The ratio of the top-quark branching fractions $R = B(t \to Wb)/B(t \to Wq)$, where the denominator includes the sum over all down-type quarks (q = b, s, d), is measured in the $t\bar{t}$ dilepton final state with proton-proton collision data at $\sqrt{s}$ = 8 TeV from an integrated luminosity of 19.7 inverse-femtobarns, collected with the CMS detector. In order to quantify the purity of the signal sample, the cross section is measured by fitting the observed jet multiplicity, thereby constraining the signal and background contributions. By counting the number of b jets per event, an unconstrained value of R = 1.014 $\pm$ 0.003 (stat) $\pm$ 0.032 (syst) is measured, in good agreement with the standard model prediction. A lower limit R greater than 0.955 at the 95% confidence level is obtained after requiring R lower than one, and a lower limit on the Cabibbo-Kobayashi-Maskawa matrix element |$V_tb$| greater than 0.975 is set at 95% confidence level. The result is combined with a previous CMS measurement of the t-channel single-top-quark cross section to determine the top-quark total decay width, $\Gamma_t$ = 1.36 $\pm$ 0.02 (stat)$^{+0.14}_{-0.11}$ (syst) GeV.
The measured TOP TOPBAR production cross section.
The measured ratio of branching fractions, R = BR(TOP --> W BOTTOM) / BR(TOP --> W QUARK) where the denominator includes the sum over all down-type quarks (QUARK = BOTTOM, STRANGE, DOWN). The combined measurement and the individual measurements from the three channels considered are presented.
An indirect measurement of the top-quark total decay width.
In high-energy collisions, the spatio-temporal size of the particle production region can be measured using the Bose-Einstein correlations of identical bosons at low relative momentum. The source radii are typically extracted using two-pion correlations, and characterize the system at the last stage of interaction, called kinetic freeze-out. In low-multiplicity collisions, unlike in high-multiplicity collisions, two-pion correlations are substantially altered by background correlations, e.g. mini-jets. Such correlations can be suppressed using three-pion cumulant correlations. We present the first measurements of the size of the system at freeze-out extracted from three-pion cumulant correlations in pp, p-Pb and Pb-Pb collisions at the LHC with ALICE. At similar multiplicity, the invariant radii extracted in p-Pb collisions are found to be 5-15% larger than those in pp, while those in Pb-Pb are 35-55% larger than those in p-Pb. Our measurements disfavor models which incorporate substantially stronger collective expansion in p-Pb as compared to pp collisions at similar multiplicity.
Mixed charge C3 and c3 in pp collisions projected against 1 of a mixed-charge pair invariant relative momentum.
Same charge C3 and c3 in pp collisions projected against Q3.
Same charge C3 and c3 in p Pb collisions projected against Q3.
Measurements were made at SLAC of the cross section for scattering 29 GeV electrons from carbon at a laboratory angle of 4.5 degrees, corresponding to 0.03<x<0.1 and 1.3<Q^2<2.7 GeV^2. Values of R=sigma_L/sigma_T were extracted in this kinematic range by comparing these data to cross sections measured at a higher beam energy by the NMC collaboration. The results are in reasonable agreement with pQCD calculations and with extrapolations of the R1990 parameterization of previous data. A new fit is made including these data and other recent results.
LOOP-OVER;.
The Q 2 dependence of the structure function ratio F 2 Sn / F 2 C for 0.01 < x < 0.75 and 1 < Q 2 < 140 GeV 2 is reported. For x < 0.1 the size of shadowing decreases with ln Q 2 and the maximum rate is about 0.04 at x = 0.01. The rate decreases with x and is compatible with zero for x ⩾ 0.1. The difference R Sn − R C , where R is the ratio of longitudinally to transversely polarised virtual photon absorption cross sections, is also given. No dependence on x is seen and the average value is 0.040 ± 0.021 (stat.) ± 0.026 (syst.) at a mean Q 2 of 10 GeV 2 .
Additional normalisation error in the ratio of 0.002.
Additional normalisation error in the ratio of 0.002.
Additional normalisation error in the ratio of 0.002.
