond to a downward systematic variation of the parameter ($-1\sigma$). 4) These variations can have both positive and negative values, depending on the modelled effect. 5) Uncertainties with the same name should be treated as correlated, consistently across the upper and lower variations. 6) Systematic uncertainties with 'prop_' in the name treat limited background statistics per histogram bin, and are deployed with 'Barlow-Beeston-lite' approach. Details in https://arxiv.org/abs/1103.0354 section 5 7) Remaining systematic uncertainties alter the normalization, the shape, or both for a distribution. The nuisance parameter for such an uncertainty is mapped separately on the normalization and the shape variation components of the uncertainty. For normalization, $\ln$ mapping is used, for shape a spline. Details in https://cms-analysis.github.io/HiggsAnalysis-CombinedLimit/part2/settinguptheanalysis/#binned-shape-analysis 8) All nuisance parameters for the systematic uncertainties are modelled with a Gaussian pdf. 9) Gluon fusion contributions are all scaled to 1 pb. Please combine them using either the scale factors from 'Table SM Gluon Fusion Fractions', or using your own composition.
Observed and expected distributions of the variable chosen for statistical inference in the high-mass analysis $m_{T}^{tot}$. Numerical values provided in this table correspond to Figure 8e of the publication, but restricted to 2017 data-taking year. All distributions are considered after a fit to data is performed using a background-only model, which includes the $\text{H}(125)$ boson. Some details on how the distributions should be used: 1) All given uncertainties correspond to systematic variations of $\pm1\sigma$. 2) Upper values ('plus' in the yaml file) correspond to an upward systematic variation of the parameter ($+1\sigma$). 3) Lower values ('minus' in the yaml file) correspond to a downward systematic variation of the parameter ($-1\sigma$). 4) These variations can have both positive and negative values, depending on the modelled effect. 5) Uncertainties with the same name should be treated as correlated, consistently across the upper and lower variations. 6) Systematic uncertainties with 'prop_' in the name treat limited background statistics per histogram bin, and are deployed with 'Barlow-Beeston-lite' approach. Details in https://arxiv.org/abs/1103.0354 section 5 7) Remaining systematic uncertainties alter the normalization, the shape, or both for a distribution. The nuisance parameter for such an uncertainty is mapped separately on the normalization and the shape variation components of the uncertainty. For normalization, $\ln$ mapping is used, for shape a spline. Details in https://cms-analysis.github.io/HiggsAnalysis-CombinedLimit/part2/settinguptheanalysis/#binned-shape-analysis 8) All nuisance parameters for the systematic uncertainties are modelled with a Gaussian pdf. 9) Gluon fusion contributions are all scaled to 1 pb. Please combine them using either the scale factors from 'Table SM Gluon Fusion Fractions', or using your own composition.
Observed and expected distributions of the variable chosen for statistical inference in the high-mass analysis $m_{T}^{tot}$. Numerical values provided in this table correspond to Figure 8e of the publication, but restricted to 2018 data-taking year. All distributions are considered after a fit to data is performed using a background-only model, which includes the $\text{H}(125)$ boson. Some details on how the distributions should be used: 1) All given uncertainties correspond to systematic variations of $\pm1\sigma$. 2) Upper values ('plus' in the yaml file) correspond to an upward systematic variation of the parameter ($+1\sigma$). 3) Lower values ('minus' in the yaml file) correspond to a downward systematic variation of the parameter ($-1\sigma$). 4) These variations can have both positive and negative values, depending on the modelled effect. 5) Uncertainties with the same name should be treated as correlated, consistently across the upper and lower variations. 6) Systematic uncertainties with 'prop_' in the name treat limited background statistics per histogram bin, and are deployed with 'Barlow-Beeston-lite' approach. Details in https://arxiv.org/abs/1103.0354 section 5 7) Remaining systematic uncertainties alter the normalization, the shape, or both for a distribution. The nuisance parameter for such an uncertainty is mapped separately on the normalization and the shape variation components of the uncertainty. For normalization, $\ln$ mapping is used, for shape a spline. Details in https://cms-analysis.github.io/HiggsAnalysis-CombinedLimit/part2/settinguptheanalysis/#binned-shape-analysis 8) All nuisance parameters for the systematic uncertainties are modelled with a Gaussian pdf. 9) Gluon fusion contributions are all scaled to 1 pb. Please combine them using either the scale factors from 'Table SM Gluon Fusion Fractions', or using your own composition.
Observed and expected distributions of the variable chosen for statistical inference in the high-mass analysis $m_{T}^{tot}$. Numerical values provided in this table correspond to Figure 8f of the publication, but restricted to 2016 data-taking year. All distributions are considered after a fit to data is performed using a background-only model, which includes the $\text{H}(125)$ boson. Some details on how the distributions should be used: 1) All given uncertainties correspond to systematic variations of $\pm1\sigma$. 2) Upper values ('plus' in the yaml file) correspond to an upward systematic variation of the parameter ($+1\sigma$). 3) Lower values ('minus' in the yaml file) correspond to a downward systematic variation of the parameter ($-1\sigma$). 4) These variations can have both positive and negative values, depending on the modelled effect. 5) Uncertainties with the same name should be treated as correlated, consistently across the upper and lower variations. 6) Systematic uncertainties with 'prop_' in the name treat limited background statistics per histogram bin, and are deployed with 'Barlow-Beeston-lite' approach. Details in https://arxiv.org/abs/1103.0354 section 5 7) Remaining systematic uncertainties alter the normalization, the shape, or both for a distribution. The nuisance parameter for such an uncertainty is mapped separately on the normalization and the shape variation components of the uncertainty. For normalization, $\ln$ mapping is used, for shape a spline. Details in https://cms-analysis.github.io/HiggsAnalysis-CombinedLimit/part2/settinguptheanalysis/#binned-shape-analysis 8) All nuisance parameters for the systematic uncertainties are modelled with a Gaussian pdf. 9) Gluon fusion contributions are all scaled to 1 pb. Please combine them using either the scale factors from 'Table SM Gluon Fusion Fractions', or using your own composition.
Observed and expected distributions of the variable chosen for statistical inference in the high-mass analysis $m_{T}^{tot}$. Numerical values provided in this table correspond to Figure 8f of the publication, but restricted to 2017 data-taking year. All distributions are considered after a fit to data is performed using a background-only model, which includes the $\text{H}(125)$ boson. Some details on how the distributions should be used: 1) All given uncertainties correspond to systematic variations of $\pm1\sigma$. 2) Upper values ('plus' in the yaml file) correspond to an upward systematic variation of the parameter ($+1\sigma$). 3) Lower values ('minus' in the yaml file) correspond to a downward systematic variation of the parameter ($-1\sigma$). 4) These variations can have both positive and negative values, depending on the modelled effect. 5) Uncertainties with the same name should be treated as correlated, consistently across the upper and lower variations. 6) Systematic uncertainties with 'prop_' in the name treat limited background statistics per histogram bin, and are deployed with 'Barlow-Beeston-lite' approach. Details in https://arxiv.org/abs/1103.0354 section 5 7) Remaining systematic uncertainties alter the normalization, the shape, or both for a distribution. The nuisance parameter for such an uncertainty is mapped separately on the normalization and the shape variation components of the uncertainty. For normalization, $\ln$ mapping is used, for shape a spline. Details in https://cms-analysis.github.io/HiggsAnalysis-CombinedLimit/part2/settinguptheanalysis/#binned-shape-analysis 8) All nuisance parameters for the systematic uncertainties are modelled with a Gaussian pdf. 9) Gluon fusion contributions are all scaled to 1 pb. Please combine them using either the scale factors from 'Table SM Gluon Fusion Fractions', or using your own composition.
Observed and expected distributions of the variable chosen for statistical inference in the high-mass analysis $m_{T}^{tot}$. Numerical values provided in this table correspond to Figure 8f of the publication, but restricted to 2018 data-taking year. All distributions are considered after a fit to data is performed using a background-only model, which includes the $\text{H}(125)$ boson. Some details on how the distributions should be used: 1) All given uncertainties correspond to systematic variations of $\pm1\sigma$. 2) Upper values ('plus' in the yaml file) correspond to an upward systematic variation of the parameter ($+1\sigma$). 3) Lower values ('minus' in the yaml file) correspond to a downward systematic variation of the parameter ($-1\sigma$). 4) These variations can have both positive and negative values, depending on the modelled effect. 5) Uncertainties with the same name should be treated as correlated, consistently across the upper and lower variations. 6) Systematic uncertainties with 'prop_' in the name treat limited background statistics per histogram bin, and are deployed with 'Barlow-Beeston-lite' approach. Details in https://arxiv.org/abs/1103.0354 section 5 7) Remaining systematic uncertainties alter the normalization, the shape, or both for a distribution. The nuisance parameter for such an uncertainty is mapped separately on the normalization and the shape variation components of the uncertainty. For normalization, $\ln$ mapping is used, for shape a spline. Details in https://cms-analysis.github.io/HiggsAnalysis-CombinedLimit/part2/settinguptheanalysis/#binned-shape-analysis 8) All nuisance parameters for the systematic uncertainties are modelled with a Gaussian pdf. 9) Gluon fusion contributions are all scaled to 1 pb. Please combine them using either the scale factors from 'Table SM Gluon Fusion Fractions', or using your own composition.
Observed and expected distributions of the variable chosen for statistical inference in the $t\bar{t}$ control region $m_{T}^{tot}$ for low-mass analysis. Numerical values provided in this table correspond to the $t\bar{t}$ control region of the publication, restricted to 2016 data-taking year. All distributions are considered after a fit to data is performed using a background-only model, which includes the $\text{H}(125)$ boson. Some details on how the distributions should be used: 1) All given uncertainties correspond to systematic variations of $\pm1\sigma$. 2) Upper values ('plus' in the yaml file) correspond to an upward systematic variation of the parameter ($+1\sigma$). 3) Lower values ('minus' in the yaml file) correspond to a downward systematic variation of the parameter ($-1\sigma$). 4) These variations can have both positive and negative values, depending on the modelled effect. 5) Uncertainties with the same name should be treated as correlated, consistently across the upper and lower variations. 6) Systematic uncertainties with 'prop_' in the name treat limited background statistics per histogram bin, and are deployed with 'Barlow-Beeston-lite' approach. Details in https://arxiv.org/abs/1103.0354 section 5 7) Remaining systematic uncertainties alter the normalization, the shape, or both for a distribution. The nuisance parameter for such an uncertainty is mapped separately on the normalization and the shape variation components of the uncertainty. For normalization, $\ln$ mapping is used, for shape a spline. Details in https://cms-analysis.github.io/HiggsAnalysis-CombinedLimit/part2/settinguptheanalysis/#binned-shape-analysis 8) All nuisance parameters for the systematic uncertainties are modelled with a Gaussian pdf. 9) Gluon fusion contributions are all scaled to 1 pb. Please combine them using either the scale factors from 'Table SM Gluon Fusion Fractions', or using your own composition.
Observed and expected distributions of the variable chosen for statistical inference in the $t\bar{t}$ control region $m_{T}^{tot}$ for low-mass analysis. Numerical values provided in this table correspond to the $t\bar{t}$ control region of the publication, restricted to 2017 data-taking year. All distributions are considered after a fit to data is performed using a background-only model, which includes the $\text{H}(125)$ boson. Some details on how the distributions should be used: 1) All given uncertainties correspond to systematic variations of $\pm1\sigma$. 2) Upper values ('plus' in the yaml file) correspond to an upward systematic variation of the parameter ($+1\sigma$). 3) Lower values ('minus' in the yaml file) correspond to a downward systematic variation of the parameter ($-1\sigma$). 4) These variations can have both positive and negative values, depending on the modelled effect. 5) Uncertainties with the same name should be treated as correlated, consistently across the upper and lower variations. 6) Systematic uncertainties with 'prop_' in the name treat limited background statistics per histogram bin, and are deployed with 'Barlow-Beeston-lite' approach. Details in https://arxiv.org/abs/1103.0354 section 5 7) Remaining systematic uncertainties alter the normalization, the shape, or both for a distribution. The nuisance parameter for such an uncertainty is mapped separately on the normalization and the shape variation components of the uncertainty. For normalization, $\ln$ mapping is used, for shape a spline. Details in https://cms-analysis.github.io/HiggsAnalysis-CombinedLimit/part2/settinguptheanalysis/#binned-shape-analysis 8) All nuisance parameters for the systematic uncertainties are modelled with a Gaussian pdf. 9) Gluon fusion contributions are all scaled to 1 pb. Please combine them using either the scale factors from 'Table SM Gluon Fusion Fractions', or using your own composition.
Observed and expected distributions of the variable chosen for statistical inference in the $t\bar{t}$ control region $m_{T}^{tot}$ for low-mass analysis. Numerical values provided in this table correspond to the $t\bar{t}$ control region of the publication, restricted to 2018 data-taking year. All distributions are considered after a fit to data is performed using a background-only model, which includes the $\text{H}(125)$ boson. Some details on how the distributions should be used: 1) All given uncertainties correspond to systematic variations of $\pm1\sigma$. 2) Upper values ('plus' in the yaml file) correspond to an upward systematic variation of the parameter ($+1\sigma$). 3) Lower values ('minus' in the yaml file) correspond to a downward systematic variation of the parameter ($-1\sigma$). 4) These variations can have both positive and negative values, depending on the modelled effect. 5) Uncertainties with the same name should be treated as correlated, consistently across the upper and lower variations. 6) Systematic uncertainties with 'prop_' in the name treat limited background statistics per histogram bin, and are deployed with 'Barlow-Beeston-lite' approach. Details in https://arxiv.org/abs/1103.0354 section 5 7) Remaining systematic uncertainties alter the normalization, the shape, or both for a distribution. The nuisance parameter for such an uncertainty is mapped separately on the normalization and the shape variation components of the uncertainty. For normalization, $\ln$ mapping is used, for shape a spline. Details in https://cms-analysis.github.io/HiggsAnalysis-CombinedLimit/part2/settinguptheanalysis/#binned-shape-analysis 8) All nuisance parameters for the systematic uncertainties are modelled with a Gaussian pdf. 9) Gluon fusion contributions are all scaled to 1 pb. Please combine them using either the scale factors from 'Table SM Gluon Fusion Fractions', or using your own composition.
Observed and expected distributions of the variable chosen for statistical inference in the low-mass analysis $m_{\tau\tau}$. Numerical values provided in this table correspond to Figure 11 of the auxilliary material of the publication, but restricted to High-$D_\zeta$ category and 2016 data-taking year. All distributions are considered after a fit to data is performed using a background-only model, which includes the $\text{H}(125)$ boson. Some details on how the distributions should be used: 1) All given uncertainties correspond to systematic variations of $\pm1\sigma$. 2) Upper values ('plus' in the yaml file) correspond to an upward systematic variation of the parameter ($+1\sigma$). 3) Lower values ('minus' in the yaml file) correspond to a downward systematic variation of the parameter ($-1\sigma$). 4) These variations can have both positive and negative values, depending on the modelled effect. 5) Uncertainties with the same name should be treated as correlated, consistently across the upper and lower variations. 6) Systematic uncertainties with 'prop_' in the name treat limited background statistics per histogram bin, and are deployed with 'Barlow-Beeston-lite' approach. Details in https://arxiv.org/abs/1103.0354 section 5 7) Remaining systematic uncertainties alter the normalization, the shape, or both for a distribution. The nuisance parameter for such an uncertainty is mapped separately on the normalization and the shape variation components of the uncertainty. For normalization, $\ln$ mapping is used, for shape a spline. Details in https://cms-analysis.github.io/HiggsAnalysis-CombinedLimit/part2/settinguptheanalysis/#binned-shape-analysis 8) All nuisance parameters for the systematic uncertainties are modelled with a Gaussian pdf. 9) Gluon fusion contributions are all scaled to 1 pb. Please combine them using either the scale factors from 'Table SM Gluon Fusion Fractions', or using your own composition.
Observed and expected distributions of the variable chosen for statistical inference in the low-mass analysis $m_{\tau\tau}$. Numerical values provided in this table correspond to Figure 11 of the auxilliary material of the publication, but restricted to High-$D_\zeta$ category and 2017 data-taking year. All distributions are considered after a fit to data is performed using a background-only model, which includes the $\text{H}(125)$ boson. Some details on how the distributions should be used: 1) All given uncertainties correspond to systematic variations of $\pm1\sigma$. 2) Upper values ('plus' in the yaml file) correspond to an upward systematic variation of the parameter ($+1\sigma$). 3) Lower values ('minus' in the yaml file) correspond to a downward systematic variation of the parameter ($-1\sigma$). 4) These variations can have both positive and negative values, depending on the modelled effect. 5) Uncertainties with the same name should be treated as correlated, consistently across the upper and lower variations. 6) Systematic uncertainties with 'prop_' in the name treat limited background statistics per histogram bin, and are deployed with 'Barlow-Beeston-lite' approach. Details in https://arxiv.org/abs/1103.0354 section 5 7) Remaining systematic uncertainties alter the normalization, the shape, or both for a distribution. The nuisance parameter for such an uncertainty is mapped separately on the normalization and the shape variation components of the uncertainty. For normalization, $\ln$ mapping is used, for shape a spline. Details in https://cms-analysis.github.io/HiggsAnalysis-CombinedLimit/part2/settinguptheanalysis/#binned-shape-analysis 8) All nuisance parameters for the systematic uncertainties are modelled with a Gaussian pdf. 9) Gluon fusion contributions are all scaled to 1 pb. Please combine them using either the scale factors from 'Table SM Gluon Fusion Fractions', or using your own composition.
Observed and expected distributions of the variable chosen for statistical inference in the low-mass analysis $m_{\tau\tau}$. Numerical values provided in this table correspond to Figure 11 of the auxilliary material of the publication, but restricted to High-$D_\zeta$ category and 2018 data-taking year. All distributions are considered after a fit to data is performed using a background-only model, which includes the $\text{H}(125)$ boson. Some details on how the distributions should be used: 1) All given uncertainties correspond to systematic variations of $\pm1\sigma$. 2) Upper values ('plus' in the yaml file) correspond to an upward systematic variation of the parameter ($+1\sigma$). 3) Lower values ('minus' in the yaml file) correspond to a downward systematic variation of the parameter ($-1\sigma$). 4) These variations can have both positive and negative values, depending on the modelled effect. 5) Uncertainties with the same name should be treated as correlated, consistently across the upper and lower variations. 6) Systematic uncertainties with 'prop_' in the name treat limited background statistics per histogram bin, and are deployed with 'Barlow-Beeston-lite' approach. Details in https://arxiv.org/abs/1103.0354 section 5 7) Remaining systematic uncertainties alter the normalization, the shape, or both for a distribution. The nuisance parameter for such an uncertainty is mapped separately on the normalization and the shape variation components of the uncertainty. For normalization, $\ln$ mapping is used, for shape a spline. Details in https://cms-analysis.github.io/HiggsAnalysis-CombinedLimit/part2/settinguptheanalysis/#binned-shape-analysis 8) All nuisance parameters for the systematic uncertainties are modelled with a Gaussian pdf. 9) Gluon fusion contributions are all scaled to 1 pb. Please combine them using either the scale factors from 'Table SM Gluon Fusion Fractions', or using your own composition.
Observed and expected distributions of the variable chosen for statistical inference in the low-mass analysis $m_{\tau\tau}$. Numerical values provided in this table correspond to Figure 11 of the auxilliary material of the publication, but restricted to Medium-$D_\zeta$ category and 2016 data-taking year. All distributions are considered after a fit to data is performed using a background-only model, which includes the $\text{H}(125)$ boson. Some details on how the distributions should be used: 1) All given uncertainties correspond to systematic variations of $\pm1\sigma$. 2) Upper values ('plus' in the yaml file) correspond to an upward systematic variation of the parameter ($+1\sigma$). 3) Lower values ('minus' in the yaml file) correspond to a downward systematic variation of the parameter ($-1\sigma$). 4) These variations can have both positive and negative values, depending on the modelled effect. 5) Uncertainties with the same name should be treated as correlated, consistently across the upper and lower variations. 6) Systematic uncertainties with 'prop_' in the name treat limited background statistics per histogram bin, and are deployed with 'Barlow-Beeston-lite' approach. Details in https://arxiv.org/abs/1103.0354 section 5 7) Remaining systematic uncertainties alter the normalization, the shape, or both for a distribution. The nuisance parameter for such an uncertainty is mapped separately on the normalization and the shape variation components of the uncertainty. For normalization, $\ln$ mapping is used, for shape a spline. Details in https://cms-analysis.github.io/HiggsAnalysis-CombinedLimit/part2/settinguptheanalysis/#binned-shape-analysis 8) All nuisance parameters for the systematic uncertainties are modelled with a Gaussian pdf. 9) Gluon fusion contributions are all scaled to 1 pb. Please combine them using either the scale factors from 'Table SM Gluon Fusion Fractions', or using your own composition.
Observed and expected distributions of the variable chosen for statistical inference in the low-mass analysis $m_{\tau\tau}$. Numerical values provided in this table correspond to Figure 11 of the auxilliary material of the publication, but restricted to Medium-$D_\zeta$ category and 2017 data-taking year. All distributions are considered after a fit to data is performed using a background-only model, which includes the $\text{H}(125)$ boson. Some details on how the distributions should be used: 1) All given uncertainties correspond to systematic variations of $\pm1\sigma$. 2) Upper values ('plus' in the yaml file) correspond to an upward systematic variation of the parameter ($+1\sigma$). 3) Lower values ('minus' in the yaml file) correspond to a downward systematic variation of the parameter ($-1\sigma$). 4) These variations can have both positive and negative values, depending on the modelled effect. 5) Uncertainties with the same name should be treated as correlated, consistently across the upper and lower variations. 6) Systematic uncertainties with 'prop_' in the name treat limited background statistics per histogram bin, and are deployed with 'Barlow-Beeston-lite' approach. Details in https://arxiv.org/abs/1103.0354 section 5 7) Remaining systematic uncertainties alter the normalization, the shape, or both for a distribution. The nuisance parameter for such an uncertainty is mapped separately on the normalization and the shape variation components of the uncertainty. For normalization, $\ln$ mapping is used, for shape a spline. Details in https://cms-analysis.github.io/HiggsAnalysis-CombinedLimit/part2/settinguptheanalysis/#binned-shape-analysis 8) All nuisance parameters for the systematic uncertainties are modelled with a Gaussian pdf. 9) Gluon fusion contributions are all scaled to 1 pb. Please combine them using either the scale factors from 'Table SM Gluon Fusion Fractions', or using your own composition.
