Electroweak Effects in $e^+ e^- \to \mu^+ \mu^-$ at 29-{GeV}

Fernandez, E. ; Ford, William T. ; Read, Alexander L. ; et al.
Phys.Rev.Lett. 50 (1983) 1238, 1983.
Inspire Record 188749 DOI 10.17182/hepdata.20560

A measurement of the cross section for production of collinear muon pairs based upon a sample of about 3000 events observed in the MAC detector at the storage ring PEP is presented. From the angular asymmetry Aμμ=0.076±0.018 the axial-vector weak neutral coupling is found to be given by gAegAμ=0.31±0.08.

2 data tables

Data on non-collinearity and angular distribution.

Asymmetry measurement based on extrapolation of number of events to 4 PI acceptance.


WEAK NEUTRAL CURRENT EFFECTS IN e+ e- ---> mu+ mu- AT 29-GeV

Fernandez, E. ; Ford, William T. ; Read, Alexander L. ; et al.
SLAC-PUB-3133, 1983.
Inspire Record 190846 DOI 10.17182/hepdata.18659

None

2 data tables

No description provided.

Data extrapolated to full solid angle.


Lepton Pair Production and Search for a New Heavy Lepton in $e^+ e^-$ Annihilation

The PLUTO collaboration Berger, Christoph ; Genzel, H. ; Grigull, R. ; et al.
Phys.Lett.B 99 (1981) 489-494, 1981.
Inspire Record 164302 DOI 10.17182/hepdata.27110

We have measured the reaction ee → μμ and ee → ττ at center of mass energies from 9.4 to 31.6 GeV. The production cross sections are in agreement with the predictions of quantum electrodynamics, resulting in cutoff parameter limits of 70–100 GeV at 95% c.l. The branching ratio for τ → μν ν has been determined as [1.78 ± 2.0 (statist.) ± 1.8(syst.)]% The existence of a new sequential heavy lepton with a mass <14.5 GeV is excluded at 95% c.l.

2 data tables

No description provided.

No description provided.


Experimental Test of Electroweak Effects at {PETRA} Energies

The PLUTO collaboration Berger, Christoph ; Genzel, H. ; Grigull, R. ; et al.
Z.Phys.C 7 (1981) 289, 1981.
Inspire Record 156660 DOI 10.17182/hepdata.13818

The differential cross sections for Bhabha scattering and μ pair production, and the total τ pair cross section as measured by the PLUTO detector at PETRA, have been analyzed to extract information on the weak interaction of leptons. The data are compared with unified gauge theories. Since the observed electroweak effects are still consistent with zero (within errors) we can set experimental limits on neutral current parameters atQ2 values of 950 GeV2. In the framework of the standard SU(2)×U(1) model we find sin2Θw<0.52(95% c.l.). In the context of general singleZo models we can excludeZo masses of less than 40 GeV.

2 data tables

No description provided.

No description provided.


Limits on Spin 0 Bosons in $e^+ e^-$ Annihilation Up to 45.2-{GeV} Center-of-mass Energy

The CELLO collaboration Behrend, H.J. ; Burger, J. ; Criegee, L. ; et al.
Phys.Lett.B 140 (1984) 130-136, 1984.
Inspire Record 199851 DOI 10.17182/hepdata.30547

We have studied the reactions e + e − → e + e − , e + e − → γγ , e + e − → μ + μ − , and e + e − → τ + τ − in the centre-of-mass (CM) energy range from 39.8 to 45.2 GeV using the CELLO detector at PETRA. Upper limits on the partial widths for new spin 0 bosons with masses both within and above the energy range covered are determined. No evidence for contributions of such new particles has been observed up to the highest PETRA energies in a model independent way. Under the assumptions of recently suggested models relating the existence of spin 0 bosons to the radiative width Γ τ of the Z 0 we exclude such bosons at the 95% confidence level for masses below the Z 0 -mass if Γ τ > 20 MeV.

2 data tables

No description provided.

Figure actually gives the 95 PCT CL upper limits of the coupling constants for each process as a function of the mass of the intermediate spin zero boson.


A Search for substructure of leptons and quarks with the CELLO detector

The CELLO collaboration Behrend, H.J. ; Criegee, L. ; Field, J.H. ; et al.
Z.Phys.C 51 (1991) 149-156, 1991.
Inspire Record 301727 DOI 10.17182/hepdata.14981

Differential cross section data of the CELLO experiment on pair production of muons, taus, and heavy quarks ine+e−-annihilation are presented and analysed, together with our data on Bhabha scattering, in terms of compositeness effects characterized by the mass scale Λ. We discuss difficulties in the combination of limits Λ from different experiments. The appropriate parameter to combine different results turns out to be ɛ=±1/Λ2, which is in contrast to Λ Gaussian distributed.

10 data tables

Errors are combined statistics and systematics.

Errors are combined statistics and systematics.

Errors are combined statistics and systematics.

