A search for W' bosons decaying to a top and a bottom quark in final states including an electron or a muon is performed with the CMS detector at the LHC. The analyzed data correspond to an integrated luminosity of 138 fb$^{-1}$ of proton-proton collisions at a center-of-mass energy of 13 Tev. Good agreement with the standard model expectation is observed and no evidence for the existence of the W' boson is found over the mass range examined. The largest observed deviation from the standard model expectation is found for a W' boson mass ($m_\mathrm{W'}$) hypothesis of 3.8 TeV with a relative decay width of 1%, with a local (global) significance of 2.6 (2.0) standard deviations. Upper limits on the production cross sections of W' bosons decaying to a top and a bottom quark are set. Left- and right-handed W' bosons with $m_\mathrm{W'}$ below 3.9 and 4.3 TeV, respectively, are excluded at the 95% confidence level, under the assumption that the new particle has a narrow decay width. Limits are also set for relative decay widths up to 30%.
The measurement of the charge asymmetry in top quark pair events with highly Lorentz-boosted top quarks decaying to a single lepton and jets is presented. The analysis is performed using proton-proton collisions at $\sqrt{s}$ = 13 TeV with the CMS detector at the LHC and corresponding to an integrated luminosity of 138 fb$^{-1}$. The selection is optimized for top quarks produced with large Lorentz boosts, resulting in nonisolated leptons and overlapping jets. The top quark charge asymmetry is measured for events with a $\mathrm{t\bar{t}}$ invariant mass larger than 750 GeV and corrected for detector and acceptance effects using a binned maximum likelihood fit. The measured top quark charge asymmetry of (0.42 $_{-0.69}^{+0.64}$)% is in good agreement with the standard model prediction at next-to-next-to-leading order in quantum chromodynamic perturbation theory with next-to-leading-order electroweak corrections. The result is also presented for two invariant mass ranges, 750-900 and $\gt$ 900 GeV.
A generic search is presented for the associated production of a Z boson or a photon with an additional unspecified massive particle X, pp $\to$ pp + Z/$\gamma$ + X, in proton-tagged events from proton-proton collisions at $\sqrt{s}$ = 13 TeV, recorded in 2017 with the CMS detector and the CMS-TOTEM precision proton spectrometer. The missing mass spectrum is analysed in the 600-1600 GeV range and a fit is performed to search for possible deviations from the background expectation. No significant excess in data with respect to the background predictions has been observed. Model-independent upper limits on the visible production cross section of pp $\to$ pp + Z/$\gamma$ + X are set.
A test of lepton flavor universality in B$^{\pm}$$\to$ K$^{\pm}\mu^+\mu^-$ and B$^{\pm}$$\to$ K$^{\pm}$e$^+$e$^-$ decays, as well as a measurement of differential and integrated branching fractions of a nonresonant B$^{\pm}$$\to$ K$^{\pm}\mu^+\mu^-$ decay are presented. The analysis is made possible by a dedicated data set of proton-proton collisions at $\sqrt{s}$ = 13 TeV recorded in 2018, by the CMS experiment at the LHC, using a special high-rate data stream designed for collecting about 10 billion unbiased b hadron decays. The ratio of the branching fractions $\mathcal{B}$(B$^{\pm}$$\to$ K$^{\pm}\mu^+\mu^-$) to $\mathcal{B}$(B$^{\pm}$$\to$ K$^{\pm}$e$^+$e$^-$) is determined from the measured double ratio $R$(K) of these decays to the respective branching fractions of the B$^\pm$$\to$ J/$\psi$K$^\pm$ with J/$\psi$$\to$$\mu^+\mu^-$ and e$^+$e$^-$ decays, which allow for significant cancellation of systematic uncertainties. The ratio $R$(K) is measured in the range 1.1 $\lt$$q^2$$\lt$ 6.0 GeV$^2$, where $q$ is the invariant mass of the lepton pair, and is found to be $R$(K) = 0.78 $^{+0.47}_{-0.23}$, in agreement with the standard model expectation $R$(K) $\approx$ 1. This measurement is limited by the statistical precision of the electron channel. The integrated branching fraction in the same $q^2$ range, $\mathcal{B}$(B$^{\pm}$$\to$ K$^{\pm}\mu^+\mu^-$) = (12.42 $\pm$ 0.68) $\times$ 10$^{-8}$, is consistent with the present world-average value and has a comparable precision.
A search for electroweak production of a single vector-like T quark in association with a bottom (b) quark in the all-hadronic decay channel is presented. This search uses proton-proton collision data at $\sqrt{s}$ = 13 TeV collected by the CMS experiment at the CERN LHC during 2016-2018, corresponding to an integrated luminosity of 138 fb$^{-1}$. The T quark is assumed to have charge 2/3 and decay to a top (t) quark and a Higgs (H) or Z boson. Hadronic decays of the t quark and the H or Z boson are reconstructed from the kinematic properties of jets, including those containing b hadrons. No deviation from the standard model prediction is observed in the reconstructed tH and tZ invariant mass distributions. The 95% confidence level upper limits on the product of the production cross section and branching fraction of a T quark produced in association with a b quark and decaying via tH or tZ range from 1260 to 68 fb for T quark masses of 600-1200 GeV.