Observed and expected distributions of the variable chosen for statistical inference in the low-mass analysis $m_{\tau\tau}$. Numerical values provided in this table correspond to Figure 11 of the auxilliary material of the publication, but restricted to Medium-$D_\zeta$ category and 2018 data-taking year. All distributions are considered after a fit to data is performed using a background-only model, which includes the $\text{H}(125)$ boson. Some details on how the distributions should be used: 1) All given uncertainties correspond to systematic variations of $\pm1\sigma$. 2) Upper values ('plus' in the yaml file) correspond to an upward systematic variation of the parameter ($+1\sigma$). 3) Lower values ('minus' in the yaml file) correspond to a downward systematic variation of the parameter ($-1\sigma$). 4) These variations can have both positive and negative values, depending on the modelled effect. 5) Uncertainties with the same name should be treated as correlated, consistently across the upper and lower variations. 6) Systematic uncertainties with 'prop_' in the name treat limited background statistics per histogram bin, and are deployed with 'Barlow-Beeston-lite' approach. Details in https://arxiv.org/abs/1103.0354 section 5 7) Remaining systematic uncertainties alter the normalization, the shape, or both for a distribution. The nuisance parameter for such an uncertainty is mapped separately on the normalization and the shape variation components of the uncertainty. For normalization, $\ln$ mapping is used, for shape a spline. Details in https://cms-analysis.github.io/HiggsAnalysis-CombinedLimit/part2/settinguptheanalysis/#binned-shape-analysis 8) All nuisance parameters for the systematic uncertainties are modelled with a Gaussian pdf. 9) Gluon fusion contributions are all scaled to 1 pb. Please combine them using either the scale factors from 'Table SM Gluon Fusion Fractions', or using your own composition.
Observed and expected distributions of the variable chosen for statistical inference in the low-mass analysis $m_{\tau\tau}$. Numerical values provided in this table correspond to Figure 12 of the auxilliary material of the publication, but restricted to High-$D_\zeta$ category and 2016 data-taking year. All distributions are considered after a fit to data is performed using a background-only model, which includes the $\text{H}(125)$ boson. Some details on how the distributions should be used: 1) All given uncertainties correspond to systematic variations of $\pm1\sigma$. 2) Upper values ('plus' in the yaml file) correspond to an upward systematic variation of the parameter ($+1\sigma$). 3) Lower values ('minus' in the yaml file) correspond to a downward systematic variation of the parameter ($-1\sigma$). 4) These variations can have both positive and negative values, depending on the modelled effect. 5) Uncertainties with the same name should be treated as correlated, consistently across the upper and lower variations. 6) Systematic uncertainties with 'prop_' in the name treat limited background statistics per histogram bin, and are deployed with 'Barlow-Beeston-lite' approach. Details in https://arxiv.org/abs/1103.0354 section 5 7) Remaining systematic uncertainties alter the normalization, the shape, or both for a distribution. The nuisance parameter for such an uncertainty is mapped separately on the normalization and the shape variation components of the uncertainty. For normalization, $\ln$ mapping is used, for shape a spline. Details in https://cms-analysis.github.io/HiggsAnalysis-CombinedLimit/part2/settinguptheanalysis/#binned-shape-analysis 8) All nuisance parameters for the systematic uncertainties are modelled with a Gaussian pdf. 9) Gluon fusion contributions are all scaled to 1 pb. Please combine them using either the scale factors from 'Table SM Gluon Fusion Fractions', or using your own composition.
Observed and expected distributions of the variable chosen for statistical inference in the low-mass analysis $m_{\tau\tau}$. Numerical values provided in this table correspond to Figure 12 of the auxilliary material of the publication, but restricted to High-$D_\zeta$ category and 2017 data-taking year. All distributions are considered after a fit to data is performed using a background-only model, which includes the $\text{H}(125)$ boson. Some details on how the distributions should be used: 1) All given uncertainties correspond to systematic variations of $\pm1\sigma$. 2) Upper values ('plus' in the yaml file) correspond to an upward systematic variation of the parameter ($+1\sigma$). 3) Lower values ('minus' in the yaml file) correspond to a downward systematic variation of the parameter ($-1\sigma$). 4) These variations can have both positive and negative values, depending on the modelled effect. 5) Uncertainties with the same name should be treated as correlated, consistently across the upper and lower variations. 6) Systematic uncertainties with 'prop_' in the name treat limited background statistics per histogram bin, and are deployed with 'Barlow-Beeston-lite' approach. Details in https://arxiv.org/abs/1103.0354 section 5 7) Remaining systematic uncertainties alter the normalization, the shape, or both for a distribution. The nuisance parameter for such an uncertainty is mapped separately on the normalization and the shape variation components of the uncertainty. For normalization, $\ln$ mapping is used, for shape a spline. Details in https://cms-analysis.github.io/HiggsAnalysis-CombinedLimit/part2/settinguptheanalysis/#binned-shape-analysis 8) All nuisance parameters for the systematic uncertainties are modelled with a Gaussian pdf. 9) Gluon fusion contributions are all scaled to 1 pb. Please combine them using either the scale factors from 'Table SM Gluon Fusion Fractions', or using your own composition.
Observed and expected distributions of the variable chosen for statistical inference in the low-mass analysis $m_{\tau\tau}$. Numerical values provided in this table correspond to Figure 12 of the auxilliary material of the publication, but restricted to High-$D_\zeta$ category and 2018 data-taking year. All distributions are considered after a fit to data is performed using a background-only model, which includes the $\text{H}(125)$ boson. Some details on how the distributions should be used: 1) All given uncertainties correspond to systematic variations of $\pm1\sigma$. 2) Upper values ('plus' in the yaml file) correspond to an upward systematic variation of the parameter ($+1\sigma$). 3) Lower values ('minus' in the yaml file) correspond to a downward systematic variation of the parameter ($-1\sigma$). 4) These variations can have both positive and negative values, depending on the modelled effect. 5) Uncertainties with the same name should be treated as correlated, consistently across the upper and lower variations. 6) Systematic uncertainties with 'prop_' in the name treat limited background statistics per histogram bin, and are deployed with 'Barlow-Beeston-lite' approach. Details in https://arxiv.org/abs/1103.0354 section 5 7) Remaining systematic uncertainties alter the normalization, the shape, or both for a distribution. The nuisance parameter for such an uncertainty is mapped separately on the normalization and the shape variation components of the uncertainty. For normalization, $\ln$ mapping is used, for shape a spline. Details in https://cms-analysis.github.io/HiggsAnalysis-CombinedLimit/part2/settinguptheanalysis/#binned-shape-analysis 8) All nuisance parameters for the systematic uncertainties are modelled with a Gaussian pdf. 9) Gluon fusion contributions are all scaled to 1 pb. Please combine them using either the scale factors from 'Table SM Gluon Fusion Fractions', or using your own composition.
Observed and expected distributions of the variable chosen for statistical inference in the low-mass analysis $m_{\tau\tau}$. Numerical values provided in this table correspond to Figure 12 of the auxilliary material of the publication, but restricted to Medium-$D_\zeta$ category and 2016 data-taking year. All distributions are considered after a fit to data is performed using a background-only model, which includes the $\text{H}(125)$ boson. Some details on how the distributions should be used: 1) All given uncertainties correspond to systematic variations of $\pm1\sigma$. 2) Upper values ('plus' in the yaml file) correspond to an upward systematic variation of the parameter ($+1\sigma$). 3) Lower values ('minus' in the yaml file) correspond to a downward systematic variation of the parameter ($-1\sigma$). 4) These variations can have both positive and negative values, depending on the modelled effect. 5) Uncertainties with the same name should be treated as correlated, consistently across the upper and lower variations. 6) Systematic uncertainties with 'prop_' in the name treat limited background statistics per histogram bin, and are deployed with 'Barlow-Beeston-lite' approach. Details in https://arxiv.org/abs/1103.0354 section 5 7) Remaining systematic uncertainties alter the normalization, the shape, or both for a distribution. The nuisance parameter for such an uncertainty is mapped separately on the normalization and the shape variation components of the uncertainty. For normalization, $\ln$ mapping is used, for shape a spline. Details in https://cms-analysis.github.io/HiggsAnalysis-CombinedLimit/part2/settinguptheanalysis/#binned-shape-analysis 8) All nuisance parameters for the systematic uncertainties are modelled with a Gaussian pdf. 9) Gluon fusion contributions are all scaled to 1 pb. Please combine them using either the scale factors from 'Table SM Gluon Fusion Fractions', or using your own composition.
Observed and expected distributions of the variable chosen for statistical inference in the low-mass analysis $m_{\tau\tau}$. Numerical values provided in this table correspond to Figure 12 of the auxilliary material of the publication, but restricted to Medium-$D_\zeta$ category and 2017 data-taking year. All distributions are considered after a fit to data is performed using a background-only model, which includes the $\text{H}(125)$ boson. Some details on how the distributions should be used: 1) All given uncertainties correspond to systematic variations of $\pm1\sigma$. 2) Upper values ('plus' in the yaml file) correspond to an upward systematic variation of the parameter ($+1\sigma$). 3) Lower values ('minus' in the yaml file) correspond to a downward systematic variation of the parameter ($-1\sigma$). 4) These variations can have both positive and negative values, depending on the modelled effect. 5) Uncertainties with the same name should be treated as correlated, consistently across the upper and lower variations. 6) Systematic uncertainties with 'prop_' in the name treat limited background statistics per histogram bin, and are deployed with 'Barlow-Beeston-lite' approach. Details in https://arxiv.org/abs/1103.0354 section 5 7) Remaining systematic uncertainties alter the normalization, the shape, or both for a distribution. The nuisance parameter for such an uncertainty is mapped separately on the normalization and the shape variation components of the uncertainty. For normalization, $\ln$ mapping is used, for shape a spline. Details in https://cms-analysis.github.io/HiggsAnalysis-CombinedLimit/part2/settinguptheanalysis/#binned-shape-analysis 8) All nuisance parameters for the systematic uncertainties are modelled with a Gaussian pdf. 9) Gluon fusion contributions are all scaled to 1 pb. Please combine them using either the scale factors from 'Table SM Gluon Fusion Fractions', or using your own composition.
Observed and expected distributions of the variable chosen for statistical inference in the low-mass analysis $m_{\tau\tau}$. Numerical values provided in this table correspond to Figure 12 of the auxilliary material of the publication, but restricted to Medium-$D_\zeta$ category and 2018 data-taking year. All distributions are considered after a fit to data is performed using a background-only model, which includes the $\text{H}(125)$ boson. Some details on how the distributions should be used: 1) All given uncertainties correspond to systematic variations of $\pm1\sigma$. 2) Upper values ('plus' in the yaml file) correspond to an upward systematic variation of the parameter ($+1\sigma$). 3) Lower values ('minus' in the yaml file) correspond to a downward systematic variation of the parameter ($-1\sigma$). 4) These variations can have both positive and negative values, depending on the modelled effect. 5) Uncertainties with the same name should be treated as correlated, consistently across the upper and lower variations. 6) Systematic uncertainties with 'prop_' in the name treat limited background statistics per histogram bin, and are deployed with 'Barlow-Beeston-lite' approach. Details in https://arxiv.org/abs/1103.0354 section 5 7) Remaining systematic uncertainties alter the normalization, the shape, or both for a distribution. The nuisance parameter for such an uncertainty is mapped separately on the normalization and the shape variation components of the uncertainty. For normalization, $\ln$ mapping is used, for shape a spline. Details in https://cms-analysis.github.io/HiggsAnalysis-CombinedLimit/part2/settinguptheanalysis/#binned-shape-analysis 8) All nuisance parameters for the systematic uncertainties are modelled with a Gaussian pdf. 9) Gluon fusion contributions are all scaled to 1 pb. Please combine them using either the scale factors from 'Table SM Gluon Fusion Fractions', or using your own composition.
Observed and expected distributions of the variable chosen for statistical inference in the low-mass analysis $m_{\tau\tau}$. Numerical values provided in this table correspond to Figure 13 of the auxilliary material of the publication, but restricted to High-$D_\zeta$ category and 2016 data-taking year. All distributions are considered after a fit to data is performed using a background-only model, which includes the $\text{H}(125)$ boson. Some details on how the distributions should be used: 1) All given uncertainties correspond to systematic variations of $\pm1\sigma$. 2) Upper values ('plus' in the yaml file) correspond to an upward systematic variation of the parameter ($+1\sigma$). 3) Lower values ('minus' in the yaml file) correspond to a downward systematic variation of the parameter ($-1\sigma$). 4) These variations can have both positive and negative values, depending on the modelled effect. 5) Uncertainties with the same name should be treated as correlated, consistently across the upper and lower variations. 6) Systematic uncertainties with 'prop_' in the name treat limited background statistics per histogram bin, and are deployed with 'Barlow-Beeston-lite' approach. Details in https://arxiv.org/abs/1103.0354 section 5 7) Remaining systematic uncertainties alter the normalization, the shape, or both for a distribution. The nuisance parameter for such an uncertainty is mapped separately on the normalization and the shape variation components of the uncertainty. For normalization, $\ln$ mapping is used, for shape a spline. Details in https://cms-analysis.github.io/HiggsAnalysis-CombinedLimit/part2/settinguptheanalysis/#binned-shape-analysis 8) All nuisance parameters for the systematic uncertainties are modelled with a Gaussian pdf. 9) Gluon fusion contributions are all scaled to 1 pb. Please combine them using either the scale factors from 'Table SM Gluon Fusion Fractions', or using your own composition.
Observed and expected distributions of the variable chosen for statistical inference in the low-mass analysis $m_{\tau\tau}$. Numerical values provided in this table correspond to Figure 13 of the auxilliary material of the publication, but restricted to High-$D_\zeta$ category and 2017 data-taking year. All distributions are considered after a fit to data is performed using a background-only model, which includes the $\text{H}(125)$ boson. Some details on how the distributions should be used: 1) All given uncertainties correspond to systematic variations of $\pm1\sigma$. 2) Upper values ('plus' in the yaml file) correspond to an upward systematic variation of the parameter ($+1\sigma$). 3) Lower values ('minus' in the yaml file) correspond to a downward systematic variation of the parameter ($-1\sigma$). 4) These variations can have both positive and negative values, depending on the modelled effect. 5) Uncertainties with the same name should be treated as correlated, consistently across the upper and lower variations. 6) Systematic uncertainties with 'prop_' in the name treat limited background statistics per histogram bin, and are deployed with 'Barlow-Beeston-lite' approach. Details in https://arxiv.org/abs/1103.0354 section 5 7) Remaining systematic uncertainties alter the normalization, the shape, or both for a distribution. The nuisance parameter for such an uncertainty is mapped separately on the normalization and the shape variation components of the uncertainty. For normalization, $\ln$ mapping is used, for shape a spline. Details in https://cms-analysis.github.io/HiggsAnalysis-CombinedLimit/part2/settinguptheanalysis/#binned-shape-analysis 8) All nuisance parameters for the systematic uncertainties are modelled with a Gaussian pdf. 9) Gluon fusion contributions are all scaled to 1 pb. Please combine them using either the scale factors from 'Table SM Gluon Fusion Fractions', or using your own composition.
Observed and expected distributions of the variable chosen for statistical inference in the low-mass analysis $m_{\tau\tau}$. Numerical values provided in this table correspond to Figure 13 of the auxilliary material of the publication, but restricted to High-$D_\zeta$ category and 2018 data-taking year. All distributions are considered after a fit to data is performed using a background-only model, which includes the $\text{H}(125)$ boson. Some details on how the distributions should be used: 1) All given uncertainties correspond to systematic variations of $\pm1\sigma$. 2) Upper values ('plus' in the yaml file) correspond to an upward systematic variation of the parameter ($+1\sigma$). 3) Lower values ('minus' in the yaml file) correspond to a downward systematic variation of the parameter ($-1\sigma$). 4) These variations can have both positive and negative values, depending on the modelled effect. 5) Uncertainties with the same name should be treated as correlated, consistently across the upper and lower variations. 6) Systematic uncertainties with 'prop_' in the name treat limited background statistics per histogram bin, and are deployed with 'Barlow-Beeston-lite' approach. Details in https://arxiv.org/abs/1103.0354 section 5 7) Remaining systematic uncertainties alter the normalization, the shape, or both for a distribution. The nuisance parameter for such an uncertainty is mapped separately on the normalization and the shape variation components of the uncertainty. For normalization, $\ln$ mapping is used, for shape a spline. Details in https://cms-analysis.github.io/HiggsAnalysis-CombinedLimit/part2/settinguptheanalysis/#binned-shape-analysis 8) All nuisance parameters for the systematic uncertainties are modelled with a Gaussian pdf. 9) Gluon fusion contributions are all scaled to 1 pb. Please combine them using either the scale factors from 'Table SM Gluon Fusion Fractions', or using your own composition.
Observed and expected distributions of the variable chosen for statistical inference in the low-mass analysis $m_{\tau\tau}$. Numerical values provided in this table correspond to Figure 13 of the auxilliary material of the publication, but restricted to Medium-$D_\zeta$ category and 2016 data-taking year. All distributions are considered after a fit to data is performed using a background-only model, which includes the $\text{H}(125)$ boson. Some details on how the distributions should be used: 1) All given uncertainties correspond to systematic variations of $\pm1\sigma$. 2) Upper values ('plus' in the yaml file) correspond to an upward systematic variation of the parameter ($+1\sigma$). 3) Lower values ('minus' in the yaml file) correspond to a downward systematic variation of the parameter ($-1\sigma$). 4) These variations can have both positive and negative values, depending on the modelled effect. 5) Uncertainties with the same name should be treated as correlated, consistently across the upper and lower variations. 6) Systematic uncertainties with 'prop_' in the name treat limited background statistics per histogram bin, and are deployed with 'Barlow-Beeston-lite' approach. Details in https://arxiv.org/abs/1103.0354 section 5 7) Remaining systematic uncertainties alter the normalization, the shape, or both for a distribution. The nuisance parameter for such an uncertainty is mapped separately on the normalization and the shape variation components of the uncertainty. For normalization, $\ln$ mapping is used, for shape a spline. Details in https://cms-analysis.github.io/HiggsAnalysis-CombinedLimit/part2/settinguptheanalysis/#binned-shape-analysis 8) All nuisance parameters for the systematic uncertainties are modelled with a Gaussian pdf. 9) Gluon fusion contributions are all scaled to 1 pb. Please combine them using either the scale factors from 'Table SM Gluon Fusion Fractions', or using your own composition.
Observed and expected distributions of the variable chosen for statistical inference in the low-mass analysis $m_{\tau\tau}$. Numerical values provided in this table correspond to Figure 13 of the auxilliary material of the publication, but restricted to Medium-$D_\zeta$ category and 2017 data-taking year. All distributions are considered after a fit to data is performed using a background-only model, which includes the $\text{H}(125)$ boson. Some details on how the distributions should be used: 1) All given uncertainties correspond to systematic variations of $\pm1\sigma$. 2) Upper values ('plus' in the yaml file) correspond to an upward systematic variation of the parameter ($+1\sigma$). 3) Lower values ('minus' in the yaml file) correspond to a downward systematic variation of the parameter ($-1\sigma$). 4) These variations can have both positive and negative values, depending on the modelled effect. 5) Uncertainties with the same name should be treated as correlated, consistently across the upper and lower variations. 6) Systematic uncertainties with 'prop_' in the name treat limited background statistics per histogram bin, and are deployed with 'Barlow-Beeston-lite' approach. Details in https://arxiv.org/abs/1103.0354 section 5 7) Remaining systematic uncertainties alter the normalization, the shape, or both for a distribution. The nuisance parameter for such an uncertainty is mapped separately on the normalization and the shape variation components of the uncertainty. For normalization, $\ln$ mapping is used, for shape a spline. Details in https://cms-analysis.github.io/HiggsAnalysis-CombinedLimit/part2/settinguptheanalysis/#binned-shape-analysis 8) All nuisance parameters for the systematic uncertainties are modelled with a Gaussian pdf. 9) Gluon fusion contributions are all scaled to 1 pb. Please combine them using either the scale factors from 'Table SM Gluon Fusion Fractions', or using your own composition.
Observed and expected distributions of the variable chosen for statistical inference in the low-mass analysis $m_{\tau\tau}$. Numerical values provided in this table correspond to Figure 13 of the auxilliary material of the publication, but restricted to Medium-$D_\zeta$ category and 2018 data-taking year. All distributions are considered after a fit to data is performed using a background-only model, which includes the $\text{H}(125)$ boson. Some details on how the distributions should be used: 1) All given uncertainties correspond to systematic variations of $\pm1\sigma$. 2) Upper values ('plus' in the yaml file) correspond to an upward systematic variation of the parameter ($+1\sigma$). 3) Lower values ('minus' in the yaml file) correspond to a downward systematic variation of the parameter ($-1\sigma$). 4) These variations can have both positive and negative values, depending on the modelled effect. 5) Uncertainties with the same name should be treated as correlated, consistently across the upper and lower variations. 6) Systematic uncertainties with 'prop_' in the name treat limited background statistics per histogram bin, and are deployed with 'Barlow-Beeston-lite' approach. Details in https://arxiv.org/abs/1103.0354 section 5 7) Remaining systematic uncertainties alter the normalization, the shape, or both for a distribution. The nuisance parameter for such an uncertainty is mapped separately on the normalization and the shape variation components of the uncertainty. For normalization, $\ln$ mapping is used, for shape a spline. Details in https://cms-analysis.github.io/HiggsAnalysis-CombinedLimit/part2/settinguptheanalysis/#binned-shape-analysis 8) All nuisance parameters for the systematic uncertainties are modelled with a Gaussian pdf. 9) Gluon fusion contributions are all scaled to 1 pb. Please combine them using either the scale factors from 'Table SM Gluon Fusion Fractions', or using your own composition.
Observed and expected distributions of the variable chosen for statistical inference in the low-mass analysis $m_{\tau\tau}$. Numerical values provided in this table correspond to Figure 14 of the auxilliary material of the publication, but restricted to High-$D_\zeta$ category and 2016 data-taking year. All distributions are considered after a fit to data is performed using a background-only model, which includes the $\text{H}(125)$ boson. Some details on how the distributions should be used: 1) All given uncertainties correspond to systematic variations of $\pm1\sigma$. 2) Upper values ('plus' in the yaml file) correspond to an upward systematic variation of the parameter ($+1\sigma$). 3) Lower values ('minus' in the yaml file) correspond to a downward systematic variation of the parameter ($-1\sigma$). 4) These variations can have both positive and negative values, depending on the modelled effect. 5) Uncertainties with the same name should be treated as correlated, consistently across the upper and lower variations. 6) Systematic uncertainties with 'prop_' in the name treat limited background statistics per histogram bin, and are deployed with 'Barlow-Beeston-lite' approach. Details in https://arxiv.org/abs/1103.0354 section 5 7) Remaining systematic uncertainties alter the normalization, the shape, or both for a distribution. The nuisance parameter for such an uncertainty is mapped separately on the normalization and the shape variation components of the uncertainty. For normalization, $\ln$ mapping is used, for shape a spline. Details in https://cms-analysis.github.io/HiggsAnalysis-CombinedLimit/part2/settinguptheanalysis/#binned-shape-analysis 8) All nuisance parameters for the systematic uncertainties are modelled with a Gaussian pdf. 9) Gluon fusion contributions are all scaled to 1 pb. Please combine them using either the scale factors from 'Table SM Gluon Fusion Fractions', or using your own composition.