Results are presented for F2d/F2p and Rd-Rp from simultaneous measurements of deep inelastic muon scattering on hydrogen and deuterium targets, at 90, 120, 200 and 280 GeV. The difference Rd-Rp, determined in the range 0.002<x<0.4 at an average Q^2 of 5 GeV^2, is compatible with zero. The x and Q^2 dependence of F2d/F2p was measured in the kinematic range 0.001<x<0.8 and 0.1<Q^2<145 GeV^2 with small statistical and systematic errors. For x>0.1 the ratio decreases with Q^2.
No description provided.
No description provided.
No description provided.
The muon-proton and muon-deuteron inclusive deep inelastic scattering cross sections were measured in the kinematic range 0.002 < x < 0.60 and 0.5 < Q2 < 75 GeV2 at incident muon energies of 90, 120, 200 and 280 GeV. These results are based on the full data set collected by the New Muon Collaboration, including the data taken with a small angle trigger. The extracted values of the structure functions F2p and F2d are in good agreement with those from other experiments. The data cover a sufficient range of y to allow the determination of the ratio of the longitudinally to transversely polarised virtual photon absorption cross sections, R= sigma(L)/sigma(T), for 0.002 < x < 0.12 . The values of R are compatible with a perturbative QCD prediction; they agree with earlier measurements and extend to smaller x.
Corrected F2P measurements averaged over all energies. Data are the statistically weighted averages given at the centre of each bin.
Corrected F2P measurements averaged over all energies. Data are the statistically weighted averages given at the centre of each bin.
Corrected F2P measurements averaged over all energies. Data are the statistically weighted averages given at the centre of each bin.
Results are presented on the difference in R , the ratio of longitudinally to transversely polarised virtual photon absorption cross sections, for the deuteron and the proton. They are obtained by comparing the ratio of cross sections for the deep inelastic scattering of muons from deuterium and hydrogen targets at 90 and 280 GeV incident energy. The results cover the range x =0.01–0.30, at an average Q 2 of 9 GeV 2 . The measured difference R d - R p shows no significant x dependence and is compatible with zero, as well as with expectations from perturbative QCD. We use the same method to obtain the difference R Ca - R C from cross section ratios measured on carbon and calcium targets at 90 and 200 GeV incident energy.
No description provided.
Average overall x values.
No description provided.
We present results on a high statistics study of the nucleon structure functions F 2 ( x , Q 2 ) and R = σ L / σ T measured in deep inelastic scattering of muons on a deuterium target. The analysis is based on 8×10 5 events after all cuts, recorded at beam energies of 120, 200 and 280 GeV in the kinematic range 0.06⩽ × ⩽0.80 and 8GeV 2 ⩽ Q 2 ⩽260GeV 2 . Scaling violations observed in the data are in agreement with predictions of perturbative QCD and allow to determine the QCD mass scale parameter Λ.
No description provided.
R=SIG(L)/SIG(T) is taken to be zero.
R=SIG(L)/SIG(T) is taken to be zero.
We present results on a high statistics study of the proton structure functions F 2 ( x , Q 2 ) and R = σ L / σ T measured in deep inelastic scattering of muons on a hydrogen target. The analysis is based on 1.8 × 10 6 events after all cuts, recorded at beam energies of 100, 120, 200 and 280 GeV and covering a kinematic range 0.06 ⩽ x ⩽ 0.80 and 7 GeV 2 ⩽ Q 2 ⩽260 GeV 2 . At small x , we find R to be different from zero in agreement with predictions of perturbative QCD.
THE AVERAGE VALUES OF Q**2 AT EACH OF THE X VALUES LISTED IN THIS TABLE ARE 15,20,20,25,30,35,40,45,50,50.
R=SIG(L)/SIG(T) IS TAKEN TO BE ZERO.
R=SIG(L)/SIG(T) IS TAKEN TO BE ZERO.
We present results from a high statistics study of the nucleon structure function F 2 ( x , Q 2 ) measured in deep inelastic scattering of muons on carbon in the kinematic range 0.25⩽ x ⩽0.80 and Q 2 ⩾25 GeV 2 . The analysis is based on 1.5×10 6 reconstructed events recorded at beam energies of 120, 200 and 280 GeV. R = σ L / σ T is found to be independent of x in the range 0.25⩽ x ⩽0.07 and 40 GeV 2 ⩽ Q 2 ⩽200 GeV 2 with a mean value R =0.015±0.013 ( stat ) ±0.026 (syst.).
R=SIG(L)/SIG(T).
No description provided.
No description provided.