Production of pi+, pi-, K+, K-, p and anti-p in light (uds), c and b jets from Z0 decays.

The SLD collaboration Abe, Koya ; Abe, Kenji ; Abe, T. ; et al.
Phys.Rev.D 69 (2004) 072003, 2004.
Inspire Record 630327 DOI 10.17182/hepdata.22177

We present improved measurements of the differential production rates of stable charged particles in hadronic Z0 decays, and of charged pions, kaons and protons identified over a wide momentum range using the SLD Cherenkov Ring Imaging Detector. In addition to flavor-inclusive Z0 decays, measurements are made for Z0 decays into light (u, d, s), c and b primary flavors, selected using the upgraded Vertex Detector. Large differences between the flavors are observed that are qualitatively consistent with expectations based upon previously measured production and decay properties of heavy hadrons. These results are used to test the predictions of QCD in the Modified Leading Logarithm Approximation, with the ansatz of Local Parton-Hadron Duality, and the predictions of three models of the hadronization process. The light-flavor results provide improved tests of these predictions, as they do not include the contribution of heavy-hadron production and decay; the heavy-flavor results provide complementary model tests. In addition we have compared hadron and antihadron production in light quark (as opposed to antiquark) jets. Differences are observed at high momentum for all three charged hadron species, providing direct probes of leading particle effects, and stringent constraints on models.

11 data tables

Production rates of all stable charged particles. The statistical and systematic errors are shown separately for the momentum distribution. They are combined in quadrature for the other two distributions. The first DSYS error is due tothe uncertainty in the track finding efficiency and the second DSYS error is th e rest of the systematic error.

The charged pion fraction and differential production rate per hadronic Z0 decay.

The charged kaon fraction and differential production rate per hadronic Z0 decay.

More…

pi+-, K+-, p and anti-p production in Z0 --> q anti-q, Z0 --> b anti-b, Z0 --> u anti-u, d anti-d, s anti-s.

The DELPHI collaboration Abreu, P. ; Adam, W. ; Adye, T. ; et al.
Eur.Phys.J.C 5 (1998) 585-620, 1998.
Inspire Record 473409 DOI 10.17182/hepdata.49385

The DELPHI experiment at LEP uses Ring Imaging Cherenkov detectors for particle identification. The good understanding of the RICH detectors allows the identification of charged pions, kaons and proto

39 data tables

Mean particle multiplicities for Z0-->Q-QBAR events. The second systematic (DSYS) error is due to the extrapolation of the differential distributions to the full kinematic range.

Mean particle multiplicities for Z0-->B-BBAR events. The second systematic (DSYS) error is due to the extrapolation of the differential distributions to the full kinematic range.

Mean particle multiplicities for Z0-->(U-UBAR,D-DBAR,S-SBAR) events. The second systematic (DSYS) error is due to the extrapolation of the differential distributions to the full kinematic range.

More…

Measurement of baryon production in B meson decay

The CLEO collaboration Crawford, Glen D. ; Fulton, R. ; Jensen, T. ; et al.
Phys.Rev.D 45 (1992) 752-770, 1992.
Inspire Record 315181 DOI 10.17182/hepdata.47266

Using the CLEO detector at the Cornell Electron Storage Ring, we observe B-meson decays to Λc+ and report on improved measurements of inclusive branching fractions and momentum spectra of other baryons. For the inclusive decay B¯→Λc+X with Λc+→pK−π+, we find that the product branching fraction B(B¯→Λc+X)B(Λc+→pK−π+)=(0.273±0.051±0.039)%. Our measured inclusive branching fractions to noncharmed baryons are B(B→pX)=(8.0±0.5±0.3)%, B(B→ΛX)=(3.8±0.4±0.6)%, and B(B→Ξ−X)=(0.27±0.05±0.04)%. From these rates and studies of baryon-lepton and baryon-antibaryon correlations in B decays, we have estimated the branching fraction B(B¯→Λc+X) to be (6.4±0.8±0.8)%. Combining these results, we calculate B(Λc+→pK−π+) to be (4.3±1.0±0.8)%.

4 data tables

No description provided.

No description provided.

No description provided.

More…

Comparison of Light Quark and Charm Quark Fragmentation

Kesten, P. ; Akerlof, C. ; Bonvicini, G. ; et al.
Phys.Lett.B 161 (1985) 412-416, 1985.
Inspire Record 17116 DOI 10.17182/hepdata.30349

Separate samples of charm quark and light quark (u, d, s) jets have been isolated in an experiment studying e + e − annihilations at s = 29 GeV . The results come from data corresponding to an integrated luminosity of 111 pb −1 collected by the High Resolution Spectrometer. Differences were observed in charged multiplicities, momentum distributions, and rapidity of the size expected from the different fragmentation functions and leading particle decay properties of the two samples.

3 data tables

Charm Quark Jet Trigger. Characteristics of Jet Opposite the Trigger Jet.

Light Quark Jet Trigger. Characteristics of Jet Opposite the Trigger Jet.

No description provided.


Fragmentation of Heavy Quarks Produced in $e^+ e^-$ Annihilation

Fernandez, E. ; Ford, William T. ; Read, Alexander L. ; et al.
Phys.Rev.Lett. 50 (1983) 2054, 1983.
Inspire Record 189417 DOI 10.17182/hepdata.20548

Identification of muons in hadronic events from e+e− annihilation observed in the MAC detector at the storage ring PEP provides flavor tagging of heavy primary quarks. A sample enriched in events from bb¯ production is obtained and the b-quark fragmentation function is inferred from the momentum spectrum of the muons. The b quark is found to fragment predominantly with high values of z, with 〈zb〉=0.8±0.1, and to have an over-all semimuonic branching fraction of (15.5−2.9+5.4)%.

2 data tables

No description provided.

No description provided.