Observed and expected distributions of the variable chosen for statistical inference in the low-mass analysis $m_{\tau\tau}$. Numerical values provided in this table correspond to Figure 14 of the auxilliary material of the publication, but restricted to High-$D_\zeta$ category and 2017 data-taking year. All distributions are considered after a fit to data is performed using a background-only model, which includes the $\text{H}(125)$ boson. Some details on how the distributions should be used: 1) All given uncertainties correspond to systematic variations of $\pm1\sigma$. 2) Upper values ('plus' in the yaml file) correspond to an upward systematic variation of the parameter ($+1\sigma$). 3) Lower values ('minus' in the yaml file) correspond to a downward systematic variation of the parameter ($-1\sigma$). 4) These variations can have both positive and negative values, depending on the modelled effect. 5) Uncertainties with the same name should be treated as correlated, consistently across the upper and lower variations. 6) Systematic uncertainties with 'prop_' in the name treat limited background statistics per histogram bin, and are deployed with 'Barlow-Beeston-lite' approach. Details in https://arxiv.org/abs/1103.0354 section 5 7) Remaining systematic uncertainties alter the normalization, the shape, or both for a distribution. The nuisance parameter for such an uncertainty is mapped separately on the normalization and the shape variation components of the uncertainty. For normalization, $\ln$ mapping is used, for shape a spline. Details in https://cms-analysis.github.io/HiggsAnalysis-CombinedLimit/part2/settinguptheanalysis/#binned-shape-analysis 8) All nuisance parameters for the systematic uncertainties are modelled with a Gaussian pdf. 9) Gluon fusion contributions are all scaled to 1 pb. Please combine them using either the scale factors from 'Table SM Gluon Fusion Fractions', or using your own composition.
Observed and expected distributions of the variable chosen for statistical inference in the low-mass analysis $m_{\tau\tau}$. Numerical values provided in this table correspond to Figure 14 of the auxilliary material of the publication, but restricted to High-$D_\zeta$ category and 2018 data-taking year. All distributions are considered after a fit to data is performed using a background-only model, which includes the $\text{H}(125)$ boson. Some details on how the distributions should be used: 1) All given uncertainties correspond to systematic variations of $\pm1\sigma$. 2) Upper values ('plus' in the yaml file) correspond to an upward systematic variation of the parameter ($+1\sigma$). 3) Lower values ('minus' in the yaml file) correspond to a downward systematic variation of the parameter ($-1\sigma$). 4) These variations can have both positive and negative values, depending on the modelled effect. 5) Uncertainties with the same name should be treated as correlated, consistently across the upper and lower variations. 6) Systematic uncertainties with 'prop_' in the name treat limited background statistics per histogram bin, and are deployed with 'Barlow-Beeston-lite' approach. Details in https://arxiv.org/abs/1103.0354 section 5 7) Remaining systematic uncertainties alter the normalization, the shape, or both for a distribution. The nuisance parameter for such an uncertainty is mapped separately on the normalization and the shape variation components of the uncertainty. For normalization, $\ln$ mapping is used, for shape a spline. Details in https://cms-analysis.github.io/HiggsAnalysis-CombinedLimit/part2/settinguptheanalysis/#binned-shape-analysis 8) All nuisance parameters for the systematic uncertainties are modelled with a Gaussian pdf. 9) Gluon fusion contributions are all scaled to 1 pb. Please combine them using either the scale factors from 'Table SM Gluon Fusion Fractions', or using your own composition.
Observed and expected distributions of the variable chosen for statistical inference in the low-mass analysis $m_{\tau\tau}$. Numerical values provided in this table correspond to Figure 14 of the auxilliary material of the publication, but restricted to Medium-$D_\zeta$ category and 2016 data-taking year. All distributions are considered after a fit to data is performed using a background-only model, which includes the $\text{H}(125)$ boson. Some details on how the distributions should be used: 1) All given uncertainties correspond to systematic variations of $\pm1\sigma$. 2) Upper values ('plus' in the yaml file) correspond to an upward systematic variation of the parameter ($+1\sigma$). 3) Lower values ('minus' in the yaml file) correspond to a downward systematic variation of the parameter ($-1\sigma$). 4) These variations can have both positive and negative values, depending on the modelled effect. 5) Uncertainties with the same name should be treated as correlated, consistently across the upper and lower variations. 6) Systematic uncertainties with 'prop_' in the name treat limited background statistics per histogram bin, and are deployed with 'Barlow-Beeston-lite' approach. Details in https://arxiv.org/abs/1103.0354 section 5 7) Remaining systematic uncertainties alter the normalization, the shape, or both for a distribution. The nuisance parameter for such an uncertainty is mapped separately on the normalization and the shape variation components of the uncertainty. For normalization, $\ln$ mapping is used, for shape a spline. Details in https://cms-analysis.github.io/HiggsAnalysis-CombinedLimit/part2/settinguptheanalysis/#binned-shape-analysis 8) All nuisance parameters for the systematic uncertainties are modelled with a Gaussian pdf. 9) Gluon fusion contributions are all scaled to 1 pb. Please combine them using either the scale factors from 'Table SM Gluon Fusion Fractions', or using your own composition.
Observed and expected distributions of the variable chosen for statistical inference in the low-mass analysis $m_{\tau\tau}$. Numerical values provided in this table correspond to Figure 14 of the auxilliary material of the publication, but restricted to Medium-$D_\zeta$ category and 2017 data-taking year. All distributions are considered after a fit to data is performed using a background-only model, which includes the $\text{H}(125)$ boson. Some details on how the distributions should be used: 1) All given uncertainties correspond to systematic variations of $\pm1\sigma$. 2) Upper values ('plus' in the yaml file) correspond to an upward systematic variation of the parameter ($+1\sigma$). 3) Lower values ('minus' in the yaml file) correspond to a downward systematic variation of the parameter ($-1\sigma$). 4) These variations can have both positive and negative values, depending on the modelled effect. 5) Uncertainties with the same name should be treated as correlated, consistently across the upper and lower variations. 6) Systematic uncertainties with 'prop_' in the name treat limited background statistics per histogram bin, and are deployed with 'Barlow-Beeston-lite' approach. Details in https://arxiv.org/abs/1103.0354 section 5 7) Remaining systematic uncertainties alter the normalization, the shape, or both for a distribution. The nuisance parameter for such an uncertainty is mapped separately on the normalization and the shape variation components of the uncertainty. For normalization, $\ln$ mapping is used, for shape a spline. Details in https://cms-analysis.github.io/HiggsAnalysis-CombinedLimit/part2/settinguptheanalysis/#binned-shape-analysis 8) All nuisance parameters for the systematic uncertainties are modelled with a Gaussian pdf. 9) Gluon fusion contributions are all scaled to 1 pb. Please combine them using either the scale factors from 'Table SM Gluon Fusion Fractions', or using your own composition.
Observed and expected distributions of the variable chosen for statistical inference in the low-mass analysis $m_{\tau\tau}$. Numerical values provided in this table correspond to Figure 14 of the auxilliary material of the publication, but restricted to Medium-$D_\zeta$ category and 2018 data-taking year. All distributions are considered after a fit to data is performed using a background-only model, which includes the $\text{H}(125)$ boson. Some details on how the distributions should be used: 1) All given uncertainties correspond to systematic variations of $\pm1\sigma$. 2) Upper values ('plus' in the yaml file) correspond to an upward systematic variation of the parameter ($+1\sigma$). 3) Lower values ('minus' in the yaml file) correspond to a downward systematic variation of the parameter ($-1\sigma$). 4) These variations can have both positive and negative values, depending on the modelled effect. 5) Uncertainties with the same name should be treated as correlated, consistently across the upper and lower variations. 6) Systematic uncertainties with 'prop_' in the name treat limited background statistics per histogram bin, and are deployed with 'Barlow-Beeston-lite' approach. Details in https://arxiv.org/abs/1103.0354 section 5 7) Remaining systematic uncertainties alter the normalization, the shape, or both for a distribution. The nuisance parameter for such an uncertainty is mapped separately on the normalization and the shape variation components of the uncertainty. For normalization, $\ln$ mapping is used, for shape a spline. Details in https://cms-analysis.github.io/HiggsAnalysis-CombinedLimit/part2/settinguptheanalysis/#binned-shape-analysis 8) All nuisance parameters for the systematic uncertainties are modelled with a Gaussian pdf. 9) Gluon fusion contributions are all scaled to 1 pb. Please combine them using either the scale factors from 'Table SM Gluon Fusion Fractions', or using your own composition.
Observed and expected distributions of the variable chosen for statistical inference in the low-mass analysis $m_{\tau\tau}$. Numerical values provided in this table correspond to Figure 10 of the auxilliary material of the publication, but restricted to High-$D_\zeta$ category and 2016 data-taking year. All distributions are considered after a fit to data is performed using a background-only model, which includes the $\text{H}(125)$ boson. Some details on how the distributions should be used: 1) All given uncertainties correspond to systematic variations of $\pm1\sigma$. 2) Upper values ('plus' in the yaml file) correspond to an upward systematic variation of the parameter ($+1\sigma$). 3) Lower values ('minus' in the yaml file) correspond to a downward systematic variation of the parameter ($-1\sigma$). 4) These variations can have both positive and negative values, depending on the modelled effect. 5) Uncertainties with the same name should be treated as correlated, consistently across the upper and lower variations. 6) Systematic uncertainties with 'prop_' in the name treat limited background statistics per histogram bin, and are deployed with 'Barlow-Beeston-lite' approach. Details in https://arxiv.org/abs/1103.0354 section 5 7) Remaining systematic uncertainties alter the normalization, the shape, or both for a distribution. The nuisance parameter for such an uncertainty is mapped separately on the normalization and the shape variation components of the uncertainty. For normalization, $\ln$ mapping is used, for shape a spline. Details in https://cms-analysis.github.io/HiggsAnalysis-CombinedLimit/part2/settinguptheanalysis/#binned-shape-analysis 8) All nuisance parameters for the systematic uncertainties are modelled with a Gaussian pdf. 9) Gluon fusion contributions are all scaled to 1 pb. Please combine them using either the scale factors from 'Table SM Gluon Fusion Fractions', or using your own composition.
Observed and expected distributions of the variable chosen for statistical inference in the low-mass analysis $m_{\tau\tau}$. Numerical values provided in this table correspond to Figure 10 of the auxilliary material of the publication, but restricted to High-$D_\zeta$ category and 2017 data-taking year. All distributions are considered after a fit to data is performed using a background-only model, which includes the $\text{H}(125)$ boson. Some details on how the distributions should be used: 1) All given uncertainties correspond to systematic variations of $\pm1\sigma$. 2) Upper values ('plus' in the yaml file) correspond to an upward systematic variation of the parameter ($+1\sigma$). 3) Lower values ('minus' in the yaml file) correspond to a downward systematic variation of the parameter ($-1\sigma$). 4) These variations can have both positive and negative values, depending on the modelled effect. 5) Uncertainties with the same name should be treated as correlated, consistently across the upper and lower variations. 6) Systematic uncertainties with 'prop_' in the name treat limited background statistics per histogram bin, and are deployed with 'Barlow-Beeston-lite' approach. Details in https://arxiv.org/abs/1103.0354 section 5 7) Remaining systematic uncertainties alter the normalization, the shape, or both for a distribution. The nuisance parameter for such an uncertainty is mapped separately on the normalization and the shape variation components of the uncertainty. For normalization, $\ln$ mapping is used, for shape a spline. Details in https://cms-analysis.github.io/HiggsAnalysis-CombinedLimit/part2/settinguptheanalysis/#binned-shape-analysis 8) All nuisance parameters for the systematic uncertainties are modelled with a Gaussian pdf. 9) Gluon fusion contributions are all scaled to 1 pb. Please combine them using either the scale factors from 'Table SM Gluon Fusion Fractions', or using your own composition.
Observed and expected distributions of the variable chosen for statistical inference in the low-mass analysis $m_{\tau\tau}$. Numerical values provided in this table correspond to Figure 10 of the auxilliary material of the publication, but restricted to High-$D_\zeta$ category and 2018 data-taking year. All distributions are considered after a fit to data is performed using a background-only model, which includes the $\text{H}(125)$ boson. Some details on how the distributions should be used: 1) All given uncertainties correspond to systematic variations of $\pm1\sigma$. 2) Upper values ('plus' in the yaml file) correspond to an upward systematic variation of the parameter ($+1\sigma$). 3) Lower values ('minus' in the yaml file) correspond to a downward systematic variation of the parameter ($-1\sigma$). 4) These variations can have both positive and negative values, depending on the modelled effect. 5) Uncertainties with the same name should be treated as correlated, consistently across the upper and lower variations. 6) Systematic uncertainties with 'prop_' in the name treat limited background statistics per histogram bin, and are deployed with 'Barlow-Beeston-lite' approach. Details in https://arxiv.org/abs/1103.0354 section 5 7) Remaining systematic uncertainties alter the normalization, the shape, or both for a distribution. The nuisance parameter for such an uncertainty is mapped separately on the normalization and the shape variation components of the uncertainty. For normalization, $\ln$ mapping is used, for shape a spline. Details in https://cms-analysis.github.io/HiggsAnalysis-CombinedLimit/part2/settinguptheanalysis/#binned-shape-analysis 8) All nuisance parameters for the systematic uncertainties are modelled with a Gaussian pdf. 9) Gluon fusion contributions are all scaled to 1 pb. Please combine them using either the scale factors from 'Table SM Gluon Fusion Fractions', or using your own composition.
Observed and expected distributions of the variable chosen for statistical inference in the low-mass analysis $m_{\tau\tau}$. Numerical values provided in this table correspond to Figure 10 of the auxilliary material of the publication, but restricted to Medium-$D_\zeta$ category and 2016 data-taking year. All distributions are considered after a fit to data is performed using a background-only model, which includes the $\text{H}(125)$ boson. Some details on how the distributions should be used: 1) All given uncertainties correspond to systematic variations of $\pm1\sigma$. 2) Upper values ('plus' in the yaml file) correspond to an upward systematic variation of the parameter ($+1\sigma$). 3) Lower values ('minus' in the yaml file) correspond to a downward systematic variation of the parameter ($-1\sigma$). 4) These variations can have both positive and negative values, depending on the modelled effect. 5) Uncertainties with the same name should be treated as correlated, consistently across the upper and lower variations. 6) Systematic uncertainties with 'prop_' in the name treat limited background statistics per histogram bin, and are deployed with 'Barlow-Beeston-lite' approach. Details in https://arxiv.org/abs/1103.0354 section 5 7) Remaining systematic uncertainties alter the normalization, the shape, or both for a distribution. The nuisance parameter for such an uncertainty is mapped separately on the normalization and the shape variation components of the uncertainty. For normalization, $\ln$ mapping is used, for shape a spline. Details in https://cms-analysis.github.io/HiggsAnalysis-CombinedLimit/part2/settinguptheanalysis/#binned-shape-analysis 8) All nuisance parameters for the systematic uncertainties are modelled with a Gaussian pdf. 9) Gluon fusion contributions are all scaled to 1 pb. Please combine them using either the scale factors from 'Table SM Gluon Fusion Fractions', or using your own composition.
Observed and expected distributions of the variable chosen for statistical inference in the low-mass analysis $m_{\tau\tau}$. Numerical values provided in this table correspond to Figure 10 of the auxilliary material of the publication, but restricted to Medium-$D_\zeta$ category and 2017 data-taking year. All distributions are considered after a fit to data is performed using a background-only model, which includes the $\text{H}(125)$ boson. Some details on how the distributions should be used: 1) All given uncertainties correspond to systematic variations of $\pm1\sigma$. 2) Upper values ('plus' in the yaml file) correspond to an upward systematic variation of the parameter ($+1\sigma$). 3) Lower values ('minus' in the yaml file) correspond to a downward systematic variation of the parameter ($-1\sigma$). 4) These variations can have both positive and negative values, depending on the modelled effect. 5) Uncertainties with the same name should be treated as correlated, consistently across the upper and lower variations. 6) Systematic uncertainties with 'prop_' in the name treat limited background statistics per histogram bin, and are deployed with 'Barlow-Beeston-lite' approach. Details in https://arxiv.org/abs/1103.0354 section 5 7) Remaining systematic uncertainties alter the normalization, the shape, or both for a distribution. The nuisance parameter for such an uncertainty is mapped separately on the normalization and the shape variation components of the uncertainty. For normalization, $\ln$ mapping is used, for shape a spline. Details in https://cms-analysis.github.io/HiggsAnalysis-CombinedLimit/part2/settinguptheanalysis/#binned-shape-analysis 8) All nuisance parameters for the systematic uncertainties are modelled with a Gaussian pdf. 9) Gluon fusion contributions are all scaled to 1 pb. Please combine them using either the scale factors from 'Table SM Gluon Fusion Fractions', or using your own composition.
Observed and expected distributions of the variable chosen for statistical inference in the low-mass analysis $m_{\tau\tau}$. Numerical values provided in this table correspond to Figure 10 of the auxilliary material of the publication, but restricted to Medium-$D_\zeta$ category and 2018 data-taking year. All distributions are considered after a fit to data is performed using a background-only model, which includes the $\text{H}(125)$ boson. Some details on how the distributions should be used: 1) All given uncertainties correspond to systematic variations of $\pm1\sigma$. 2) Upper values ('plus' in the yaml file) correspond to an upward systematic variation of the parameter ($+1\sigma$). 3) Lower values ('minus' in the yaml file) correspond to a downward systematic variation of the parameter ($-1\sigma$). 4) These variations can have both positive and negative values, depending on the modelled effect. 5) Uncertainties with the same name should be treated as correlated, consistently across the upper and lower variations. 6) Systematic uncertainties with 'prop_' in the name treat limited background statistics per histogram bin, and are deployed with 'Barlow-Beeston-lite' approach. Details in https://arxiv.org/abs/1103.0354 section 5 7) Remaining systematic uncertainties alter the normalization, the shape, or both for a distribution. The nuisance parameter for such an uncertainty is mapped separately on the normalization and the shape variation components of the uncertainty. For normalization, $\ln$ mapping is used, for shape a spline. Details in https://cms-analysis.github.io/HiggsAnalysis-CombinedLimit/part2/settinguptheanalysis/#binned-shape-analysis 8) All nuisance parameters for the systematic uncertainties are modelled with a Gaussian pdf. 9) Gluon fusion contributions are all scaled to 1 pb. Please combine them using either the scale factors from 'Table SM Gluon Fusion Fractions', or using your own composition.
Observed and expected distributions of the variable chosen for statistical inference in the low-mass analysis $m_{\tau\tau}$. Numerical values provided in this table correspond to Figure 16 of the auxilliary material of the publication, but restricted to $e\tau_{h}$ final state and 2016 data-taking year. All distributions are considered after a fit to data is performed using a background-only model, which includes the $\text{H}(125)$ boson. Some details on how the distributions should be used: 1) All given uncertainties correspond to systematic variations of $\pm1\sigma$. 2) Upper values ('plus' in the yaml file) correspond to an upward systematic variation of the parameter ($+1\sigma$). 3) Lower values ('minus' in the yaml file) correspond to a downward systematic variation of the parameter ($-1\sigma$). 4) These variations can have both positive and negative values, depending on the modelled effect. 5) Uncertainties with the same name should be treated as correlated, consistently across the upper and lower variations. 6) Systematic uncertainties with 'prop_' in the name treat limited background statistics per histogram bin, and are deployed with 'Barlow-Beeston-lite' approach. Details in https://arxiv.org/abs/1103.0354 section 5 7) Remaining systematic uncertainties alter the normalization, the shape, or both for a distribution. The nuisance parameter for such an uncertainty is mapped separately on the normalization and the shape variation components of the uncertainty. For normalization, $\ln$ mapping is used, for shape a spline. Details in https://cms-analysis.github.io/HiggsAnalysis-CombinedLimit/part2/settinguptheanalysis/#binned-shape-analysis 8) All nuisance parameters for the systematic uncertainties are modelled with a Gaussian pdf. 9) Gluon fusion contributions are all scaled to 1 pb. Please combine them using either the scale factors from 'Table SM Gluon Fusion Fractions', or using your own composition.
Observed and expected distributions of the variable chosen for statistical inference in the low-mass analysis $m_{\tau\tau}$. Numerical values provided in this table correspond to Figure 16 of the auxilliary material of the publication, but restricted to $e\tau_{h}$ final state and 2017 data-taking year. All distributions are considered after a fit to data is performed using a background-only model, which includes the $\text{H}(125)$ boson. Some details on how the distributions should be used: 1) All given uncertainties correspond to systematic variations of $\pm1\sigma$. 2) Upper values ('plus' in the yaml file) correspond to an upward systematic variation of the parameter ($+1\sigma$). 3) Lower values ('minus' in the yaml file) correspond to a downward systematic variation of the parameter ($-1\sigma$). 4) These variations can have both positive and negative values, depending on the modelled effect. 5) Uncertainties with the same name should be treated as correlated, consistently across the upper and lower variations. 6) Systematic uncertainties with 'prop_' in the name treat limited background statistics per histogram bin, and are deployed with 'Barlow-Beeston-lite' approach. Details in https://arxiv.org/abs/1103.0354 section 5 7) Remaining systematic uncertainties alter the normalization, the shape, or both for a distribution. The nuisance parameter for such an uncertainty is mapped separately on the normalization and the shape variation components of the uncertainty. For normalization, $\ln$ mapping is used, for shape a spline. Details in https://cms-analysis.github.io/HiggsAnalysis-CombinedLimit/part2/settinguptheanalysis/#binned-shape-analysis 8) All nuisance parameters for the systematic uncertainties are modelled with a Gaussian pdf. 9) Gluon fusion contributions are all scaled to 1 pb. Please combine them using either the scale factors from 'Table SM Gluon Fusion Fractions', or using your own composition.
Observed and expected distributions of the variable chosen for statistical inference in the low-mass analysis $m_{\tau\tau}$. Numerical values provided in this table correspond to Figure 16 of the auxilliary material of the publication, but restricted to $e\tau_{h}$ final state and 2018 data-taking year. All distributions are considered after a fit to data is performed using a background-only model, which includes the $\text{H}(125)$ boson. Some details on how the distributions should be used: 1) All given uncertainties correspond to systematic variations of $\pm1\sigma$. 2) Upper values ('plus' in the yaml file) correspond to an upward systematic variation of the parameter ($+1\sigma$). 3) Lower values ('minus' in the yaml file) correspond to a downward systematic variation of the parameter ($-1\sigma$). 4) These variations can have both positive and negative values, depending on the modelled effect. 5) Uncertainties with the same name should be treated as correlated, consistently across the upper and lower variations. 6) Systematic uncertainties with 'prop_' in the name treat limited background statistics per histogram bin, and are deployed with 'Barlow-Beeston-lite' approach. Details in https://arxiv.org/abs/1103.0354 section 5 7) Remaining systematic uncertainties alter the normalization, the shape, or both for a distribution. The nuisance parameter for such an uncertainty is mapped separately on the normalization and the shape variation components of the uncertainty. For normalization, $\ln$ mapping is used, for shape a spline. Details in https://cms-analysis.github.io/HiggsAnalysis-CombinedLimit/part2/settinguptheanalysis/#binned-shape-analysis 8) All nuisance parameters for the systematic uncertainties are modelled with a Gaussian pdf. 9) Gluon fusion contributions are all scaled to 1 pb. Please combine them using either the scale factors from 'Table SM Gluon Fusion Fractions', or using your own composition.