More…

A Measurement of the Muon Pair Production in $e^+ e^-$ Annihilation at 38.3-{GeV} $\le \sqrt{s} \le$ 46.8-{GeV}

The CELLO collaboration Behrend, H.J. ; Burger, J. ; Criegee, L. ; et al.
Phys.Lett.B 191 (1987) 209-216, 1987.
Inspire Record 244835 DOI 10.17182/hepdata.30180

The e + e − → μ + μ − reaction has been studied at centre of mass energies ranging between 38.3 abd 46.8 GeV with the CELLO detector at PETRA. We present results on the cross section and the charge asymmetry for this channel. Combining all the data at the average energy 〈 s 〉=43 GeV we obtain R μμ =〈 σ μμ / σ 0 〉=0.98±0.04±0.04, 〈 A μμ 〉=(−14.1±3.7±1.0)%, where σ 0 is the QED cross section and A μμ is the charge asymmetry corrected for pure radiative effects. These results are in good agreement with the expected values of R μμ =1.01 and A μμ =−14.5% at that energy.

3 data tables

Mu-pair cross sections.

Corrected angular distributions with data sample divided into two energy regions with means 39 and 44 GeV and total energy region.

Forward-backward asymmetry.


New Results on the Reaction $e^+ e^- \to \mu^+ \mu^-$ at $\sqrt{s}=29$-{GeV}

Derrick, M. ; Fernandez, E. ; Fries, R. ; et al.
Phys.Rev.D 31 (1985) 2352, 1985.
Inspire Record 212767 DOI 10.17182/hepdata.3935

We have measured the process e+e−→μ+μ− at √s =29 GeV using the High Resolution Spectrometer at SLAC PEP. The forward-backward charge asymmetry is Aμμ=-(4.9±1.5±0.5)% based on 5057 events. A subsample of 3488 μ+μ− events in the angular range ‖cosθ‖<0.55 gives a cross-section ratio of Rμμ=0.990±0.017±0.030. The resulting couplings of the weak neutral current are gaegaμ=0.208±0.064± 0.021 and gvegvμ=0.027 ±0.051±0.089. The QED cutoff parameters are Λ+>170 GeV and Λ−>146 GeV at 95% C.L.

4 data tables

Corrected for acceptance and O(alpha**3) QED radiation. Numerical values taken from SUGANO-ANL-HEP-CP-84-90.

Forward-backward asymmetry based on fit to angular distribution. Result is given combined with earlier data from BENDER et al.

No description provided.

More…

Tests of QED at 29-GeV Center-Of-Mass Energy

Bender, D. ; Derrick, M. ; Fernandez, E. ; et al.
Phys.Rev.D 30 (1984) 515, 1984.
Inspire Record 199464 DOI 10.17182/hepdata.23593

During the initial data run with the High Resolution Spectrometer (HRS) at SLAC PEP, an integrated luminosity of 19.6 pb−1 at a center-of-mass energy of 29 GeV was accumulated. The data on Bhabha scattering and muon pair production are compared with the predictions of QED and the standard model of electroweak interactions. The measured forward-backward charge asymmetry in the angular distribution of muon pairs is -8.4%±4.3%. A comparison between the data and theoretical predictions places limits on alternative descriptions of leptons and their interactions. The existence of heavy electronlike or photonlike objects that alter the structure of the QED vertices or modify the propagator are studied in terms of the QED cutoff parameters. The Bhabha-scattering results give a lower limit on a massive photon and upper limits on the effective size of the electron of Λ+>121 GeV and Λ−>118 GeV at the 95% confidence level. Muon pair production yields Λ+>172 GeV and Λ−>172 GeV. If electrons have substructure, the magnitude and character of the couplings of the leptonic constituents affects the Bhabha-scattering angular distributions to such an extent that limits on the order of a TeV can be extracted on the effective interaction length of the components. For models in which the constituents interact with vector couplings of strength g24π∼1, the energy scale ΛVV for the contact interaction is measured to be greater than 1419.0 GeV at the 95% confidence level. We set limits on the production of supersymmetric scalar electrons through s-channel single-photon annihilation and t-channel inelastic scattering. Using events with two noncollinear electrons and no other charged or observed neutral particles in the final state, we see one event which is consistent with a simple supersymmetric model but which is also consistent with QED. This allows us to exclude the scalar electron to 95% confidence level in the mass range 1.8 to 14.2 GeV/c2.

3 data tables

Comparison of Bhabhas with QED.

Muon angular distributions.

Forward-backward asymmetry from full angular range.


Measurement of the decay of the Upsilon (1S) and Upsilon (2S) resonances to muon pairs

The Crystal Ball collaboration Kobel, M. ; Antreasyan, D. ; Bartels, H.W. ; et al.
Z.Phys.C 53 (1992) 193-206, 1992.
Inspire Record 306832 DOI 10.17182/hepdata.14771

Using the Crystal Ball detector at thee+e− storage ring DORIS II, we have measured the branching fraction to muon pairsBμμ of the Υ(

2 data tables

Corrected cross section. Statistical and point to point systematic errors combined. Additional systematic error given above. The storage ring SQRT(S) has a 7.9 +- 0.2 MeV energy spread around the values given.

Corrected cross section. Statistical and point to point systematic errors combined. Additional systematic error given above.The storage ring SQRT(S) has a 8.2 +- 0.3 MeV energy spread around the values given.