A search for heavy neutral leptons (HNLs) decaying in the CMS muon system is presented. A data sample is used corresponding to an integrated luminosity of 138 fb$^{-1}$ of proton-proton collisions at $\sqrt{s}$ = 13 TeV, recorded at the CERN LHC in 2016-2018. Decay products of long-lived HNLs could interact with the shielding materials in the CMS muon system and create hadronic and electromagnetic showers detected in the muon chambers. This distinctive signature provides a unique handle to search for HNLs with masses below 4 GeV and proper decay lengths of the order of meters. The signature is sensitive to HNL couplings to all three generations of leptons. Candidate events are required to contain a prompt electron or muon originating from a vertex on the beam axis and a displaced shower in the muon chambers. No significant deviations from the standard model background expectation are observed. In the electron (muon) channel, the most stringent limits to date are set for HNLs in the mass range of 2.1-3.0 (1.9-3.3) GeV, reaching mixing matrix element squared values as low as 8.6 (4.6) $\times$ 10$^{-6}$.
The first search for soft unclustered energy patterns (SUEPs) is performed using an integrated luminosity of 138 fb$^{-1}$ of proton-proton collision data at $\sqrt{s}$ = 13 TeV collected in 2016-2018 by the CMS detector at the LHC. Such SUEPs are predicted by Hidden Valley models with a new, confining force with a large 't Hooft coupling. In events with boosted topologies, selected by high-threshold hadronic triggers, the multiplicity and sphericity of clustered tracks are used to reject the background from standard model quantum chromodynamics. With no observed excess of events over the standard model expectation, limits are set on the cross section for production via gluon fusion of a scalar mediator with SUEP-like decays.
The forward-backward asymmetry in Drell-Yan production and the effective leptonic electroweak mixing angle are measured in proton-proton collisions at $\sqrt{s}$ = 13 TeV, collected by the CMS experiment and corresponding to an integrated luminosity of 138 fb$^{-1}$. The measurement uses both dimuon and dielectron events, and is performed as a function of the dilepton mass and rapidity. The unfolded angular coefficient $A_4$ is also extracted, as a function of the dilepton mass and rapidity. Using the CT18Z set of parton distribution functions, we obtain $\sin\theta^\ell_\text{eff}$ = 0.23157 $\pm$ 0.00031, where the uncertainty includes the experimental and theoretical contributions. The measured value agrees with the standard model fit result to global experimental data. This is the most precise $\sin\theta^\ell_\text{eff}$ measurement at a hadron collider, with a precision comparable to the results obtained at LEP and SLD.
A search for the rare decay D$^0$$\to$$\mu^+\mu^-$ is reported using proton-proton collision events at $\sqrt{s}$ = 13.6 TeV collected by the CMS detector in 2022$-$2023, corresponding to an integrated luminosity of 64.5 fb$^{-1}$. This is the first analysis to use a newly developed inclusive dimuon trigger, expanding the scope of the CMS flavor physics program. The search uses D$^0$ mesons obtained from D$^{*+}$$\to$ D$^0\pi^+$ decays. No significant excess is observed. A limit on the branching fraction of $\mathcal{B}$(D$^0$$\to$$\mu^+\mu^-$) $\lt$ 2.4 $\times$ 10$^{-9}$ at 95% confidence level is set. This is the most stringent upper limit set on any flavor changing neutral current decay in the charm sector.
A measurement of inclusive and differential fiducial cross-sections for the production of the Higgs boson decaying into two photons is performed using $139~\text{fb}^{-1}$ of proton--proton collision data recorded at $\sqrt{s} = 13$ TeV by the ATLAS experiment at the Large Hadron Collider. The inclusive cross-section times branching ratio, in a fiducial region closely matching the experimental selection, is measured to be $67\pm 6$ fb, which is in agreement with the state-of-the-art Standard Model prediction of $64\pm 4$ fb. Extrapolating this result to the full phase space and correcting for the branching ratio, the total cross-section for Higgs boson production is estimated to be $58\pm 6$ pb. In addition, the cross-sections in four fiducial regions sensitive to various Higgs boson production modes and differential cross-sections as a function of either one or two of several observables are measured. All the measurements are found to be in agreement with the Standard Model predictions. The measured transverse momentum distribution of the Higgs boson is used as an indirect probe of the Yukawa coupling of the Higgs boson to the bottom and charm quarks. In addition, five differential cross-section measurements are used to constrain anomalous Higgs boson couplings to vector bosons in the Standard Model effective field theory framework.