Observed and expected distributions of the variable chosen for statistical inference in the low-mass analysis $m_{\tau\tau}$. Numerical values provided in this table correspond to Figure 17 of the auxilliary material of the publication, but restricted to $e\tau_{h}$ final state and 2016 data-taking year. All distributions are considered after a fit to data is performed using a background-only model, which includes the $\text{H}(125)$ boson. Some details on how the distributions should be used: 1) All given uncertainties correspond to systematic variations of $\pm1\sigma$. 2) Upper values ('plus' in the yaml file) correspond to an upward systematic variation of the parameter ($+1\sigma$). 3) Lower values ('minus' in the yaml file) correspond to a downward systematic variation of the parameter ($-1\sigma$). 4) These variations can have both positive and negative values, depending on the modelled effect. 5) Uncertainties with the same name should be treated as correlated, consistently across the upper and lower variations. 6) Systematic uncertainties with 'prop_' in the name treat limited background statistics per histogram bin, and are deployed with 'Barlow-Beeston-lite' approach. Details in https://arxiv.org/abs/1103.0354 section 5 7) Remaining systematic uncertainties alter the normalization, the shape, or both for a distribution. The nuisance parameter for such an uncertainty is mapped separately on the normalization and the shape variation components of the uncertainty. For normalization, $\ln$ mapping is used, for shape a spline. Details in https://cms-analysis.github.io/HiggsAnalysis-CombinedLimit/part2/settinguptheanalysis/#binned-shape-analysis 8) All nuisance parameters for the systematic uncertainties are modelled with a Gaussian pdf. 9) Gluon fusion contributions are all scaled to 1 pb. Please combine them using either the scale factors from 'Table SM Gluon Fusion Fractions', or using your own composition.
Observed and expected distributions of the variable chosen for statistical inference in the low-mass analysis $m_{\tau\tau}$. Numerical values provided in this table correspond to Figure 17 of the auxilliary material of the publication, but restricted to $e\tau_{h}$ final state and 2017 data-taking year. All distributions are considered after a fit to data is performed using a background-only model, which includes the $\text{H}(125)$ boson. Some details on how the distributions should be used: 1) All given uncertainties correspond to systematic variations of $\pm1\sigma$. 2) Upper values ('plus' in the yaml file) correspond to an upward systematic variation of the parameter ($+1\sigma$). 3) Lower values ('minus' in the yaml file) correspond to a downward systematic variation of the parameter ($-1\sigma$). 4) These variations can have both positive and negative values, depending on the modelled effect. 5) Uncertainties with the same name should be treated as correlated, consistently across the upper and lower variations. 6) Systematic uncertainties with 'prop_' in the name treat limited background statistics per histogram bin, and are deployed with 'Barlow-Beeston-lite' approach. Details in https://arxiv.org/abs/1103.0354 section 5 7) Remaining systematic uncertainties alter the normalization, the shape, or both for a distribution. The nuisance parameter for such an uncertainty is mapped separately on the normalization and the shape variation components of the uncertainty. For normalization, $\ln$ mapping is used, for shape a spline. Details in https://cms-analysis.github.io/HiggsAnalysis-CombinedLimit/part2/settinguptheanalysis/#binned-shape-analysis 8) All nuisance parameters for the systematic uncertainties are modelled with a Gaussian pdf. 9) Gluon fusion contributions are all scaled to 1 pb. Please combine them using either the scale factors from 'Table SM Gluon Fusion Fractions', or using your own composition.
Observed and expected distributions of the variable chosen for statistical inference in the low-mass analysis $m_{\tau\tau}$. Numerical values provided in this table correspond to Figure 17 of the auxilliary material of the publication, but restricted to $e\tau_{h}$ final state and 2018 data-taking year. All distributions are considered after a fit to data is performed using a background-only model, which includes the $\text{H}(125)$ boson. Some details on how the distributions should be used: 1) All given uncertainties correspond to systematic variations of $\pm1\sigma$. 2) Upper values ('plus' in the yaml file) correspond to an upward systematic variation of the parameter ($+1\sigma$). 3) Lower values ('minus' in the yaml file) correspond to a downward systematic variation of the parameter ($-1\sigma$). 4) These variations can have both positive and negative values, depending on the modelled effect. 5) Uncertainties with the same name should be treated as correlated, consistently across the upper and lower variations. 6) Systematic uncertainties with 'prop_' in the name treat limited background statistics per histogram bin, and are deployed with 'Barlow-Beeston-lite' approach. Details in https://arxiv.org/abs/1103.0354 section 5 7) Remaining systematic uncertainties alter the normalization, the shape, or both for a distribution. The nuisance parameter for such an uncertainty is mapped separately on the normalization and the shape variation components of the uncertainty. For normalization, $\ln$ mapping is used, for shape a spline. Details in https://cms-analysis.github.io/HiggsAnalysis-CombinedLimit/part2/settinguptheanalysis/#binned-shape-analysis 8) All nuisance parameters for the systematic uncertainties are modelled with a Gaussian pdf. 9) Gluon fusion contributions are all scaled to 1 pb. Please combine them using either the scale factors from 'Table SM Gluon Fusion Fractions', or using your own composition.
Observed and expected distributions of the variable chosen for statistical inference in the low-mass analysis $m_{\tau\tau}$. Numerical values provided in this table correspond to Figure 18 of the auxilliary material of the publication, but restricted to $e\tau_{h}$ final state and 2016 data-taking year. All distributions are considered after a fit to data is performed using a background-only model, which includes the $\text{H}(125)$ boson. Some details on how the distributions should be used: 1) All given uncertainties correspond to systematic variations of $\pm1\sigma$. 2) Upper values ('plus' in the yaml file) correspond to an upward systematic variation of the parameter ($+1\sigma$). 3) Lower values ('minus' in the yaml file) correspond to a downward systematic variation of the parameter ($-1\sigma$). 4) These variations can have both positive and negative values, depending on the modelled effect. 5) Uncertainties with the same name should be treated as correlated, consistently across the upper and lower variations. 6) Systematic uncertainties with 'prop_' in the name treat limited background statistics per histogram bin, and are deployed with 'Barlow-Beeston-lite' approach. Details in https://arxiv.org/abs/1103.0354 section 5 7) Remaining systematic uncertainties alter the normalization, the shape, or both for a distribution. The nuisance parameter for such an uncertainty is mapped separately on the normalization and the shape variation components of the uncertainty. For normalization, $\ln$ mapping is used, for shape a spline. Details in https://cms-analysis.github.io/HiggsAnalysis-CombinedLimit/part2/settinguptheanalysis/#binned-shape-analysis 8) All nuisance parameters for the systematic uncertainties are modelled with a Gaussian pdf. 9) Gluon fusion contributions are all scaled to 1 pb. Please combine them using either the scale factors from 'Table SM Gluon Fusion Fractions', or using your own composition.
Observed and expected distributions of the variable chosen for statistical inference in the low-mass analysis $m_{\tau\tau}$. Numerical values provided in this table correspond to Figure 18 of the auxilliary material of the publication, but restricted to $e\tau_{h}$ final state and 2017 data-taking year. All distributions are considered after a fit to data is performed using a background-only model, which includes the $\text{H}(125)$ boson. Some details on how the distributions should be used: 1) All given uncertainties correspond to systematic variations of $\pm1\sigma$. 2) Upper values ('plus' in the yaml file) correspond to an upward systematic variation of the parameter ($+1\sigma$). 3) Lower values ('minus' in the yaml file) correspond to a downward systematic variation of the parameter ($-1\sigma$). 4) These variations can have both positive and negative values, depending on the modelled effect. 5) Uncertainties with the same name should be treated as correlated, consistently across the upper and lower variations. 6) Systematic uncertainties with 'prop_' in the name treat limited background statistics per histogram bin, and are deployed with 'Barlow-Beeston-lite' approach. Details in https://arxiv.org/abs/1103.0354 section 5 7) Remaining systematic uncertainties alter the normalization, the shape, or both for a distribution. The nuisance parameter for such an uncertainty is mapped separately on the normalization and the shape variation components of the uncertainty. For normalization, $\ln$ mapping is used, for shape a spline. Details in https://cms-analysis.github.io/HiggsAnalysis-CombinedLimit/part2/settinguptheanalysis/#binned-shape-analysis 8) All nuisance parameters for the systematic uncertainties are modelled with a Gaussian pdf. 9) Gluon fusion contributions are all scaled to 1 pb. Please combine them using either the scale factors from 'Table SM Gluon Fusion Fractions', or using your own composition.
Observed and expected distributions of the variable chosen for statistical inference in the low-mass analysis $m_{\tau\tau}$. Numerical values provided in this table correspond to Figure 18 of the auxilliary material of the publication, but restricted to $e\tau_{h}$ final state and 2018 data-taking year. All distributions are considered after a fit to data is performed using a background-only model, which includes the $\text{H}(125)$ boson. Some details on how the distributions should be used: 1) All given uncertainties correspond to systematic variations of $\pm1\sigma$. 2) Upper values ('plus' in the yaml file) correspond to an upward systematic variation of the parameter ($+1\sigma$). 3) Lower values ('minus' in the yaml file) correspond to a downward systematic variation of the parameter ($-1\sigma$). 4) These variations can have both positive and negative values, depending on the modelled effect. 5) Uncertainties with the same name should be treated as correlated, consistently across the upper and lower variations. 6) Systematic uncertainties with 'prop_' in the name treat limited background statistics per histogram bin, and are deployed with 'Barlow-Beeston-lite' approach. Details in https://arxiv.org/abs/1103.0354 section 5 7) Remaining systematic uncertainties alter the normalization, the shape, or both for a distribution. The nuisance parameter for such an uncertainty is mapped separately on the normalization and the shape variation components of the uncertainty. For normalization, $\ln$ mapping is used, for shape a spline. Details in https://cms-analysis.github.io/HiggsAnalysis-CombinedLimit/part2/settinguptheanalysis/#binned-shape-analysis 8) All nuisance parameters for the systematic uncertainties are modelled with a Gaussian pdf. 9) Gluon fusion contributions are all scaled to 1 pb. Please combine them using either the scale factors from 'Table SM Gluon Fusion Fractions', or using your own composition.
Observed and expected distributions of the variable chosen for statistical inference in the low-mass analysis $m_{\tau\tau}$. Numerical values provided in this table correspond to Figure 19 of the auxilliary material of the publication, but restricted to $e\tau_{h}$ final state and 2016 data-taking year. All distributions are considered after a fit to data is performed using a background-only model, which includes the $\text{H}(125)$ boson. Some details on how the distributions should be used: 1) All given uncertainties correspond to systematic variations of $\pm1\sigma$. 2) Upper values ('plus' in the yaml file) correspond to an upward systematic variation of the parameter ($+1\sigma$). 3) Lower values ('minus' in the yaml file) correspond to a downward systematic variation of the parameter ($-1\sigma$). 4) These variations can have both positive and negative values, depending on the modelled effect. 5) Uncertainties with the same name should be treated as correlated, consistently across the upper and lower variations. 6) Systematic uncertainties with 'prop_' in the name treat limited background statistics per histogram bin, and are deployed with 'Barlow-Beeston-lite' approach. Details in https://arxiv.org/abs/1103.0354 section 5 7) Remaining systematic uncertainties alter the normalization, the shape, or both for a distribution. The nuisance parameter for such an uncertainty is mapped separately on the normalization and the shape variation components of the uncertainty. For normalization, $\ln$ mapping is used, for shape a spline. Details in https://cms-analysis.github.io/HiggsAnalysis-CombinedLimit/part2/settinguptheanalysis/#binned-shape-analysis 8) All nuisance parameters for the systematic uncertainties are modelled with a Gaussian pdf. 9) Gluon fusion contributions are all scaled to 1 pb. Please combine them using either the scale factors from 'Table SM Gluon Fusion Fractions', or using your own composition.
Observed and expected distributions of the variable chosen for statistical inference in the low-mass analysis $m_{\tau\tau}$. Numerical values provided in this table correspond to Figure 19 of the auxilliary material of the publication, but restricted to $e\tau_{h}$ final state and 2017 data-taking year. All distributions are considered after a fit to data is performed using a background-only model, which includes the $\text{H}(125)$ boson. Some details on how the distributions should be used: 1) All given uncertainties correspond to systematic variations of $\pm1\sigma$. 2) Upper values ('plus' in the yaml file) correspond to an upward systematic variation of the parameter ($+1\sigma$). 3) Lower values ('minus' in the yaml file) correspond to a downward systematic variation of the parameter ($-1\sigma$). 4) These variations can have both positive and negative values, depending on the modelled effect. 5) Uncertainties with the same name should be treated as correlated, consistently across the upper and lower variations. 6) Systematic uncertainties with 'prop_' in the name treat limited background statistics per histogram bin, and are deployed with 'Barlow-Beeston-lite' approach. Details in https://arxiv.org/abs/1103.0354 section 5 7) Remaining systematic uncertainties alter the normalization, the shape, or both for a distribution. The nuisance parameter for such an uncertainty is mapped separately on the normalization and the shape variation components of the uncertainty. For normalization, $\ln$ mapping is used, for shape a spline. Details in https://cms-analysis.github.io/HiggsAnalysis-CombinedLimit/part2/settinguptheanalysis/#binned-shape-analysis 8) All nuisance parameters for the systematic uncertainties are modelled with a Gaussian pdf. 9) Gluon fusion contributions are all scaled to 1 pb. Please combine them using either the scale factors from 'Table SM Gluon Fusion Fractions', or using your own composition.
Observed and expected distributions of the variable chosen for statistical inference in the low-mass analysis $m_{\tau\tau}$. Numerical values provided in this table correspond to Figure 19 of the auxilliary material of the publication, but restricted to $e\tau_{h}$ final state and 2018 data-taking year. All distributions are considered after a fit to data is performed using a background-only model, which includes the $\text{H}(125)$ boson. Some details on how the distributions should be used: 1) All given uncertainties correspond to systematic variations of $\pm1\sigma$. 2) Upper values ('plus' in the yaml file) correspond to an upward systematic variation of the parameter ($+1\sigma$). 3) Lower values ('minus' in the yaml file) correspond to a downward systematic variation of the parameter ($-1\sigma$). 4) These variations can have both positive and negative values, depending on the modelled effect. 5) Uncertainties with the same name should be treated as correlated, consistently across the upper and lower variations. 6) Systematic uncertainties with 'prop_' in the name treat limited background statistics per histogram bin, and are deployed with 'Barlow-Beeston-lite' approach. Details in https://arxiv.org/abs/1103.0354 section 5 7) Remaining systematic uncertainties alter the normalization, the shape, or both for a distribution. The nuisance parameter for such an uncertainty is mapped separately on the normalization and the shape variation components of the uncertainty. For normalization, $\ln$ mapping is used, for shape a spline. Details in https://cms-analysis.github.io/HiggsAnalysis-CombinedLimit/part2/settinguptheanalysis/#binned-shape-analysis 8) All nuisance parameters for the systematic uncertainties are modelled with a Gaussian pdf. 9) Gluon fusion contributions are all scaled to 1 pb. Please combine them using either the scale factors from 'Table SM Gluon Fusion Fractions', or using your own composition.
Observed and expected distributions of the variable chosen for statistical inference in the low-mass analysis $m_{\tau\tau}$. Numerical values provided in this table correspond to Figure 15 of the auxilliary material of the publication, but restricted to $e\tau_{h}$ final state and 2016 data-taking year. All distributions are considered after a fit to data is performed using a background-only model, which includes the $\text{H}(125)$ boson. Some details on how the distributions should be used: 1) All given uncertainties correspond to systematic variations of $\pm1\sigma$. 2) Upper values ('plus' in the yaml file) correspond to an upward systematic variation of the parameter ($+1\sigma$). 3) Lower values ('minus' in the yaml file) correspond to a downward systematic variation of the parameter ($-1\sigma$). 4) These variations can have both positive and negative values, depending on the modelled effect. 5) Uncertainties with the same name should be treated as correlated, consistently across the upper and lower variations. 6) Systematic uncertainties with 'prop_' in the name treat limited background statistics per histogram bin, and are deployed with 'Barlow-Beeston-lite' approach. Details in https://arxiv.org/abs/1103.0354 section 5 7) Remaining systematic uncertainties alter the normalization, the shape, or both for a distribution. The nuisance parameter for such an uncertainty is mapped separately on the normalization and the shape variation components of the uncertainty. For normalization, $\ln$ mapping is used, for shape a spline. Details in https://cms-analysis.github.io/HiggsAnalysis-CombinedLimit/part2/settinguptheanalysis/#binned-shape-analysis 8) All nuisance parameters for the systematic uncertainties are modelled with a Gaussian pdf. 9) Gluon fusion contributions are all scaled to 1 pb. Please combine them using either the scale factors from 'Table SM Gluon Fusion Fractions', or using your own composition.
Observed and expected distributions of the variable chosen for statistical inference in the low-mass analysis $m_{\tau\tau}$. Numerical values provided in this table correspond to Figure 15 of the auxilliary material of the publication, but restricted to $e\tau_{h}$ final state and 2017 data-taking year. All distributions are considered after a fit to data is performed using a background-only model, which includes the $\text{H}(125)$ boson. Some details on how the distributions should be used: 1) All given uncertainties correspond to systematic variations of $\pm1\sigma$. 2) Upper values ('plus' in the yaml file) correspond to an upward systematic variation of the parameter ($+1\sigma$). 3) Lower values ('minus' in the yaml file) correspond to a downward systematic variation of the parameter ($-1\sigma$). 4) These variations can have both positive and negative values, depending on the modelled effect. 5) Uncertainties with the same name should be treated as correlated, consistently across the upper and lower variations. 6) Systematic uncertainties with 'prop_' in the name treat limited background statistics per histogram bin, and are deployed with 'Barlow-Beeston-lite' approach. Details in https://arxiv.org/abs/1103.0354 section 5 7) Remaining systematic uncertainties alter the normalization, the shape, or both for a distribution. The nuisance parameter for such an uncertainty is mapped separately on the normalization and the shape variation components of the uncertainty. For normalization, $\ln$ mapping is used, for shape a spline. Details in https://cms-analysis.github.io/HiggsAnalysis-CombinedLimit/part2/settinguptheanalysis/#binned-shape-analysis 8) All nuisance parameters for the systematic uncertainties are modelled with a Gaussian pdf. 9) Gluon fusion contributions are all scaled to 1 pb. Please combine them using either the scale factors from 'Table SM Gluon Fusion Fractions', or using your own composition.
Observed and expected distributions of the variable chosen for statistical inference in the low-mass analysis $m_{\tau\tau}$. Numerical values provided in this table correspond to Figure 15 of the auxilliary material of the publication, but restricted to $e\tau_{h}$ final state and 2018 data-taking year. All distributions are considered after a fit to data is performed using a background-only model, which includes the $\text{H}(125)$ boson. Some details on how the distributions should be used: 1) All given uncertainties correspond to systematic variations of $\pm1\sigma$. 2) Upper values ('plus' in the yaml file) correspond to an upward systematic variation of the parameter ($+1\sigma$). 3) Lower values ('minus' in the yaml file) correspond to a downward systematic variation of the parameter ($-1\sigma$). 4) These variations can have both positive and negative values, depending on the modelled effect. 5) Uncertainties with the same name should be treated as correlated, consistently across the upper and lower variations. 6) Systematic uncertainties with 'prop_' in the name treat limited background statistics per histogram bin, and are deployed with 'Barlow-Beeston-lite' approach. Details in https://arxiv.org/abs/1103.0354 section 5 7) Remaining systematic uncertainties alter the normalization, the shape, or both for a distribution. The nuisance parameter for such an uncertainty is mapped separately on the normalization and the shape variation components of the uncertainty. For normalization, $\ln$ mapping is used, for shape a spline. Details in https://cms-analysis.github.io/HiggsAnalysis-CombinedLimit/part2/settinguptheanalysis/#binned-shape-analysis 8) All nuisance parameters for the systematic uncertainties are modelled with a Gaussian pdf. 9) Gluon fusion contributions are all scaled to 1 pb. Please combine them using either the scale factors from 'Table SM Gluon Fusion Fractions', or using your own composition.
Observed and expected distributions of the variable chosen for statistical inference in the low-mass analysis $m_{\tau\tau}$. Numerical values provided in this table correspond to Figure 16 of the auxilliary material of the publication, but restricted to $\mu\tau_{h}$ final state and 2016 data-taking year. All distributions are considered after a fit to data is performed using a background-only model, which includes the $\text{H}(125)$ boson. Some details on how the distributions should be used: 1) All given uncertainties correspond to systematic variations of $\pm1\sigma$. 2) Upper values ('plus' in the yaml file) correspond to an upward systematic variation of the parameter ($+1\sigma$). 3) Lower values ('minus' in the yaml file) correspond to a downward systematic variation of the parameter ($-1\sigma$). 4) These variations can have both positive and negative values, depending on the modelled effect. 5) Uncertainties with the same name should be treated as correlated, consistently across the upper and lower variations. 6) Systematic uncertainties with 'prop_' in the name treat limited background statistics per histogram bin, and are deployed with 'Barlow-Beeston-lite' approach. Details in https://arxiv.org/abs/1103.0354 section 5 7) Remaining systematic uncertainties alter the normalization, the shape, or both for a distribution. The nuisance parameter for such an uncertainty is mapped separately on the normalization and the shape variation components of the uncertainty. For normalization, $\ln$ mapping is used, for shape a spline. Details in https://cms-analysis.github.io/HiggsAnalysis-CombinedLimit/part2/settinguptheanalysis/#binned-shape-analysis 8) All nuisance parameters for the systematic uncertainties are modelled with a Gaussian pdf. 9) Gluon fusion contributions are all scaled to 1 pb. Please combine them using either the scale factors from 'Table SM Gluon Fusion Fractions', or using your own composition.
Observed and expected distributions of the variable chosen for statistical inference in the low-mass analysis $m_{\tau\tau}$. Numerical values provided in this table correspond to Figure 16 of the auxilliary material of the publication, but restricted to $\mu\tau_{h}$ final state and 2017 data-taking year. All distributions are considered after a fit to data is performed using a background-only model, which includes the $\text{H}(125)$ boson. Some details on how the distributions should be used: 1) All given uncertainties correspond to systematic variations of $\pm1\sigma$. 2) Upper values ('plus' in the yaml file) correspond to an upward systematic variation of the parameter ($+1\sigma$). 3) Lower values ('minus' in the yaml file) correspond to a downward systematic variation of the parameter ($-1\sigma$). 4) These variations can have both positive and negative values, depending on the modelled effect. 5) Uncertainties with the same name should be treated as correlated, consistently across the upper and lower variations. 6) Systematic uncertainties with 'prop_' in the name treat limited background statistics per histogram bin, and are deployed with 'Barlow-Beeston-lite' approach. Details in https://arxiv.org/abs/1103.0354 section 5 7) Remaining systematic uncertainties alter the normalization, the shape, or both for a distribution. The nuisance parameter for such an uncertainty is mapped separately on the normalization and the shape variation components of the uncertainty. For normalization, $\ln$ mapping is used, for shape a spline. Details in https://cms-analysis.github.io/HiggsAnalysis-CombinedLimit/part2/settinguptheanalysis/#binned-shape-analysis 8) All nuisance parameters for the systematic uncertainties are modelled with a Gaussian pdf. 9) Gluon fusion contributions are all scaled to 1 pb. Please combine them using either the scale factors from 'Table SM Gluon Fusion Fractions', or using your own composition.
Observed and expected distributions of the variable chosen for statistical inference in the low-mass analysis $m_{\tau\tau}$. Numerical values provided in this table correspond to Figure 16 of the auxilliary material of the publication, but restricted to $\mu\tau_{h}$ final state and 2018 data-taking year. All distributions are considered after a fit to data is performed using a background-only model, which includes the $\text{H}(125)$ boson. Some details on how the distributions should be used: 1) All given uncertainties correspond to systematic variations of $\pm1\sigma$. 2) Upper values ('plus' in the yaml file) correspond to an upward systematic variation of the parameter ($+1\sigma$). 3) Lower values ('minus' in the yaml file) correspond to a downward systematic variation of the parameter ($-1\sigma$). 4) These variations can have both positive and negative values, depending on the modelled effect. 5) Uncertainties with the same name should be treated as correlated, consistently across the upper and lower variations. 6) Systematic uncertainties with 'prop_' in the name treat limited background statistics per histogram bin, and are deployed with 'Barlow-Beeston-lite' approach. Details in https://arxiv.org/abs/1103.0354 section 5 7) Remaining systematic uncertainties alter the normalization, the shape, or both for a distribution. The nuisance parameter for such an uncertainty is mapped separately on the normalization and the shape variation components of the uncertainty. For normalization, $\ln$ mapping is used, for shape a spline. Details in https://cms-analysis.github.io/HiggsAnalysis-CombinedLimit/part2/settinguptheanalysis/#binned-shape-analysis 8) All nuisance parameters for the systematic uncertainties are modelled with a Gaussian pdf. 9) Gluon fusion contributions are all scaled to 1 pb. Please combine them using either the scale factors from 'Table SM Gluon Fusion Fractions', or using your own composition.
Observed and expected distributions of the variable chosen for statistical inference in the low-mass analysis $m_{\tau\tau}$. Numerical values provided in this table correspond to Figure 17 of the auxilliary material of the publication, but restricted to $\mu\tau_{h}$ final state and 2016 data-taking year. All distributions are considered after a fit to data is performed using a background-only model, which includes the $\text{H}(125)$ boson. Some details on how the distributions should be used: 1) All given uncertainties correspond to systematic variations of $\pm1\sigma$. 2) Upper values ('plus' in the yaml file) correspond to an upward systematic variation of the parameter ($+1\sigma$). 3) Lower values ('minus' in the yaml file) correspond to a downward systematic variation of the parameter ($-1\sigma$). 4) These variations can have both positive and negative values, depending on the modelled effect. 5) Uncertainties with the same name should be treated as correlated, consistently across the upper and lower variations. 6) Systematic uncertainties with 'prop_' in the name treat limited background statistics per histogram bin, and are deployed with 'Barlow-Beeston-lite' approach. Details in https://arxiv.org/abs/1103.0354 section 5 7) Remaining systematic uncertainties alter the normalization, the shape, or both for a distribution. The nuisance parameter for such an uncertainty is mapped separately on the normalization and the shape variation components of the uncertainty. For normalization, $\ln$ mapping is used, for shape a spline. Details in https://cms-analysis.github.io/HiggsAnalysis-CombinedLimit/part2/settinguptheanalysis/#binned-shape-analysis 8) All nuisance parameters for the systematic uncertainties are modelled with a Gaussian pdf. 9) Gluon fusion contributions are all scaled to 1 pb. Please combine them using either the scale factors from 'Table SM Gluon Fusion Fractions', or using your own composition.
Observed and expected distributions of the variable chosen for statistical inference in the low-mass analysis $m_{\tau\tau}$. Numerical values provided in this table correspond to Figure 17 of the auxilliary material of the publication, but restricted to $\mu\tau_{h}$ final state and 2017 data-taking year. All distributions are considered after a fit to data is performed using a background-only model, which includes the $\text{H}(125)$ boson. Some details on how the distributions should be used: 1) All given uncertainties correspond to systematic variations of $\pm1\sigma$. 2) Upper values ('plus' in the yaml file) correspond to an upward systematic variation of the parameter ($+1\sigma$). 3) Lower values ('minus' in the yaml file) correspond to a downward systematic variation of the parameter ($-1\sigma$). 4) These variations can have both positive and negative values, depending on the modelled effect. 5) Uncertainties with the same name should be treated as correlated, consistently across the upper and lower variations. 6) Systematic uncertainties with 'prop_' in the name treat limited background statistics per histogram bin, and are deployed with 'Barlow-Beeston-lite' approach. Details in https://arxiv.org/abs/1103.0354 section 5 7) Remaining systematic uncertainties alter the normalization, the shape, or both for a distribution. The nuisance parameter for such an uncertainty is mapped separately on the normalization and the shape variation components of the uncertainty. For normalization, $\ln$ mapping is used, for shape a spline. Details in https://cms-analysis.github.io/HiggsAnalysis-CombinedLimit/part2/settinguptheanalysis/#binned-shape-analysis 8) All nuisance parameters for the systematic uncertainties are modelled with a Gaussian pdf. 9) Gluon fusion contributions are all scaled to 1 pb. Please combine them using either the scale factors from 'Table SM Gluon Fusion Fractions', or using your own composition.
Observed and expected distributions of the variable chosen for statistical inference in the low-mass analysis $m_{\tau\tau}$. Numerical values provided in this table correspond to Figure 17 of the auxilliary material of the publication, but restricted to $\mu\tau_{h}$ final state and 2018 data-taking year. All distributions are considered after a fit to data is performed using a background-only model, which includes the $\text{H}(125)$ boson. Some details on how the distributions should be used: 1) All given uncertainties correspond to systematic variations of $\pm1\sigma$. 2) Upper values ('plus' in the yaml file) correspond to an upward systematic variation of the parameter ($+1\sigma$). 3) Lower values ('minus' in the yaml file) correspond to a downward systematic variation of the parameter ($-1\sigma$). 4) These variations can have both positive and negative values, depending on the modelled effect. 5) Uncertainties with the same name should be treated as correlated, consistently across the upper and lower variations. 6) Systematic uncertainties with 'prop_' in the name treat limited background statistics per histogram bin, and are deployed with 'Barlow-Beeston-lite' approach. Details in https://arxiv.org/abs/1103.0354 section 5 7) Remaining systematic uncertainties alter the normalization, the shape, or both for a distribution. The nuisance parameter for such an uncertainty is mapped separately on the normalization and the shape variation components of the uncertainty. For normalization, $\ln$ mapping is used, for shape a spline. Details in https://cms-analysis.github.io/HiggsAnalysis-CombinedLimit/part2/settinguptheanalysis/#binned-shape-analysis 8) All nuisance parameters for the systematic uncertainties are modelled with a Gaussian pdf. 9) Gluon fusion contributions are all scaled to 1 pb. Please combine them using either the scale factors from 'Table SM Gluon Fusion Fractions', or using your own composition.
Observed and expected distributions of the variable chosen for statistical inference in the low-mass analysis $m_{\tau\tau}$. Numerical values provided in this table correspond to Figure 18 of the auxilliary material of the publication, but restricted to $\mu\tau_{h}$ final state and 2016 data-taking year. All distributions are considered after a fit to data is performed using a background-only model, which includes the $\text{H}(125)$ boson. Some details on how the distributions should be used: 1) All given uncertainties correspond to systematic variations of $\pm1\sigma$. 2) Upper values ('plus' in the yaml file) correspond to an upward systematic variation of the parameter ($+1\sigma$). 3) Lower values ('minus' in the yaml file) correspond to a downward systematic variation of the parameter ($-1\sigma$). 4) These variations can have both positive and negative values, depending on the modelled effect. 5) Uncertainties with the same name should be treated as correlated, consistently across the upper and lower variations. 6) Systematic uncertainties with 'prop_' in the name treat limited background statistics per histogram bin, and are deployed with 'Barlow-Beeston-lite' approach. Details in https://arxiv.org/abs/1103.0354 section 5 7) Remaining systematic uncertainties alter the normalization, the shape, or both for a distribution. The nuisance parameter for such an uncertainty is mapped separately on the normalization and the shape variation components of the uncertainty. For normalization, $\ln$ mapping is used, for shape a spline. Details in https://cms-analysis.github.io/HiggsAnalysis-CombinedLimit/part2/settinguptheanalysis/#binned-shape-analysis 8) All nuisance parameters for the systematic uncertainties are modelled with a Gaussian pdf. 9) Gluon fusion contributions are all scaled to 1 pb. Please combine them using either the scale factors from 'Table SM Gluon Fusion Fractions', or using your own composition.
Observed and expected distributions of the variable chosen for statistical inference in the low-mass analysis $m_{\tau\tau}$. Numerical values provided in this table correspond to Figure 18 of the auxilliary material of the publication, but restricted to $\mu\tau_{h}$ final state and 2017 data-taking year. All distributions are considered after a fit to data is performed using a background-only model, which includes the $\text{H}(125)$ boson. Some details on how the distributions should be used: 1) All given uncertainties correspond to systematic variations of $\pm1\sigma$. 2) Upper values ('plus' in the yaml file) correspond to an upward systematic variation of the parameter ($+1\sigma$). 3) Lower values ('minus' in the yaml file) correspond to a downward systematic variation of the parameter ($-1\sigma$). 4) These variations can have both positive and negative values, depending on the modelled effect. 5) Uncertainties with the same name should be treated as correlated, consistently across the upper and lower variations. 6) Systematic uncertainties with 'prop_' in the name treat limited background statistics per histogram bin, and are deployed with 'Barlow-Beeston-lite' approach. Details in https://arxiv.org/abs/1103.0354 section 5 7) Remaining systematic uncertainties alter the normalization, the shape, or both for a distribution. The nuisance parameter for such an uncertainty is mapped separately on the normalization and the shape variation components of the uncertainty. For normalization, $\ln$ mapping is used, for shape a spline. Details in https://cms-analysis.github.io/HiggsAnalysis-CombinedLimit/part2/settinguptheanalysis/#binned-shape-analysis 8) All nuisance parameters for the systematic uncertainties are modelled with a Gaussian pdf. 9) Gluon fusion contributions are all scaled to 1 pb. Please combine them using either the scale factors from 'Table SM Gluon Fusion Fractions', or using your own composition.
Observed and expected distributions of the variable chosen for statistical inference in the low-mass analysis $m_{\tau\tau}$. Numerical values provided in this table correspond to Figure 18 of the auxilliary material of the publication, but restricted to $\mu\tau_{h}$ final state and 2018 data-taking year. All distributions are considered after a fit to data is performed using a background-only model, which includes the $\text{H}(125)$ boson. Some details on how the distributions should be used: 1) All given uncertainties correspond to systematic variations of $\pm1\sigma$. 2) Upper values ('plus' in the yaml file) correspond to an upward systematic variation of the parameter ($+1\sigma$). 3) Lower values ('minus' in the yaml file) correspond to a downward systematic variation of the parameter ($-1\sigma$). 4) These variations can have both positive and negative values, depending on the modelled effect. 5) Uncertainties with the same name should be treated as correlated, consistently across the upper and lower variations. 6) Systematic uncertainties with 'prop_' in the name treat limited background statistics per histogram bin, and are deployed with 'Barlow-Beeston-lite' approach. Details in https://arxiv.org/abs/1103.0354 section 5 7) Remaining systematic uncertainties alter the normalization, the shape, or both for a distribution. The nuisance parameter for such an uncertainty is mapped separately on the normalization and the shape variation components of the uncertainty. For normalization, $\ln$ mapping is used, for shape a spline. Details in https://cms-analysis.github.io/HiggsAnalysis-CombinedLimit/part2/settinguptheanalysis/#binned-shape-analysis 8) All nuisance parameters for the systematic uncertainties are modelled with a Gaussian pdf. 9) Gluon fusion contributions are all scaled to 1 pb. Please combine them using either the scale factors from 'Table SM Gluon Fusion Fractions', or using your own composition.
Observed and expected distributions of the variable chosen for statistical inference in the low-mass analysis $m_{\tau\tau}$. Numerical values provided in this table correspond to Figure 19 of the auxilliary material of the publication, but restricted to $\mu\tau_{h}$ final state and 2016 data-taking year. All distributions are considered after a fit to data is performed using a background-only model, which includes the $\text{H}(125)$ boson. Some details on how the distributions should be used: 1) All given uncertainties correspond to systematic variations of $\pm1\sigma$. 2) Upper values ('plus' in the yaml file) correspond to an upward systematic variation of the parameter ($+1\sigma$). 3) Lower values ('minus' in the yaml file) correspond to a downward systematic variation of the parameter ($-1\sigma$). 4) These variations can have both positive and negative values, depending on the modelled effect. 5) Uncertainties with the same name should be treated as correlated, consistently across the upper and lower variations. 6) Systematic uncertainties with 'prop_' in the name treat limited background statistics per histogram bin, and are deployed with 'Barlow-Beeston-lite' approach. Details in https://arxiv.org/abs/1103.0354 section 5 7) Remaining systematic uncertainties alter the normalization, the shape, or both for a distribution. The nuisance parameter for such an uncertainty is mapped separately on the normalization and the shape variation components of the uncertainty. For normalization, $\ln$ mapping is used, for shape a spline. Details in https://cms-analysis.github.io/HiggsAnalysis-CombinedLimit/part2/settinguptheanalysis/#binned-shape-analysis 8) All nuisance parameters for the systematic uncertainties are modelled with a Gaussian pdf. 9) Gluon fusion contributions are all scaled to 1 pb. Please combine them using either the scale factors from 'Table SM Gluon Fusion Fractions', or using your own composition.
Observed and expected distributions of the variable chosen for statistical inference in the low-mass analysis $m_{\tau\tau}$. Numerical values provided in this table correspond to Figure 19 of the auxilliary material of the publication, but restricted to $\mu\tau_{h}$ final state and 2017 data-taking year. All distributions are considered after a fit to data is performed using a background-only model, which includes the $\text{H}(125)$ boson. Some details on how the distributions should be used: 1) All given uncertainties correspond to systematic variations of $\pm1\sigma$. 2) Upper values ('plus' in the yaml file) correspond to an upward systematic variation of the parameter ($+1\sigma$). 3) Lower values ('minus' in the yaml file) correspond to a downward systematic variation of the parameter ($-1\sigma$). 4) These variations can have both positive and negative values, depending on the modelled effect. 5) Uncertainties with the same name should be treated as correlated, consistently across the upper and lower variations. 6) Systematic uncertainties with 'prop_' in the name treat limited background statistics per histogram bin, and are deployed with 'Barlow-Beeston-lite' approach. Details in https://arxiv.org/abs/1103.0354 section 5 7) Remaining systematic uncertainties alter the normalization, the shape, or both for a distribution. The nuisance parameter for such an uncertainty is mapped separately on the normalization and the shape variation components of the uncertainty. For normalization, $\ln$ mapping is used, for shape a spline. Details in https://cms-analysis.github.io/HiggsAnalysis-CombinedLimit/part2/settinguptheanalysis/#binned-shape-analysis 8) All nuisance parameters for the systematic uncertainties are modelled with a Gaussian pdf. 9) Gluon fusion contributions are all scaled to 1 pb. Please combine them using either the scale factors from 'Table SM Gluon Fusion Fractions', or using your own composition.
Observed and expected distributions of the variable chosen for statistical inference in the low-mass analysis $m_{\tau\tau}$. Numerical values provided in this table correspond to Figure 19 of the auxilliary material of the publication, but restricted to $\mu\tau_{h}$ final state and 2018 data-taking year. All distributions are considered after a fit to data is performed using a background-only model, which includes the $\text{H}(125)$ boson. Some details on how the distributions should be used: 1) All given uncertainties correspond to systematic variations of $\pm1\sigma$. 2) Upper values ('plus' in the yaml file) correspond to an upward systematic variation of the parameter ($+1\sigma$). 3) Lower values ('minus' in the yaml file) correspond to a downward systematic variation of the parameter ($-1\sigma$). 4) These variations can have both positive and negative values, depending on the modelled effect. 5) Uncertainties with the same name should be treated as correlated, consistently across the upper and lower variations. 6) Systematic uncertainties with 'prop_' in the name treat limited background statistics per histogram bin, and are deployed with 'Barlow-Beeston-lite' approach. Details in https://arxiv.org/abs/1103.0354 section 5 7) Remaining systematic uncertainties alter the normalization, the shape, or both for a distribution. The nuisance parameter for such an uncertainty is mapped separately on the normalization and the shape variation components of the uncertainty. For normalization, $\ln$ mapping is used, for shape a spline. Details in https://cms-analysis.github.io/HiggsAnalysis-CombinedLimit/part2/settinguptheanalysis/#binned-shape-analysis 8) All nuisance parameters for the systematic uncertainties are modelled with a Gaussian pdf. 9) Gluon fusion contributions are all scaled to 1 pb. Please combine them using either the scale factors from 'Table SM Gluon Fusion Fractions', or using your own composition.
Observed and expected distributions of the variable chosen for statistical inference in the low-mass analysis $m_{\tau\tau}$. Numerical values provided in this table correspond to Figure 15 of the auxilliary material of the publication, but restricted to $\mu\tau_{h}$ final state and 2016 data-taking year. All distributions are considered after a fit to data is performed using a background-only model, which includes the $\text{H}(125)$ boson. Some details on how the distributions should be used: 1) All given uncertainties correspond to systematic variations of $\pm1\sigma$. 2) Upper values ('plus' in the yaml file) correspond to an upward systematic variation of the parameter ($+1\sigma$). 3) Lower values ('minus' in the yaml file) correspond to a downward systematic variation of the parameter ($-1\sigma$). 4) These variations can have both positive and negative values, depending on the modelled effect. 5) Uncertainties with the same name should be treated as correlated, consistently across the upper and lower variations. 6) Systematic uncertainties with 'prop_' in the name treat limited background statistics per histogram bin, and are deployed with 'Barlow-Beeston-lite' approach. Details in https://arxiv.org/abs/1103.0354 section 5 7) Remaining systematic uncertainties alter the normalization, the shape, or both for a distribution. The nuisance parameter for such an uncertainty is mapped separately on the normalization and the shape variation components of the uncertainty. For normalization, $\ln$ mapping is used, for shape a spline. Details in https://cms-analysis.github.io/HiggsAnalysis-CombinedLimit/part2/settinguptheanalysis/#binned-shape-analysis 8) All nuisance parameters for the systematic uncertainties are modelled with a Gaussian pdf. 9) Gluon fusion contributions are all scaled to 1 pb. Please combine them using either the scale factors from 'Table SM Gluon Fusion Fractions', or using your own composition.
Observed and expected distributions of the variable chosen for statistical inference in the low-mass analysis $m_{\tau\tau}$. Numerical values provided in this table correspond to Figure 15 of the auxilliary material of the publication, but restricted to $\mu\tau_{h}$ final state and 2017 data-taking year. All distributions are considered after a fit to data is performed using a background-only model, which includes the $\text{H}(125)$ boson. Some details on how the distributions should be used: 1) All given uncertainties correspond to systematic variations of $\pm1\sigma$. 2) Upper values ('plus' in the yaml file) correspond to an upward systematic variation of the parameter ($+1\sigma$). 3) Lower values ('minus' in the yaml file) correspond to a downward systematic variation of the parameter ($-1\sigma$). 4) These variations can have both positive and negative values, depending on the modelled effect. 5) Uncertainties with the same name should be treated as correlated, consistently across the upper and lower variations. 6) Systematic uncertainties with 'prop_' in the name treat limited background statistics per histogram bin, and are deployed with 'Barlow-Beeston-lite' approach. Details in https://arxiv.org/abs/1103.0354 section 5 7) Remaining systematic uncertainties alter the normalization, the shape, or both for a distribution. The nuisance parameter for such an uncertainty is mapped separately on the normalization and the shape variation components of the uncertainty. For normalization, $\ln$ mapping is used, for shape a spline. Details in https://cms-analysis.github.io/HiggsAnalysis-CombinedLimit/part2/settinguptheanalysis/#binned-shape-analysis 8) All nuisance parameters for the systematic uncertainties are modelled with a Gaussian pdf. 9) Gluon fusion contributions are all scaled to 1 pb. Please combine them using either the scale factors from 'Table SM Gluon Fusion Fractions', or using your own composition.
Observed and expected distributions of the variable chosen for statistical inference in the low-mass analysis $m_{\tau\tau}$. Numerical values provided in this table correspond to Figure 15 of the auxilliary material of the publication, but restricted to $\mu\tau_{h}$ final state and 2018 data-taking year. All distributions are considered after a fit to data is performed using a background-only model, which includes the $\text{H}(125)$ boson. Some details on how the distributions should be used: 1) All given uncertainties correspond to systematic variations of $\pm1\sigma$. 2) Upper values ('plus' in the yaml file) correspond to an upward systematic variation of the parameter ($+1\sigma$). 3) Lower values ('minus' in the yaml file) correspond to a downward systematic variation of the parameter ($-1\sigma$). 4) These variations can have both positive and negative values, depending on the modelled effect. 5) Uncertainties with the same name should be treated as correlated, consistently across the upper and lower variations. 6) Systematic uncertainties with 'prop_' in the name treat limited background statistics per histogram bin, and are deployed with 'Barlow-Beeston-lite' approach. Details in https://arxiv.org/abs/1103.0354 section 5 7) Remaining systematic uncertainties alter the normalization, the shape, or both for a distribution. The nuisance parameter for such an uncertainty is mapped separately on the normalization and the shape variation components of the uncertainty. For normalization, $\ln$ mapping is used, for shape a spline. Details in https://cms-analysis.github.io/HiggsAnalysis-CombinedLimit/part2/settinguptheanalysis/#binned-shape-analysis 8) All nuisance parameters for the systematic uncertainties are modelled with a Gaussian pdf. 9) Gluon fusion contributions are all scaled to 1 pb. Please combine them using either the scale factors from 'Table SM Gluon Fusion Fractions', or using your own composition.
Observed and expected distributions of the variable chosen for statistical inference in the low-mass analysis $m_{\tau\tau}$. Numerical values provided in this table correspond to Figure 21 of the auxilliary material of the publication, but restricted to 2016 data-taking year. All distributions are considered after a fit to data is performed using a background-only model, which includes the $\text{H}(125)$ boson. Some details on how the distributions should be used: 1) All given uncertainties correspond to systematic variations of $\pm1\sigma$. 2) Upper values ('plus' in the yaml file) correspond to an upward systematic variation of the parameter ($+1\sigma$). 3) Lower values ('minus' in the yaml file) correspond to a downward systematic variation of the parameter ($-1\sigma$). 4) These variations can have both positive and negative values, depending on the modelled effect. 5) Uncertainties with the same name should be treated as correlated, consistently across the upper and lower variations. 6) Systematic uncertainties with 'prop_' in the name treat limited background statistics per histogram bin, and are deployed with 'Barlow-Beeston-lite' approach. Details in https://arxiv.org/abs/1103.0354 section 5 7) Remaining systematic uncertainties alter the normalization, the shape, or both for a distribution. The nuisance parameter for such an uncertainty is mapped separately on the normalization and the shape variation components of the uncertainty. For normalization, $\ln$ mapping is used, for shape a spline. Details in https://cms-analysis.github.io/HiggsAnalysis-CombinedLimit/part2/settinguptheanalysis/#binned-shape-analysis 8) All nuisance parameters for the systematic uncertainties are modelled with a Gaussian pdf. 9) Gluon fusion contributions are all scaled to 1 pb. Please combine them using either the scale factors from 'Table SM Gluon Fusion Fractions', or using your own composition.
Observed and expected distributions of the variable chosen for statistical inference in the low-mass analysis $m_{\tau\tau}$. Numerical values provided in this table correspond to Figure 21 of the auxilliary material of the publication, but restricted to 2017 data-taking year. All distributions are considered after a fit to data is performed using a background-only model, which includes the $\text{H}(125)$ boson. Some details on how the distributions should be used: 1) All given uncertainties correspond to systematic variations of $\pm1\sigma$. 2) Upper values ('plus' in the yaml file) correspond to an upward systematic variation of the parameter ($+1\sigma$). 3) Lower values ('minus' in the yaml file) correspond to a downward systematic variation of the parameter ($-1\sigma$). 4) These variations can have both positive and negative values, depending on the modelled effect. 5) Uncertainties with the same name should be treated as correlated, consistently across the upper and lower variations. 6) Systematic uncertainties with 'prop_' in the name treat limited background statistics per histogram bin, and are deployed with 'Barlow-Beeston-lite' approach. Details in https://arxiv.org/abs/1103.0354 section 5 7) Remaining systematic uncertainties alter the normalization, the shape, or both for a distribution. The nuisance parameter for such an uncertainty is mapped separately on the normalization and the shape variation components of the uncertainty. For normalization, $\ln$ mapping is used, for shape a spline. Details in https://cms-analysis.github.io/HiggsAnalysis-CombinedLimit/part2/settinguptheanalysis/#binned-shape-analysis 8) All nuisance parameters for the systematic uncertainties are modelled with a Gaussian pdf. 9) Gluon fusion contributions are all scaled to 1 pb. Please combine them using either the scale factors from 'Table SM Gluon Fusion Fractions', or using your own composition.
Observed and expected distributions of the variable chosen for statistical inference in the low-mass analysis $m_{\tau\tau}$. Numerical values provided in this table correspond to Figure 21 of the auxilliary material of the publication, but restricted to 2018 data-taking year. All distributions are considered after a fit to data is performed using a background-only model, which includes the $\text{H}(125)$ boson. Some details on how the distributions should be used: 1) All given uncertainties correspond to systematic variations of $\pm1\sigma$. 2) Upper values ('plus' in the yaml file) correspond to an upward systematic variation of the parameter ($+1\sigma$). 3) Lower values ('minus' in the yaml file) correspond to a downward systematic variation of the parameter ($-1\sigma$). 4) These variations can have both positive and negative values, depending on the modelled effect. 5) Uncertainties with the same name should be treated as correlated, consistently across the upper and lower variations. 6) Systematic uncertainties with 'prop_' in the name treat limited background statistics per histogram bin, and are deployed with 'Barlow-Beeston-lite' approach. Details in https://arxiv.org/abs/1103.0354 section 5 7) Remaining systematic uncertainties alter the normalization, the shape, or both for a distribution. The nuisance parameter for such an uncertainty is mapped separately on the normalization and the shape variation components of the uncertainty. For normalization, $\ln$ mapping is used, for shape a spline. Details in https://cms-analysis.github.io/HiggsAnalysis-CombinedLimit/part2/settinguptheanalysis/#binned-shape-analysis 8) All nuisance parameters for the systematic uncertainties are modelled with a Gaussian pdf. 9) Gluon fusion contributions are all scaled to 1 pb. Please combine them using either the scale factors from 'Table SM Gluon Fusion Fractions', or using your own composition.
Observed and expected distributions of the variable chosen for statistical inference in the low-mass analysis $m_{\tau\tau}$. Numerical values provided in this table correspond to Figure 22 of the auxilliary material of the publication, but restricted to 2016 data-taking year. All distributions are considered after a fit to data is performed using a background-only model, which includes the $\text{H}(125)$ boson. Some details on how the distributions should be used: 1) All given uncertainties correspond to systematic variations of $\pm1\sigma$. 2) Upper values ('plus' in the yaml file) correspond to an upward systematic variation of the parameter ($+1\sigma$). 3) Lower values ('minus' in the yaml file) correspond to a downward systematic variation of the parameter ($-1\sigma$). 4) These variations can have both positive and negative values, depending on the modelled effect. 5) Uncertainties with the same name should be treated as correlated, consistently across the upper and lower variations. 6) Systematic uncertainties with 'prop_' in the name treat limited background statistics per histogram bin, and are deployed with 'Barlow-Beeston-lite' approach. Details in https://arxiv.org/abs/1103.0354 section 5 7) Remaining systematic uncertainties alter the normalization, the shape, or both for a distribution. The nuisance parameter for such an uncertainty is mapped separately on the normalization and the shape variation components of the uncertainty. For normalization, $\ln$ mapping is used, for shape a spline. Details in https://cms-analysis.github.io/HiggsAnalysis-CombinedLimit/part2/settinguptheanalysis/#binned-shape-analysis 8) All nuisance parameters for the systematic uncertainties are modelled with a Gaussian pdf. 9) Gluon fusion contributions are all scaled to 1 pb. Please combine them using either the scale factors from 'Table SM Gluon Fusion Fractions', or using your own composition.
Observed and expected distributions of the variable chosen for statistical inference in the low-mass analysis $m_{\tau\tau}$. Numerical values provided in this table correspond to Figure 22 of the auxilliary material of the publication, but restricted to 2017 data-taking year. All distributions are considered after a fit to data is performed using a background-only model, which includes the $\text{H}(125)$ boson. Some details on how the distributions should be used: 1) All given uncertainties correspond to systematic variations of $\pm1\sigma$. 2) Upper values ('plus' in the yaml file) correspond to an upward systematic variation of the parameter ($+1\sigma$). 3) Lower values ('minus' in the yaml file) correspond to a downward systematic variation of the parameter ($-1\sigma$). 4) These variations can have both positive and negative values, depending on the modelled effect. 5) Uncertainties with the same name should be treated as correlated, consistently across the upper and lower variations. 6) Systematic uncertainties with 'prop_' in the name treat limited background statistics per histogram bin, and are deployed with 'Barlow-Beeston-lite' approach. Details in https://arxiv.org/abs/1103.0354 section 5 7) Remaining systematic uncertainties alter the normalization, the shape, or both for a distribution. The nuisance parameter for such an uncertainty is mapped separately on the normalization and the shape variation components of the uncertainty. For normalization, $\ln$ mapping is used, for shape a spline. Details in https://cms-analysis.github.io/HiggsAnalysis-CombinedLimit/part2/settinguptheanalysis/#binned-shape-analysis 8) All nuisance parameters for the systematic uncertainties are modelled with a Gaussian pdf. 9) Gluon fusion contributions are all scaled to 1 pb. Please combine them using either the scale factors from 'Table SM Gluon Fusion Fractions', or using your own composition.
Observed and expected distributions of the variable chosen for statistical inference in the low-mass analysis $m_{\tau\tau}$. Numerical values provided in this table correspond to Figure 22 of the auxilliary material of the publication, but restricted to 2018 data-taking year. All distributions are considered after a fit to data is performed using a background-only model, which includes the $\text{H}(125)$ boson. Some details on how the distributions should be used: 1) All given uncertainties correspond to systematic variations of $\pm1\sigma$. 2) Upper values ('plus' in the yaml file) correspond to an upward systematic variation of the parameter ($+1\sigma$). 3) Lower values ('minus' in the yaml file) correspond to a downward systematic variation of the parameter ($-1\sigma$). 4) These variations can have both positive and negative values, depending on the modelled effect. 5) Uncertainties with the same name should be treated as correlated, consistently across the upper and lower variations. 6) Systematic uncertainties with 'prop_' in the name treat limited background statistics per histogram bin, and are deployed with 'Barlow-Beeston-lite' approach. Details in https://arxiv.org/abs/1103.0354 section 5 7) Remaining systematic uncertainties alter the normalization, the shape, or both for a distribution. The nuisance parameter for such an uncertainty is mapped separately on the normalization and the shape variation components of the uncertainty. For normalization, $\ln$ mapping is used, for shape a spline. Details in https://cms-analysis.github.io/HiggsAnalysis-CombinedLimit/part2/settinguptheanalysis/#binned-shape-analysis 8) All nuisance parameters for the systematic uncertainties are modelled with a Gaussian pdf. 9) Gluon fusion contributions are all scaled to 1 pb. Please combine them using either the scale factors from 'Table SM Gluon Fusion Fractions', or using your own composition.
Observed and expected distributions of the variable chosen for statistical inference in the low-mass analysis $m_{\tau\tau}$. Numerical values provided in this table correspond to Figure 23 of the auxilliary material of the publication, but restricted to 2016 data-taking year. All distributions are considered after a fit to data is performed using a background-only model, which includes the $\text{H}(125)$ boson. Some details on how the distributions should be used: 1) All given uncertainties correspond to systematic variations of $\pm1\sigma$. 2) Upper values ('plus' in the yaml file) correspond to an upward systematic variation of the parameter ($+1\sigma$). 3) Lower values ('minus' in the yaml file) correspond to a downward systematic variation of the parameter ($-1\sigma$). 4) These variations can have both positive and negative values, depending on the modelled effect. 5) Uncertainties with the same name should be treated as correlated, consistently across the upper and lower variations. 6) Systematic uncertainties with 'prop_' in the name treat limited background statistics per histogram bin, and are deployed with 'Barlow-Beeston-lite' approach. Details in https://arxiv.org/abs/1103.0354 section 5 7) Remaining systematic uncertainties alter the normalization, the shape, or both for a distribution. The nuisance parameter for such an uncertainty is mapped separately on the normalization and the shape variation components of the uncertainty. For normalization, $\ln$ mapping is used, for shape a spline. Details in https://cms-analysis.github.io/HiggsAnalysis-CombinedLimit/part2/settinguptheanalysis/#binned-shape-analysis 8) All nuisance parameters for the systematic uncertainties are modelled with a Gaussian pdf. 9) Gluon fusion contributions are all scaled to 1 pb. Please combine them using either the scale factors from 'Table SM Gluon Fusion Fractions', or using your own composition.
Observed and expected distributions of the variable chosen for statistical inference in the low-mass analysis $m_{\tau\tau}$. Numerical values provided in this table correspond to Figure 23 of the auxilliary material of the publication, but restricted to 2017 data-taking year. All distributions are considered after a fit to data is performed using a background-only model, which includes the $\text{H}(125)$ boson. Some details on how the distributions should be used: 1) All given uncertainties correspond to systematic variations of $\pm1\sigma$. 2) Upper values ('plus' in the yaml file) correspond to an upward systematic variation of the parameter ($+1\sigma$). 3) Lower values ('minus' in the yaml file) correspond to a downward systematic variation of the parameter ($-1\sigma$). 4) These variations can have both positive and negative values, depending on the modelled effect. 5) Uncertainties with the same name should be treated as correlated, consistently across the upper and lower variations. 6) Systematic uncertainties with 'prop_' in the name treat limited background statistics per histogram bin, and are deployed with 'Barlow-Beeston-lite' approach. Details in https://arxiv.org/abs/1103.0354 section 5 7) Remaining systematic uncertainties alter the normalization, the shape, or both for a distribution. The nuisance parameter for such an uncertainty is mapped separately on the normalization and the shape variation components of the uncertainty. For normalization, $\ln$ mapping is used, for shape a spline. Details in https://cms-analysis.github.io/HiggsAnalysis-CombinedLimit/part2/settinguptheanalysis/#binned-shape-analysis 8) All nuisance parameters for the systematic uncertainties are modelled with a Gaussian pdf. 9) Gluon fusion contributions are all scaled to 1 pb. Please combine them using either the scale factors from 'Table SM Gluon Fusion Fractions', or using your own composition.
Observed and expected distributions of the variable chosen for statistical inference in the low-mass analysis $m_{\tau\tau}$. Numerical values provided in this table correspond to Figure 23 of the auxilliary material of the publication, but restricted to 2018 data-taking year. All distributions are considered after a fit to data is performed using a background-only model, which includes the $\text{H}(125)$ boson. Some details on how the distributions should be used: 1) All given uncertainties correspond to systematic variations of $\pm1\sigma$. 2) Upper values ('plus' in the yaml file) correspond to an upward systematic variation of the parameter ($+1\sigma$). 3) Lower values ('minus' in the yaml file) correspond to a downward systematic variation of the parameter ($-1\sigma$). 4) These variations can have both positive and negative values, depending on the modelled effect. 5) Uncertainties with the same name should be treated as correlated, consistently across the upper and lower variations. 6) Systematic uncertainties with 'prop_' in the name treat limited background statistics per histogram bin, and are deployed with 'Barlow-Beeston-lite' approach. Details in https://arxiv.org/abs/1103.0354 section 5 7) Remaining systematic uncertainties alter the normalization, the shape, or both for a distribution. The nuisance parameter for such an uncertainty is mapped separately on the normalization and the shape variation components of the uncertainty. For normalization, $\ln$ mapping is used, for shape a spline. Details in https://cms-analysis.github.io/HiggsAnalysis-CombinedLimit/part2/settinguptheanalysis/#binned-shape-analysis 8) All nuisance parameters for the systematic uncertainties are modelled with a Gaussian pdf. 9) Gluon fusion contributions are all scaled to 1 pb. Please combine them using either the scale factors from 'Table SM Gluon Fusion Fractions', or using your own composition.
Observed and expected distributions of the variable chosen for statistical inference in the low-mass analysis $m_{\tau\tau}$. Numerical values provided in this table correspond to Figure 24 of the auxilliary material of the publication, but restricted to 2016 data-taking year. All distributions are considered after a fit to data is performed using a background-only model, which includes the $\text{H}(125)$ boson. Some details on how the distributions should be used: 1) All given uncertainties correspond to systematic variations of $\pm1\sigma$. 2) Upper values ('plus' in the yaml file) correspond to an upward systematic variation of the parameter ($+1\sigma$). 3) Lower values ('minus' in the yaml file) correspond to a downward systematic variation of the parameter ($-1\sigma$). 4) These variations can have both positive and negative values, depending on the modelled effect. 5) Uncertainties with the same name should be treated as correlated, consistently across the upper and lower variations. 6) Systematic uncertainties with 'prop_' in the name treat limited background statistics per histogram bin, and are deployed with 'Barlow-Beeston-lite' approach. Details in https://arxiv.org/abs/1103.0354 section 5 7) Remaining systematic uncertainties alter the normalization, the shape, or both for a distribution. The nuisance parameter for such an uncertainty is mapped separately on the normalization and the shape variation components of the uncertainty. For normalization, $\ln$ mapping is used, for shape a spline. Details in https://cms-analysis.github.io/HiggsAnalysis-CombinedLimit/part2/settinguptheanalysis/#binned-shape-analysis 8) All nuisance parameters for the systematic uncertainties are modelled with a Gaussian pdf. 9) Gluon fusion contributions are all scaled to 1 pb. Please combine them using either the scale factors from 'Table SM Gluon Fusion Fractions', or using your own composition.
Observed and expected distributions of the variable chosen for statistical inference in the low-mass analysis $m_{\tau\tau}$. Numerical values provided in this table correspond to Figure 24 of the auxilliary material of the publication, but restricted to 2017 data-taking year. All distributions are considered after a fit to data is performed using a background-only model, which includes the $\text{H}(125)$ boson. Some details on how the distributions should be used: 1) All given uncertainties correspond to systematic variations of $\pm1\sigma$. 2) Upper values ('plus' in the yaml file) correspond to an upward systematic variation of the parameter ($+1\sigma$). 3) Lower values ('minus' in the yaml file) correspond to a downward systematic variation of the parameter ($-1\sigma$). 4) These variations can have both positive and negative values, depending on the modelled effect. 5) Uncertainties with the same name should be treated as correlated, consistently across the upper and lower variations. 6) Systematic uncertainties with 'prop_' in the name treat limited background statistics per histogram bin, and are deployed with 'Barlow-Beeston-lite' approach. Details in https://arxiv.org/abs/1103.0354 section 5 7) Remaining systematic uncertainties alter the normalization, the shape, or both for a distribution. The nuisance parameter for such an uncertainty is mapped separately on the normalization and the shape variation components of the uncertainty. For normalization, $\ln$ mapping is used, for shape a spline. Details in https://cms-analysis.github.io/HiggsAnalysis-CombinedLimit/part2/settinguptheanalysis/#binned-shape-analysis 8) All nuisance parameters for the systematic uncertainties are modelled with a Gaussian pdf. 9) Gluon fusion contributions are all scaled to 1 pb. Please combine them using either the scale factors from 'Table SM Gluon Fusion Fractions', or using your own composition.
Observed and expected distributions of the variable chosen for statistical inference in the low-mass analysis $m_{\tau\tau}$. Numerical values provided in this table correspond to Figure 24 of the auxilliary material of the publication, but restricted to 2018 data-taking year. All distributions are considered after a fit to data is performed using a background-only model, which includes the $\text{H}(125)$ boson. Some details on how the distributions should be used: 1) All given uncertainties correspond to systematic variations of $\pm1\sigma$. 2) Upper values ('plus' in the yaml file) correspond to an upward systematic variation of the parameter ($+1\sigma$). 3) Lower values ('minus' in the yaml file) correspond to a downward systematic variation of the parameter ($-1\sigma$). 4) These variations can have both positive and negative values, depending on the modelled effect. 5) Uncertainties with the same name should be treated as correlated, consistently across the upper and lower variations. 6) Systematic uncertainties with 'prop_' in the name treat limited background statistics per histogram bin, and are deployed with 'Barlow-Beeston-lite' approach. Details in https://arxiv.org/abs/1103.0354 section 5 7) Remaining systematic uncertainties alter the normalization, the shape, or both for a distribution. The nuisance parameter for such an uncertainty is mapped separately on the normalization and the shape variation components of the uncertainty. For normalization, $\ln$ mapping is used, for shape a spline. Details in https://cms-analysis.github.io/HiggsAnalysis-CombinedLimit/part2/settinguptheanalysis/#binned-shape-analysis 8) All nuisance parameters for the systematic uncertainties are modelled with a Gaussian pdf. 9) Gluon fusion contributions are all scaled to 1 pb. Please combine them using either the scale factors from 'Table SM Gluon Fusion Fractions', or using your own composition.
Observed and expected distributions of the variable chosen for statistical inference in the low-mass analysis $m_{\tau\tau}$. Numerical values provided in this table correspond to Figure 20 of the auxilliary material of the publication, but restricted to 2016 data-taking year. All distributions are considered after a fit to data is performed using a background-only model, which includes the $\text{H}(125)$ boson. Some details on how the distributions should be used: 1) All given uncertainties correspond to systematic variations of $\pm1\sigma$. 2) Upper values ('plus' in the yaml file) correspond to an upward systematic variation of the parameter ($+1\sigma$). 3) Lower values ('minus' in the yaml file) correspond to a downward systematic variation of the parameter ($-1\sigma$). 4) These variations can have both positive and negative values, depending on the modelled effect. 5) Uncertainties with the same name should be treated as correlated, consistently across the upper and lower variations. 6) Systematic uncertainties with 'prop_' in the name treat limited background statistics per histogram bin, and are deployed with 'Barlow-Beeston-lite' approach. Details in https://arxiv.org/abs/1103.0354 section 5 7) Remaining systematic uncertainties alter the normalization, the shape, or both for a distribution. The nuisance parameter for such an uncertainty is mapped separately on the normalization and the shape variation components of the uncertainty. For normalization, $\ln$ mapping is used, for shape a spline. Details in https://cms-analysis.github.io/HiggsAnalysis-CombinedLimit/part2/settinguptheanalysis/#binned-shape-analysis 8) All nuisance parameters for the systematic uncertainties are modelled with a Gaussian pdf. 9) Gluon fusion contributions are all scaled to 1 pb. Please combine them using either the scale factors from 'Table SM Gluon Fusion Fractions', or using your own composition.
Observed and expected distributions of the variable chosen for statistical inference in the low-mass analysis $m_{\tau\tau}$. Numerical values provided in this table correspond to Figure 20 of the auxilliary material of the publication, but restricted to 2017 data-taking year. All distributions are considered after a fit to data is performed using a background-only model, which includes the $\text{H}(125)$ boson. Some details on how the distributions should be used: 1) All given uncertainties correspond to systematic variations of $\pm1\sigma$. 2) Upper values ('plus' in the yaml file) correspond to an upward systematic variation of the parameter ($+1\sigma$). 3) Lower values ('minus' in the yaml file) correspond to a downward systematic variation of the parameter ($-1\sigma$). 4) These variations can have both positive and negative values, depending on the modelled effect. 5) Uncertainties with the same name should be treated as correlated, consistently across the upper and lower variations. 6) Systematic uncertainties with 'prop_' in the name treat limited background statistics per histogram bin, and are deployed with 'Barlow-Beeston-lite' approach. Details in https://arxiv.org/abs/1103.0354 section 5 7) Remaining systematic uncertainties alter the normalization, the shape, or both for a distribution. The nuisance parameter for such an uncertainty is mapped separately on the normalization and the shape variation components of the uncertainty. For normalization, $\ln$ mapping is used, for shape a spline. Details in https://cms-analysis.github.io/HiggsAnalysis-CombinedLimit/part2/settinguptheanalysis/#binned-shape-analysis 8) All nuisance parameters for the systematic uncertainties are modelled with a Gaussian pdf. 9) Gluon fusion contributions are all scaled to 1 pb. Please combine them using either the scale factors from 'Table SM Gluon Fusion Fractions', or using your own composition.
Observed and expected distributions of the variable chosen for statistical inference in the low-mass analysis $m_{\tau\tau}$. Numerical values provided in this table correspond to Figure 20 of the auxilliary material of the publication, but restricted to 2018 data-taking year. All distributions are considered after a fit to data is performed using a background-only model, which includes the $\text{H}(125)$ boson. Some details on how the distributions should be used: 1) All given uncertainties correspond to systematic variations of $\pm1\sigma$. 2) Upper values ('plus' in the yaml file) correspond to an upward systematic variation of the parameter ($+1\sigma$). 3) Lower values ('minus' in the yaml file) correspond to a downward systematic variation of the parameter ($-1\sigma$). 4) These variations can have both positive and negative values, depending on the modelled effect. 5) Uncertainties with the same name should be treated as correlated, consistently across the upper and lower variations. 6) Systematic uncertainties with 'prop_' in the name treat limited background statistics per histogram bin, and are deployed with 'Barlow-Beeston-lite' approach. Details in https://arxiv.org/abs/1103.0354 section 5 7) Remaining systematic uncertainties alter the normalization, the shape, or both for a distribution. The nuisance parameter for such an uncertainty is mapped separately on the normalization and the shape variation components of the uncertainty. For normalization, $\ln$ mapping is used, for shape a spline. Details in https://cms-analysis.github.io/HiggsAnalysis-CombinedLimit/part2/settinguptheanalysis/#binned-shape-analysis 8) All nuisance parameters for the systematic uncertainties are modelled with a Gaussian pdf. 9) Gluon fusion contributions are all scaled to 1 pb. Please combine them using either the scale factors from 'Table SM Gluon Fusion Fractions', or using your own composition.
A measurement of the top quark pole mass $m_\mathrm{t}^\text{pole}$ in events where a top quark-antiquark pair ($\mathrm{t\bar{t}}$) is produced in association with at least one additional jet ($\mathrm{t\bar{t}}$+jet) is presented. This analysis is performed using proton-proton collision data at $\sqrt{s}$ = 13 TeV collected by the CMS experiment at the CERN LHC, corresponding to a total integrated luminosity of 36.3 fb$^{-1}$. Events with two opposite-sign leptons in the final state (e$^+$e$^-$, $\mu^+\mu^-$, e$^\pm\mu^\mp$) are analyzed. The reconstruction of the main observable and the event classification are optimized using multivariate analysis techniques based on machine learning. The production cross section is measured as a function of the inverse of the invariant mass of the $\mathrm{t\bar{t}}$+jet system at the parton level using a maximum likelihood unfolding. Given a reference parton distribution function (PDF), the top quark pole mass is extracted using the theoretical predictions at next-to-leading order. For the ABMP16NLO PDF, this results in $m_\mathrm{t}^\text{pole}$ = 172.93 $\pm$ 1.36 GeV.
Absolute differential cross section as a function of the rho observable at parton level.
Absolute differential cross section as a function of the rho observable at parton level.
Covariance matrix for the total uncertainty for the measurement of the absolute differential cross section as a function of the rho observable at parton level.
Covariance matrix for the total uncertainty (i.e. fit including stat., not extrapolation) for the measurement of the absolute differential cross section as a function of the rho observable at parton level.
Covariance matrix for the statistical uncertainty for the measurement of the absolute differential cross section as a function of the rho observable at parton level.
Covariance matrix for the statistical uncertainty for the measurement of the absolute differential cross section as a function of the rho observable at parton level.
Covariance matrix for the extrapolation uncertainty for the measurement of the absolute differential cross section as a function of the rho observable at parton level.
Covariance matrix for the extrapolation uncertainty for the measurement of the absolute differential cross section as a function of the rho observable at parton level.
Normalized differential cross section as a function of the rho observable at parton level.
Normalized differential cross section as a function of the rho observable at parton level.
Covariance matrix for the total uncertainty for the measurement of the normalized differential cross section as a function of the rho observable at parton level.
Covariance matrix for the total uncertainty (i.e. fit including stat., not extrapolation) for the measurement of the normalized differential cross section as a function of the rho observable at parton level.
Covariance matrix for the statistical uncertainty for the measurement of the normalized differential cross section as a function of the rho observable at parton level.
Covariance matrix for the statistical uncertainty for the measurement of the normalized differential cross section as a function of the rho observable at parton level.
Covariance matrix for the extrapolation uncertainty for the measurement of the normalized differential cross section as a function of the rho observable at parton level.
Covariance matrix for the extrapolation uncertainty for the measurement of the normalized differential cross section as a function of the rho observable at parton level.
Correlation matrix for all nuisance parameters and parameters of interest of the Likelihood fit.
Correlation matrix for all nuisance parameters and parameters of interest of the Likelihood fit.
This table is a numerical representation of Fig. 8 for all nuisance parameters.
This table is a numerical representation of Fig. 8 for all nuisance parameters.
Jet shapes have been measured in inclusive jet production in proton-proton collisions at sqrt(s) = 7 TeV using 3 pb^{-1} of data recorded by the ATLAS experiment at the LHC. Jets are reconstructed using the anti-kt algorithm with transverse momentum 30 GeV < pT < 600 GeV and rapidity in the region |y| < 2.8. The data are corrected for detector effects and compared to several leading-order QCD matrix elements plus parton shower Monte Carlo predictions, including different sets of parameters tuned to model fragmentation processes and underlying event contributions in the final state. The measured jets become narrower with increasing jet transverse momentum and the jet shapes present a moderate jet rapidity dependence. Within QCD, the data test a variety of perturbative and non-perturbative effects. In particular, the data show sensitivity to the details of the parton shower, fragmentation, and underlying event models in the Monte Carlo generators. For an appropriate choice of the parameters used in these models, the data are well described.
Measured Differential Jet Shape RHO as a function of r for jet transverse momentum from 30 to 40 GeV and absolute values of the jet rapidity from 0 to 2.8.
Measured Differential Jet Shape RHO as a function of r for jet transverse momentum from 40 to 60 GeV and absolute values of the jet rapidity from 0 to 2.8.
Measured Differential Jet Shape RHO as a function of r for jet transverse momentum from 60 to 80 GeV and absolute values of the jet rapidity from 0 to 2.8.
Measured Differential Jet Shape RHO as a function of r for jet transverse momentum from 80 to 110 GeV and absolute values of the jet rapidity from 0 to 2.8.
Measured Differential Jet Shape RHO as a function of r for jet transverse momentum from 110 to 160 GeV and absolute values of the jet rapidity from 0 to 2.8.
Measured Differential Jet Shape RHO as a function of r for jet transverse momentum from 160 to 210 GeV and absolute values of the jet rapidity from 0 to 2.8.
Measured Differential Jet Shape RHO as a function of r for jet transverse momentum from 210 to 260 GeV and absolute values of the jet rapidity from 0 to 2.8.
Measured Differential Jet Shape RHO as a function of r for jet transverse momentum from 260 to 310 GeV and absolute values of the jet rapidity from 0 to 2.8.
Measured Differential Jet Shape RHO as a function of r for jet transverse momentum from 310 to 400 GeV and absolute values of the jet rapidity from 0 to 2.8.
Measured Differential Jet Shape RHO as a function of r for jet transverse momentum from 400 to 500 GeV and absolute values of the jet rapidity from 0 to 2.8.
Measured Differential Jet Shape RHO as a function of r for jet transverse momentum from 500 to 600 GeV and absolute values of the jet rapidity from 0 to 2.8.
Measured Differential Jet Shape RHO as a function of r for jet transverse momentum from 30 to 40 GeV and absolute values of the jet rapidity from 0 to 0.3. This is additional data, not in the paper.
Measured Differential Jet Shape RHO as a function of r for jet transverse momentum from 30 to 40 GeV and absolute values of the jet rapidity from 0.3 to 0.8. This is additional data, not in the paper.
Measured Differential Jet Shape RHO as a function of r for jet transverse momentum from 30 to 40 GeV and absolute values of the jet rapidity from 0.8 to 1.2. This is additional data, not in the paper.
Measured Differential Jet Shape RHO as a function of r for jet transverse momentum from 30 to 40 GeV and absolute values of the jet rapidity from 1.2 to 2.1. This is additional data, not in the paper.
Measured Differential Jet Shape RHO as a function of r for jet transverse momentum from 30 to 40 GeV and absolute values of the jet rapidity from 2.1 to 2.8. This is additional data, not in the paper.
Measured Differential Jet Shape RHO as a function of r for jet transverse momentum from 40 to 60 GeV and absolute values of the jet rapidity from 0 to 0.3. This is additional data, not in the paper.
Measured Differential Jet Shape RHO as a function of r for jet transverse momentum from 40 to 60 GeV and absolute values of the jet rapidity from 0.3 to 0.8. This is additional data, not in the paper.
Measured Differential Jet Shape RHO as a function of r for jet transverse momentum from 40 to 60 GeV and absolute values of the jet rapidity from 0.8 to 1.2. This is additional data, not in the paper.
Measured Differential Jet Shape RHO as a function of r for jet transverse momentum from 40 to 60 GeV and absolute values of the jet rapidity from 1.2 to 2.1. This is additional data, not in the paper.
Measured Differential Jet Shape RHO as a function of r for jet transverse momentum from 40 to 60 GeV and absolute values of the jet rapidity from 2.1 to 2.8. This is additional data, not in the paper.
Measured Differential Jet Shape RHO as a function of r for jet transverse momentum from 60 to 80 GeV and absolute values of the jet rapidity from 0 to 0.3. This is additional data, not in the paper.
Measured Differential Jet Shape RHO as a function of r for jet transverse momentum from 60 to 80 GeV and absolute values of the jet rapidity from 0.3 to 0.8. This is additional data, not in the paper.
Measured Differential Jet Shape RHO as a function of r for jet transverse momentum from 60 to 80 GeV and absolute values of the jet rapidity from 0.8 to 1.2. This is additional data, not in the paper.
Measured Differential Jet Shape RHO as a function of r for jet transverse momentum from 60 to 80 GeV and absolute values of the jet rapidity from 1.2 to 2.1. This is additional data, not in the paper.
Measured Differential Jet Shape RHO as a function of r for jet transverse momentum from 60 to 80 GeV and absolute values of the jet rapidity from 2.1 to 2.8. This is additional data, not in the paper.
Measured Differential Jet Shape RHO as a function of r for jet transverse momentum from 80 to 110 GeV and absolute values of the jet rapidity from 0 to 0.3. This is additional data, not in the paper.
Measured Differential Jet Shape RHO as a function of r for jet transverse momentum from 80 to 110 GeV and absolute values of the jet rapidity from 0.3 to 0.8. This is additional data, not in the paper.
Measured Differential Jet Shape RHO as a function of r for jet transverse momentum from 80 to 110 GeV and absolute values of the jet rapidity from 0.8 to 1.2. This is additional data, not in the paper.
Measured Differential Jet Shape RHO as a function of r for jet transverse momentum from 80 to 110 GeV and absolute values of the jet rapidity from 1.2 to 2.1. This is additional data, not in the paper.
Measured Differential Jet Shape RHO as a function of r for jet transverse momentum from 80 to 110 GeV and absolute values of the jet rapidity from 2.1 to 2.8. This is additional data, not in the paper.
Measured Differential Jet Shape RHO as a function of r for jet transverse momentum from 110 to 160 GeV and absolute values of the jet rapidity from 0 to 0.3. This is additional data, not in the paper.
Measured Differential Jet Shape RHO as a function of r for jet transverse momentum from 110 to 160 GeV and absolute values of the jet rapidity from 0.3 to 0.8. This is additional data, not in the paper.
Measured Differential Jet Shape RHO as a function of r for jet transverse momentum from 110 to 160 GeV and absolute values of the jet rapidity from 0.8 to 1.2. This is additional data, not in the paper.
Measured Differential Jet Shape RHO as a function of r for jet transverse momentum from 110 to 160 GeV and absolute values of the jet rapidity from 1.2 to 2.1. This is additional data, not in the paper.
Measured Differential Jet Shape RHO as a function of r for jet transverse momentum from 110 to 160 GeV and absolute values of the jet rapidity from 2.1 to 2.8. This is additional data, not in the paper.
Measured Differential Jet Shape RHO as a function of r for jet transverse momentum from 160 to 210 GeV and absolute values of the jet rapidity from 0 to 0.3. This is additional data, not in the paper.
Measured Differential Jet Shape RHO as a function of r for jet transverse momentum from 160 to 210 GeV and absolute values of the jet rapidity from 0.3 to 0.8. This is additional data, not in the paper.
Measured Differential Jet Shape RHO as a function of r for jet transverse momentum from 160 to 210 GeV and absolute values of the jet rapidity from 0.8 to 1.2. This is additional data, not in the paper.
Measured Differential Jet Shape RHO as a function of r for jet transverse momentum from 160 to 210 GeV and absolute values of the jet rapidity from 1.2 to 2.1. This is additional data, not in the paper.
Measured Differential Jet Shape RHO as a function of r for jet transverse momentum from 160 to 210 GeV and absolute values of the jet rapidity from 2.1 to 2.8. This is additional data, not in the paper.
Measured Differential Jet Shape RHO as a function of r for jet transverse momentum from 210 to 260 GeV and absolute values of the jet rapidity from 0 to 0.3. This is additional data, not in the paper.
Measured Differential Jet Shape RHO as a function of r for jet transverse momentum from 210 to 260 GeV and absolute values of the jet rapidity from 0.3 to 0.8. This is additional data, not in the paper.
Measured Differential Jet Shape RHO as a function of r for jet transverse momentum from 210 to 260 GeV and absolute values of the jet rapidity from 0.8 to 1.2. This is additional data, not in the paper.
Measured Differential Jet Shape RHO as a function of r for jet transverse momentum from 210 to 260 GeV and absolute values of the jet rapidity from 1.2 to 2.1. This is additional data, not in the paper.
Measured Differential Jet Shape RHO as a function of r for jet transverse momentum from 210 to 260 GeV and absolute values of the jet rapidity from 2.1 to 2.8. This is additional data, not in the paper.
Measured Differential Jet Shape RHO as a function of r for jet transverse momentum from 260 to 310 GeV and absolute values of the jet rapidity from 0 to 0.3. This is additional data, not in the paper.
Measured Differential Jet Shape RHO as a function of r for jet transverse momentum from 260 to 310 GeV and absolute values of the jet rapidity from 0.3 to 0.8. This is additional data, not in the paper.
Measured Differential Jet Shape RHO as a function of r for jet transverse momentum from 260 to 310 GeV and absolute values of the jet rapidity from 0.8 to 1.2. This is additional data, not in the paper.
Measured Differential Jet Shape RHO as a function of r for jet transverse momentum from 260 to 310 GeV and absolute values of the jet rapidity from 1.2 to 2.1. This is additional data, not in the paper.
Measured Differential Jet Shape RHO as a function of r for jet transverse momentum from 260 to 310 GeV and absolute values of the jet rapidity from 2.1 to 2.8. This is additional data, not in the paper.
Measured Differential Jet Shape RHO as a function of r for jet transverse momentum from 310 to 400 GeV and absolute values of the jet rapidity from 0 to 0.3. This is additional data, not in the paper.
Measured Differential Jet Shape RHO as a function of r for jet transverse momentum from 310 to 400 GeV and absolute values of the jet rapidity from 0.3 to 0.8. This is additional data, not in the paper.
Measured Differential Jet Shape RHO as a function of r for jet transverse momentum from 310 to 400 GeV and absolute values of the jet rapidity from 0.8 to 1.2. This is additional data, not in the paper.
Measured Differential Jet Shape RHO as a function of r for jet transverse momentum from 310 to 400 GeV and absolute values of the jet rapidity from 1.2 to 2.1. This is additional data, not in the paper.
Measured Differential Jet Shape RHO as a function of r for jet transverse momentum from 400 to 500 GeV and absolute values of the jet rapidity from 0 to 0.3. This is additional data, not in the paper.
Measured Differential Jet Shape RHO as a function of r for jet transverse momentum from 400 to 500 GeV and absolute values of the jet rapidity from 0.3 to 0.8. This is additional data, not in the paper.
Measured Differential Jet Shape RHO as a function of r for jet transverse momentum from 400 to 500 GeV and absolute values of the jet rapidity from 0.8 to 1.2. This is additional data, not in the paper.
Measured Differential Jet Shape RHO as a function of r for jet transverse momentum from 400 to 500 GeV and absolute values of the jet rapidity from 1.2 to 2.1. This is additional data, not in the paper.
Measured Integrated Jet Shape 1-PSI as a function of jet transverse momentum for an r value of 0.3 and absolute values of the jet rapidity from 0 to 2.8.
Measured Integrated Jet Shape 1-PSI as a function of jet transverse momentum for an r value of 0.3 and absolute values of the jet rapidity from 0 to 0.3.
Measured Integrated Jet Shape 1-PSI as a function of jet transverse momentum for an r value of 0.3 and absolute values of the jet rapidity from 0.3 to 0.8.
Measured Integrated Jet Shape 1-PSI as a function of jet transverse momentum for an r value of 0.3 and absolute values of the jet rapidity from 0.8 to 1.2.
Measured Integrated Jet Shape 1-PSI as a function of jet transverse momentum for an r value of 0.3 and absolute values of the jet rapidity from 1.2 to 2.1.
Measured Integrated Jet Shape 1-PSI as a function of jet transverse momentum for an r value of 0.3 and absolute values of the jet rapidity from 2.1 to 2.8.
Measured Integrated Jet Shape PSI as a function of r for jet transverse momentum from 30 to 40 GeV and absolute values of the jet rapidity from 0 to 0.3. This is additional data, not in the paper.
Measured Integrated Jet Shape PSI as a function of r for jet transverse momentum from 30 to 40 GeV and absolute values of the jet rapidity from 0.3 to 0.8. This is additional data, not in the paper.
Measured Integrated Jet Shape PSI as a function of r for jet transverse momentum from 30 to 40 GeV and absolute values of the jet rapidity from 0.8 to 1.2. This is additional data, not in the paper.
Measured Integrated Jet Shape PSI as a function of r for jet transverse momentum from 30 to 40 GeV and absolute values of the jet rapidity from 1.2 to 2.1. This is additional data, not in the paper.
Measured Integrated Jet Shape PSI as a function of r for jet transverse momentum from 30 to 40 GeV and absolute values of the jet rapidity from 2.1 to 2.8. This is additional data, not in the paper.
Measured Integrated Jet Shape PSI as a function of r for jet transverse momentum from 30 to 40 GeV and absolute values of the jet rapidity from 0 to 2.8. This is additional data, not in the paper.
Measured Integrated Jet Shape PSI as a function of r for jet transverse momentum from 40 to 60 GeV and absolute values of the jet rapidity from 0 to 0.3. This is additional data, not in the paper.
Measured Integrated Jet Shape PSI as a function of r for jet transverse momentum from 40 to 60 GeV and absolute values of the jet rapidity from 0.3 to 0.8. This is additional data, not in the paper.
Measured Integrated Jet Shape PSI as a function of r for jet transverse momentum from 40 to 60 GeV and absolute values of the jet rapidity from 0.8 to 1.2. This is additional data, not in the paper.
Measured Integrated Jet Shape PSI as a function of r for jet transverse momentum from 40 to 60 GeV and absolute values of the jet rapidity from 1.2 to 2.1. This is additional data, not in the paper.
Measured Integrated Jet Shape PSI as a function of r for jet transverse momentum from 40 to 60 GeV and absolute values of the jet rapidity from 2.1 to 2.8. This is additional data, not in the paper.
Measured Integrated Jet Shape PSI as a function of r for jet transverse momentum from 40 to 60 GeV and absolute values of the jet rapidity from 0 to 2.8. This is additional data, not in the paper.
Measured Integrated Jet Shape PSI as a function of r for jet transverse momentum from 60 to 80 GeV and absolute values of the jet rapidity from 0 to 0.3. This is additional data, not in the paper.
Measured Integrated Jet Shape PSI as a function of r for jet transverse momentum from 60 to 80 GeV and absolute values of the jet rapidity from 0.3 to 0.8. This is additional data, not in the paper.
Measured Integrated Jet Shape PSI as a function of r for jet transverse momentum from 60 to 80 GeV and absolute values of the jet rapidity from 0.8 to 1.2. This is additional data, not in the paper.
Measured Integrated Jet Shape PSI as a function of r for jet transverse momentum from 60 to 80 GeV and absolute values of the jet rapidity from 1.2 to 2.1. This is additional data, not in the paper.
Measured Integrated Jet Shape PSI as a function of r for jet transverse momentum from 60 to 80 GeV and absolute values of the jet rapidity from 2.1 to 2.8. This is additional data, not in the paper.
Measured Integrated Jet Shape PSI as a function of r for jet transverse momentum from 60 to 80 GeV and absolute values of the jet rapidity from 0 to 2.8. This is additional data, not in the paper.
Measured Integrated Jet Shape PSI as a function of r for jet transverse momentum from 80 to 110 GeV and absolute values of the jet rapidity from 0 to 0.3. This is additional data, not in the paper.
Measured Integrated Jet Shape PSI as a function of r for jet transverse momentum from 80 to 110 GeV and absolute values of the jet rapidity from 0.3 to 0.8. This is additional data, not in the paper.
Measured Integrated Jet Shape PSI as a function of r for jet transverse momentum from 80 to 110 GeV and absolute values of the jet rapidity from 0.8 to 1.2. This is additional data, not in the paper.
Measured Integrated Jet Shape PSI as a function of r for jet transverse momentum from 80 to 110 GeV and absolute values of the jet rapidity from 1.2 to 2.1. This is additional data, not in the paper.
Measured Integrated Jet Shape PSI as a function of r for jet transverse momentum from 80 to 110 GeV and absolute values of the jet rapidity from 2.1 to 2.8. This is additional data, not in the paper.
Measured Integrated Jet Shape PSI as a function of r for jet transverse momentum from 80 to 110 GeV and absolute values of the jet rapidity from 0 to 2.8. This is additional data, not in the paper.
Measured Integrated Jet Shape PSI as a function of r for jet transverse momentum from 110 to 160 GeV and absolute values of the jet rapidity from 0 to 0.3. This is additional data, not in the paper.
Measured Integrated Jet Shape PSI as a function of r for jet transverse momentum from 110 to 160 GeV and absolute values of the jet rapidity from 0.3 to 0.8. This is additional data, not in the paper.
Measured Integrated Jet Shape PSI as a function of r for jet transverse momentum from 110 to 160 GeV and absolute values of the jet rapidity from 0.8 to 1.2. This is additional data, not in the paper.
Measured Integrated Jet Shape PSI as a function of r for jet transverse momentum from 110 to 160 GeV and absolute values of the jet rapidity from 1.2 to 2.1. This is additional data, not in the paper.
Measured Integrated Jet Shape PSI as a function of r for jet transverse momentum from 110 to 160 GeV and absolute values of the jet rapidity from 2.1 to 2.8. This is additional data, not in the paper.
Measured Integrated Jet Shape PSI as a function of r for jet transverse momentum from 110 to 160 GeV and absolute values of the jet rapidity from 0 to 2.8. This is additional data, not in the paper.
Measured Integrated Jet Shape PSI as a function of r for jet transverse momentum from 160 to 210 GeV and absolute values of the jet rapidity from 0 to 0.3. This is additional data, not in the paper.
Measured Integrated Jet Shape PSI as a function of r for jet transverse momentum from 160 to 210 GeV and absolute values of the jet rapidity from 0.3 to 0.8. This is additional data, not in the paper.
Measured Integrated Jet Shape PSI as a function of r for jet transverse momentum from 160 to 210 GeV and absolute values of the jet rapidity from 0.8 to 1.2. This is additional data, not in the paper.
Measured Integrated Jet Shape PSI as a function of r for jet transverse momentum from 160 to 210 GeV and absolute values of the jet rapidity from 1.2 to 2.1. This is additional data, not in the paper.
Measured Integrated Jet Shape PSI as a function of r for jet transverse momentum from 160 to 210 GeV and absolute values of the jet rapidity from 2.1 to 2.8. This is additional data, not in the paper.
Measured Integrated Jet Shape PSI as a function of r for jet transverse momentum from 160 to 210 GeV and absolute values of the jet rapidity from 0 to 2.8. This is additional data, not in the paper.
Measured Integrated Jet Shape PSI as a function of r for jet transverse momentum from 210 to 260 GeV and absolute values of the jet rapidity from 0 to 0.3. This is additional data, not in the paper.
Measured Integrated Jet Shape PSI as a function of r for jet transverse momentum from 210 to 260 GeV and absolute values of the jet rapidity from 0.3 to 0.8. This is additional data, not in the paper.
Measured Integrated Jet Shape PSI as a function of r for jet transverse momentum from 210 to 260 GeV and absolute values of the jet rapidity from 0.8 to 1.2. This is additional data, not in the paper.
Measured Integrated Jet Shape PSI as a function of r for jet transverse momentum from 210 to 260 GeV and absolute values of the jet rapidity from 1.2 to 2.1. This is additional data, not in the paper.
Measured Integrated Jet Shape PSI as a function of r for jet transverse momentum from 210 to 260 GeV and absolute values of the jet rapidity from 2.1 to 2.8. This is additional data, not in the paper.
Measured Integrated Jet Shape PSI as a function of r for jet transverse momentum from 210 to 260 GeV and absolute values of the jet rapidity from 0 to 2.8. This is additional data, not in the paper.
Measured Integrated Jet Shape PSI as a function of r for jet transverse momentum from 260 to 310 GeV and absolute values of the jet rapidity from 0 to 0.3. This is additional data, not in the paper.
Measured Integrated Jet Shape PSI as a function of r for jet transverse momentum from 260 to 310 GeV and absolute values of the jet rapidity from 0.3 to 0.8. This is additional data, not in the paper.
Measured Integrated Jet Shape PSI as a function of r for jet transverse momentum from 260 to 310 GeV and absolute values of the jet rapidity from 0.8 to 1.2. This is additional data, not in the paper.
Measured Integrated Jet Shape PSI as a function of r for jet transverse momentum from 260 to 310 GeV and absolute values of the jet rapidity from 1.2 to 2.1. This is additional data, not in the paper.
Measured Integrated Jet Shape PSI as a function of r for jet transverse momentum from 260 to 310 GeV and absolute values of the jet rapidity from 2.1 to 2.8. This is additional data, not in the paper.
Measured Integrated Jet Shape PSI as a function of r for jet transverse momentum from 260 to 310 GeV and absolute values of the jet rapidity from 0 to 2.8. This is additional data, not in the paper.
Measured Integrated Jet Shape PSI as a function of r for jet transverse momentum from 310 to 400 GeV and absolute values of the jet rapidity from 0 to 0.3. This is additional data, not in the paper.
Measured Integrated Jet Shape PSI as a function of r for jet transverse momentum from 310 to 400 GeV and absolute values of the jet rapidity from 0.3 to 0.8. This is additional data, not in the paper.
Measured Integrated Jet Shape PSI as a function of r for jet transverse momentum from 310 to 400 GeV and absolute values of the jet rapidity from 0.8 to 1.2. This is additional data, not in the paper.
Measured Integrated Jet Shape PSI as a function of r for jet transverse momentum from 310 to 400 GeV and absolute values of the jet rapidity from 1.2 to 2.1. This is additional data, not in the paper.
Measured Integrated Jet Shape PSI as a function of r for jet transverse momentum from 310 to 400 GeV and absolute values of the jet rapidity from 0 to 2.8. This is additional data, not in the paper.
Measured Integrated Jet Shape PSI as a function of r for jet transverse momentum from 400 to 500 GeV and absolute values of the jet rapidity from 0 to 0.3. This is additional data, not in the paper.
Measured Integrated Jet Shape PSI as a function of r for jet transverse momentum from 400 to 500 GeV and absolute values of the jet rapidity from 0.3 to 0.8. This is additional data, not in the paper.
Measured Integrated Jet Shape PSI as a function of r for jet transverse momentum from 400 to 500 GeV and absolute values of the jet rapidity from 0.8 to 1.2. This is additional data, not in the paper.
Measured Integrated Jet Shape PSI as a function of r for jet transverse momentum from 400 to 500 GeV and absolute values of the jet rapidity from 1.2 to 2.1. This is additional data, not in the paper.
Measured Integrated Jet Shape PSI as a function of r for jet transverse momentum from 400 to 500 GeV and absolute values of the jet rapidity from 0 to 2.8. This is additional data, not in the paper.
Measured Integrated Jet Shape PSI as a function of r for jet transverse momentum from 500 to 600 GeV and absolute values of the jet rapidity from 0 to 2.8. This is additional data, not in the paper.
Measurements are presented from proton-proton collisions at centre-of-mass energies of sqrt(s) = 0.9, 2.36 and 7 TeV recorded with the ATLAS detector at the LHC. Events were collected using a single-arm minimum-bias trigger. The charged-particle multiplicity, its dependence on transverse momentum and pseudorapidity and the relationship between the mean transverse momentum and charged-particle multiplicity are measured. Measurements in different regions of phase-space are shown, providing diffraction-reduced measurements as well as more inclusive ones. The observed distributions are corrected to well-defined phase-space regions, using model-independent corrections. The results are compared to each other and to various Monte Carlo models, including a new AMBT1 PYTHIA 6 tune. In all the kinematic regions considered, the particle multiplicities are higher than predicted by the Monte Carlo models. The central charged-particle multiplicity per event and unit of pseudorapidity, for tracks with pT >100 MeV, is measured to be 3.483 +- 0.009 (stat) +- 0.106 (syst) at sqrt(s) = 0.9 TeV and 5.630 +- 0.003 (stat) +- 0.169 (syst) at sqrt(s) = 7 TeV.
Charged-particle multiplicities in proton-proton collisions at a centre-of mass energy of 900 GeV as a function of pseudorapidity for events with the number of charged particles >=1 having transverse momentum >500 MeV and absolute(pseudorapidity) <2.5.
Charged-particle multiplicities in proton-proton collisions at a centre-of mass energy of 2360 GeV as a function of pseudorapidity for events with the number of charged particles >=1 having transverse momentum >500 MeV and absolute(pseudorapidity) <2.5.
Charged-particle multiplicities in proton-proton collisions at a centre-of mass energy of 7000 GeV as a function of pseudorapidity for events with the number of charged particles >=1 having transverse momentum >500 MeV and absolute(pseudorapidity) <2.5.
Charged-particle multiplicities in proton-proton collisions at a centre-of mass energy of 900 GeV as a function of pseudorapidity for events with the number of charged particles >=2 having transverse momentum >100 MeV and absolute(pseudorapidity) <2.5.
Charged-particle multiplicities in proton-proton collisions at a centre-of mass energy of 7000 GeV as a function of pseudorapidity for events with the number of charged particles >=2 having transverse momentum >100 MeV and absolute(pseudorapidity) <2.5.
Charged-particle multiplicities in proton-proton collisions at a centre-of mass energy of 900 GeV as a function of pseudorapidity for events with the number of charged particles >=6 having transverse momentum >500 MeV and absolute(pseudorapidity) <2.5.
Charged-particle multiplicities in proton-proton collisions at a centre-of mass energy of 7000 GeV as a function of pseudorapidity for events with the number of charged particles >=6 having transverse momentum >500 MeV and absolute(pseudorapidity) <2.5.
Charged-particle multiplicities in proton-proton collisions at a centre-of mass energy of 900 GeV as a function of transverse momentum for events with the number of charged particles >=1 having transverse momentum >500 MeV and absolute(pseudorapidity) <2.5.
Charged-particle multiplicities in proton-proton collisions at a centre-of mass energy of 2360 GeV as a function of transverse momentum for events with the number of charged particles >=1 having transverse momentum >500 MeV and absolute(pseudorapidity) <2.5.
Charged-particle multiplicities in proton-proton collisions at a centre-of mass energy of 7000 GeV as a function of transverse momentum for events with the number of charged particles >=1 having transverse momentum >500 MeV and absolute(pseudorapidity) <2.5.
Charged-particle multiplicities in proton-proton collisions at a centre-of mass energy of 900 GeV as a function of transverse momentum for events with the number of charged particles >=2 having transverse momentum >100 MeV and absolute(pseudorapidity) <2.5.
Charged-particle multiplicities in proton-proton collisions at a centre-of mass energy of 7000 GeV as a function of transverse momentum for events with the number of charged particles >=2 having transverse momentum >100 MeV and absolute(pseudorapidity) <2.5.
Charged-particle multiplicities in proton-proton collisions at a centre-of mass energy of 900 GeV as a function of transverse momentum for events with the number of charged particles >=6 having transverse momentum >500 MeV and absolute(pseudorapidity) <2.5.
Charged-particle multiplicities in proton-proton collisions at a centre-of mass energy of 7000 GeV as a function of transverse momentum for events with the number of charged particles >=6 having transverse momentum >500 MeV and absolute(pseudorapidity) <2.5.
Charged-particle multiplicity distributions in proton-proton collisions at a centre-of mass energy of 900 GeV for events with the number of charged particles >=1 having transverse momentum >500 MeV and absolute(pseudorapidity) <2.5.
Charged-particle multiplicity distributions in proton-proton collisions at a centre-of mass energy of 2360 GeV for events with the number of charged particles >=1 having transverse momentum >500 MeV and absolute(pseudorapidity) <2.5.
Charged-particle multiplicity distributions in proton-proton collisions at a centre-of mass energy of 7000 GeV for events with the number of charged particles >=1 having transverse momentum >500 MeV and absolute(pseudorapidity) <2.5.
Charged-particle multiplicity distributions in proton-proton collisions at a centre-of mass energy of 900 GeV for events with the number of charged particles >=2 having transverse momentum >100 MeV and absolute(pseudorapidity) <2.5.
Charged-particle multiplicity distributions in proton-proton collisions at a centre-of mass energy of 7000 GeV for events with the number of charged particles >=2 having transverse momentum >100 MeV and absolute(pseudorapidity) <2.5.
Charged-particle multiplicity distributions in proton-proton collisions at a centre-of mass energy of 900 GeV for events with the number of charged particles >=6 having transverse momentum >500 MeV and absolute(pseudorapidity) <2.5.
Charged-particle multiplicity distributions in proton-proton collisions at a centre-of mass energy of 7000 GeV for events with the number of charged particles >=6 having transverse momentum >500 MeV and absolute(pseudorapidity) <2.5.
Average transverse momentum in proton-proton collisions at a centre-of mass energy of 900 GeV as a function of the number of charged particles in the event for events with the number of charged particles >=1 having transverse momentum >500 MeV and absolute(pseudorapidity) <2.5.
Average transverse momentum in proton-proton collisions at a centre-of mass energy of 7000 GeV as a function of the number of charged particles in the event for events with the number of charged particles >=1 having transverse momentum >500 MeV and absolute(pseudorapidity) <2.5.
Average transverse momentum in proton-proton collisions at a centre-of mass energy of 900 GeV as a function of the number of charged particles in the event for events with the number of charged particles >=2 having transverse momentum >100 MeV and absolute(pseudorapidity) <2.5.
Average transverse momentum in proton-proton collisions at a centre-of mass energy of 7000 GeV as a function of the number of charged particles in the event for events with the number of charged particles >=2 having transverse momentum >100 MeV and absolute(pseudorapidity) <2.5.
Charged-particle multiplicities in proton-proton collisions at a centre-of mass energy of 900 GeV as a function of pseudorapidity for events with the number of charged particles >=20 having transverse momentum >100 MeV and absolute(pseudorapidity) <2.5.
Charged-particle multiplicities in proton-proton collisions at a centre-of mass energy of 7000 GeV as a function of pseudorapidity for events with the number of charged particles >=20 having transverse momentum >100 MeV and absolute(pseudorapidity) <2.5.
Charged-particle multiplicities in proton-proton collisions at a centre-of mass energy of 900 GeV as a function of pseudorapidity for events with the number of charged particles >=1 having transverse momentum >2500 MeV and absolute(pseudorapidity) <2.5.
Charged-particle multiplicities in proton-proton collisions at a centre-of mass energy of 7000 GeV as a function of pseudorapidity for events with the number of charged particles >=1 having transverse momentum >2500 MeV and absolute(pseudorapidity) <2.5.
Charged-particle multiplicities in proton-proton collisions at a centre-of mass energy of 900 GeV as a function of transverse momentum for events with the number of charged particles >=20 having transverse momentum >100 MeV and absolute(pseudorapidity) <2.5.
Charged-particle multiplicities in proton-proton collisions at a centre-of mass energy of 7000 GeV as a function of transverse momentum for events with the number of charged particles >=20 having transverse momentum >100 MeV and absolute(pseudorapidity) <2.5.
Charged-particle multiplicities in proton-proton collisions at a centre-of mass energy of 900 GeV as a function of transverse momentum for events with the number of charged particles >=1 having transverse momentum >2500 MeV and absolute(pseudorapidity) <2.5.
Charged-particle multiplicities in proton-proton collisions at a centre-of mass energy of 7000 GeV as a function of transverse momentum for events with the number of charged particles >=1 having transverse momentum >2500 MeV and absolute(pseudorapidity) <2.5.
Charged-particle multiplicity distributions in proton-proton collisions at a centre-of mass energy of 900 GeV for events with the number of charged particles >=20 having transverse momentum >100 MeV and absolute(pseudorapidity) <2.5.
Charged-particle multiplicity distributions in proton-proton collisions at a centre-of mass energy of 7000 GeV for events with the number of charged particles >=20 having transverse momentum >100 MeV and absolute(pseudorapidity) <2.5.
Charged-particle multiplicity distributions in proton-proton collisions at a centre-of mass energy of 900 GeV for events with the number of charged particles >=1 having transverse momentum >2500 MeV and absolute(pseudorapidity) <2.5.
Charged-particle multiplicity distributions in proton-proton collisions at a centre-of mass energy of 7000 GeV for events with the number of charged particles >=1 having transverse momentum >2500 MeV and absolute(pseudorapidity) <2.5.
Average transverse momentum in proton-proton collisions at a centre-of mass energy of 900 GeV as a function of the number of charged particles in the event for events with the number of charged particles >=1 having transverse momentum >2500 MeV and absolute(pseudorapidity) <2.5.
Average transverse momentum in proton-proton collisions at a centre-of mass energy of 7000 GeV as a function of the number of charged particles in the event for events with the number of charged particles >=1 having transverse momentum >2500 MeV and absolute(pseudorapidity) <2.5.
The average charged-particle muliplicity per unit of rapidity for ETARAP=0 as a function of the centre-of-mass energy.
The average charged-particle muliplicity per unit of rapidity in the pseudorapidity region -2.5 to 2.5 for events with 2 or more charged particles as a function of the centre-of-mass energy.
A measurement of the cross section for the inclusive production of isolated prompt photons in pp collisions at a centre-of-mass energy sqrt(s) = 7TeV is presented. The measurement covers the pseudorapidity ranges |eta|<1.37 and 1.52<|eta|<1.81 in the transverse energy range 15 < E_T <100 GeV. The results are based on an integrated luminosity of 880 nb-1, collected with the ATLAS detector at the Large Hadron Collider. Photon candidates are identified by combining information from the calorimeters and from the inner tracker. Residual background in the selected sample is estimated from data based on the observed distribution of the transverse isolation energy in a narrow cone around the photon candidate. The results are compared to predictions from next-to-leading order perturbative QCD calculations.
The measured prompt photon cross section as a function of transverse energy for the |pseudorapidity| range < 0.6.
The measured prompt photon cross section as a function of transverse energy for the |pseudorapidity| range 0.6 to 1.37.
The measured prompt photon cross section as a function of transverse energy for the |pseudorapidity| range 1.52 to 1.81.
First measurements of the W -> lnu and Z/gamma* -> ll (l = e, mu) production cross sections in proton-proton collisions at sqrt(s) = 7 TeV are presented using data recorded by the ATLAS experiment at the LHC. The results are based on 2250 W -> lnu and 179 Z/gamma* -> ll candidate events selected from a data set corresponding to an integrated luminosity of approximately 320 nb-1. The measured total W and Z/gamma*-boson production cross sections times the respective leptonic branching ratios for the combined electron and muon channels are $\stotW$ * BR(W -> lnu) = 9.96 +- 0.23(stat) +- 0.50(syst) +- 1.10(lumi) nb and $\stotZg$ * BR(Z/gamma* -> ll) = 0.82 +- 0.06(stat) +- 0.05(syst) +- 0.09(lumi) nb (within the invariant mass window 66 < m_ll < 116 GeV). The W/Z cross-section ratio is measured to be 11.7 +- 0.9(stat) +- 0.4(syst). In addition, measurements of the W+ and W- production cross sections and of the lepton charge asymmetry are reported. Theoretical predictions based on NNLO QCD calculations are found to agree with the measurements.
Measured fiducial cross section times leptonic branching ratio for W+ production in the W+ -> e+ nu final state.
Measured fiducial cross section times leptonic branching ratio for W- production in the W- -> e- nubar final state.
Measured fiducial cross section times leptonic branching ratio for W+/- production in the combined W+ -> e+ nu and W- -> e- nubar final state.
Measured fiducial cross section times leptonic branching ratio for Z/gamma* production in the Z/gamma* -> e+e- final state.
Measured fiducial cross section times leptonic branching ratio for W+ production in the W+ -> mu+ nu final state.
Measured fiducial cross section times leptonic branching ratio for W- production in the W- -> mu- nubar final state.
Measured fiducial cross section times leptonic branching ratio for W+/- production in the combined W+ -> mu+ nu and W- -> mu- nubar final state.
Measured fiducial cross section times leptonic branching ratio for Z/gamma* production in the Z/gamma* -> mu+ mu- final state.
Measured total cross section times leptonic branching ratio for W+ production in the W+ -> e+ nu final state.
Measured total cross section times leptonic branching ratio for W- production in the W- -> e- nubar final state.
Measured total cross section times leptonic branching ratio for W+/- production in the combined W+ -> e+ nu and W- -> e- nubar final state.
Measured total cross section times leptonic branching ratio for Z/gamma* production in the Z/gamma* -> e+ e- final state.
Measured total cross section times leptonic branching ratio for W+ production in the W+ -> mu+ nu final state.
Measured total cross section times leptonic branching ratio for W- production in the W- -> mu- nubar final state.
Measured total cross section times leptonic branching ratio for W+/- production in the combined W+ -> mu+ nu and W- -> mu- nubar final state.
Measured total cross section times leptonic branching ratio for Z/gamma* production in the Z/gamma* -> mu+ mu- final state.
Measured total cross section times leptonic branching ratio for W+ production in the W+ -> l+ nu (l = e, mu) final states.
Measured total cross section times leptonic branching ratio for W- production in the W- -> l- nubar (l = e, mu) final states.
Measured total cross section times leptonic branching ratio for W+/- production in the combined W+ -> l+ nu and W- -> l- nubar (l = e, mu) final states.
Measured total cross section times leptonic branching ratio for Z/gamma* production in the combined Z/gamma* -> l+ l- (l = e, mu) final states.
Measured total cross-section ratio R_{W+/Z} = sigma (W+ -> e+ nu) / sigma (Z/gamma^* -> e+ e-).
Measured total cross-section ratio R_{W-/Z} = sigma (W- -> e- nubar) / sigma (Z/gamma^* -> e+ e-).
Measured total cross-section ratio R_{W+-/Z} = sigma (W+/- -> e+/- nu/nubar) / sigma (Z/gamma^* -> e+ e-).
Measured total cross-section ratio R_{W+/Z} = sigma (W+ -> mu+ nu) / sigma (Z/gamma^* -> mu+ mu-).
Measured total cross-section ratio R_{W-/Z} = sigma (W- -> mu- nubar) / sigma (Z/gamma^* -> mu+ mu-).
Measured total cross-section ratio R_{W+-/Z} = sigma (W+/- -> mu+/- nu/nubar) / sigma (Z/gamma^* -> mu+ mu-).
Measured total cross-section ratio R_{W+/Z} = sigma (W+ -> l+ nu) / sigma (Z/gamma^* -> l+ l-) where (l = e, mu).
Measured total cross-section ratio R_{W-/Z} = sigma (W- -> l- nubar) / sigma (Z/gamma^* -> l+ l-) where (l = e, mu).
Measured total cross-section ratio R_{W+-/Z} = sigma (W+/- -> l+/- nu/nubar) / sigma (Z/gamma^* -> l+ l-) where (l = e, mu).
Measured lepton asymmetry from W+ -> e+ nu and W- -> e- nubar, binned as a function pseudorapidity.
Measured lepton asymmetry from W+ -> e+ nu and W- -> e- nubar.
Measured lepton asymmetry from W+ -> mu+ nu and W- -> mu- nubar, binned as a function pseudorapidity.
Measured lepton asymmetry from W+ -> mu+ nu and W- -> mu- nubar.
Measured lepton asymmetry from W+ -> l+ nu and W- -> l- nubar (l = e, mu), binned as a function pseudorapidity.
Measured lepton asymmetry from W+ -> l+ nu and W- -> l- nubar (l = e, mu).
Dijet angular distributions from the first LHC pp collisions at center-of-mass energy sqrt(s) = 7 TeV have been measured with the ATLAS detector. The dataset used for this analysis represents an integrated luminosity of 3.1 pb-1. Dijet $\chi$ distributions and centrality ratios have been measured up to dijet masses of 2.8 TeV, and found to be in good agreement with Standard Model predictions. Analysis of the $\chi$ distributions excludes quark contact interactions with a compositeness scale $\Lambda$ below 3.4 TeV, at 95% confidence level, significantly exceeding previous limits.
CHI distribution for mass bin 340 to 520 GeV.
CHI distribution for mass bin 520 to 800 GeV.
CHI distribution for mass bin 800 to 1200 GeV.
CHI distribution for mass bin > 1200 GeV.
Centrality Ratio.
When you search on a word, e.g. 'collisions', we will automatically search across everything we store about a record. But sometimes you may wish to be more specific. Here we show you how.
Guidance on the query string syntax can also be found in the OpenSearch documentation.
We support searching for a range of records using their HEPData record ID or Inspire ID.
About HEPData Submitting to HEPData HEPData File Formats HEPData Coordinators HEPData Terms of Use HEPData Cookie Policy
Status
Email
Forum
Twitter
GitHub
Copyright ~1975-Present, HEPData | Powered by Invenio, funded by STFC, hosted and originally developed at CERN, supported and further developed at IPPP Durham.