Date

Final COMPASS results on the deuteron spin-dependent structure function $g_1^{\rm d}$ and the Bjorken sum rule

The COMPASS collaboration Adolph, C. ; Aghasyan, M. ; Akhunzyanov, R. ; et al.
Phys.Lett.B 769 (2017) 34-41, 2017.
Inspire Record 1501480 DOI 10.17182/hepdata.78374

Final results are presented from the inclusive measurement of deep-inelastic polarised-muon scattering on longitudinally polarised deuterons using a $^6$LiD target. The data were taken at $160~{\rm GeV}$ beam energy and the results are shown for the kinematic range $1~({\rm GeV}/c)^2 < Q^2 < 100~({\rm GeV}/c)^2$ in photon virtuality, $0.004<x<0.7$ in the Bjorken scaling variable and $W > 4~{\rm GeV}/c^2$ in the mass of the hadronic final state. The deuteron double-spin asymmetry $A_1^{\rm d}$ and the deuteron longitudinal-spin structure function $g_1^{\rm d}$ are presented in bins of $x$ and $Q^2$. Towards lowest accessible values of $x$, $g_1^{\rm d}$ decreases and becomes consistent with zero within uncertainties. The presented final $g_1^{\rm d}$ values together with the recently published final $g_1^{\rm p}$ values of COMPASS are used to again evaluate the Bjorken sum rule and perform the QCD fit to the $g_1$ world data at next-to-leading order of the strong coupling constant. In both cases, changes in central values of the resulting numbers are well within statistical uncertainties. The flavour-singlet axial charge $a_0$, {which is identified in the $\overline{\rm MS}$ renormalisation scheme with the total contribution of quark helicities to the nucleon spin}, is extracted from only the COMPASS deuteron data with negligible extrapolation uncertainty: $a_0 (Q^2 = 3~({\rm GeV}/c)^2) = 0.32 \pm 0.02_{\rm stat} \pm0.04_{\rm syst} \pm 0.05_{\rm evol}$. Together with the recent results on the proton spin structure function $g_1^{\rm p}$, the results on $g_1^{\rm d}$ constitute the COMPASS legacy on the measurements of $g_1$ through inclusive spin-dependent deep inelastic scattering.

6 data tables

Values of $A_1^d$ and $g_1^d$ for the COMPASS deuteron data at 160 GeV in $x$ bins averaged over $Q^2$.

Values of $A_1^d$ and $g_1^d$ for the COMPASS deuteron data at 160 GeV in (x, $Q^2$) bins.

Values of $g_1^{NS}$ for the COMPASS data in $x$ bins averaged over $Q^2$.

More…

The Spin Structure Function $g_1^{\rm p}$ of the Proton and a Test of the Bjorken Sum Rule

The COMPASS collaboration Adolph, C. ; Akhunzyanov, R. ; Alexeev, M.G. ; et al.
Phys.Lett.B 753 (2016) 18-28, 2016.
Inspire Record 1357198 DOI 10.17182/hepdata.72819

New results for the double spin asymmetry $A_1^{\rm p}$ and the proton longitudinal spin structure function $g_1^{\rm p}$ are presented. They were obtained by the COMPASS collaboration using polarised 200 GeV muons scattered off a longitudinally polarised NH$_3$ target. The data were collected in 2011 and complement those recorded in 2007 at 160\,GeV, in particular at lower values of $x$. They improve the statistical precision of $g_1^{\rm p}(x)$ by about a factor of two in the region $x\lesssim 0.02$. A next-to-leading order QCD fit to the $g_1$ world data is performed. It leads to a new determination of the quark spin contribution to the nucleon spin, $\Delta \Sigma$ ranging from 0.26 to 0.36, and to a re-evaluation of the first moment of $g_1^{\rm p}$. The uncertainty of $\Delta \Sigma$ is mostly due to the large uncertainty in the present determinations of the gluon helicity distribution. A new evaluation of the Bjorken sum rule based on the COMPASS results for the non-singlet structure function $g_1^{\rm NS}(x,Q^2)$ yields as ratio of the axial and vector coupling constants $|g_{\rm A}/g_{\rm V}| = 1.22 \pm 0.05~({\rm stat.}) \pm 0.10~({\rm syst.})$, which validates the sum rule to an accuracy of about 9\%.

3 data tables

Values of $A_1^{\rm p}$ and $g_1^{\rm p}$ for the 2011 COMPASS data at 200 GeV in ($x$, $Q^2$) bins.

Values of $A_1^{\rm p}$ and $g_1^{\rm p}$ for the 2011 COMPASS data at 200 GeV in $x$ bins averaged over $Q^2$.

Values of $A_1^{\rm p}$ for the 2007 COMPASS data at 160 GeV in ($x$, $Q^2$) bins.


Version 2
Measurement of azimuthal hadron asymmetries in semi-inclusive deep inelastic scattering off unpolarised nucleons

The COMPASS collaboration Adolph, C. ; Akhunzyanov, R. ; Alekseev, M.G. ; et al.
Nucl.Phys.B 886 (2014) 1046-1077, 2014.
Inspire Record 1278730 DOI 10.17182/hepdata.64754

Spin-averaged asymmetries in the azimuthal distributions of positive and negative hadrons produced in deep inelastic scattering were measured using the CERN SPS muon beam at $160$ GeV/c and a $^6$LiD target. The amplitudes of the three azimuthal modulations $\cos\phi_h$, $\cos2\phi_h$ and $\sin\phi_h$ were obtained binning the data separately in each of the relevant kinematic variables $x$, $z$ or $p_T^{\,h}$ and binning in a three-dimensional grid of these three variables. The amplitudes of the $\cos \phi_h$ and $\cos 2\phi_h$ modulations show strong kinematic dependencies both for positive and negative hadrons.

17 data tables

ASYMUU(SIN(PHI(HADRON))) asymmetries for positive and negative hadrons as a function of XB. The errors are statistical and systematic.

ASYMUU(SIN(PHI(HADRON))) asymmetries for positive and negative hadrons as a function of Z. The errors are statistical and systematic.

ASYMUU(SIN(PHI(HADRON))) asymmetries for positive and negative hadrons as a function of PT(HADRON). The errors are statistical and systematic.

More…

Hadron Transverse Momentum Distributions in Muon Deep Inelastic Scattering at 160 GeV/$c$

The COMPASS collaboration Adolph, C. ; Alekseev, M.G. ; Alexakhin, V.Yu. ; et al.
Eur.Phys.J.C 73 (2013) 2531, 2013.
Inspire Record 1236358 DOI 10.17182/hepdata.61432

Multiplicities of charged hadrons produced in deep inelastic muon scattering off a $^6$LiD target have been measured as a function of the DIS variables $x_{Bj}$, $Q^2$, $W^2$ and the final state hadron variables $p_T$ and $z$. The $p_T^2$ distributions are fitted with a single exponential function at low values of $p_T^2$ to determine the dependence of $\langle p_T^2 \rangle$ on $x_{Bj}$, $Q^2$, $W^2$ and $z$. The $z$-dependence of $\langle p_T^2 \rangle$ is shown to be a potential tool to extract the average intrinsic transverse momentum squared of partons, $\langle k_{\perp}^2 \rangle$, as a function of $x_{Bj}$ and $Q^2$ in a leading order QCD parton model.

48 data tables

PT dependences of the differential multiplicities for 0.0045 < x_Bjorken < 0.0060 and 1.00 < Q^2 < 1.25 GeV^2 for Positive hadrons.

PT dependences of the differential multiplicities for 0.0060 < x_Bjorken < 0.0080 and 1.00 < Q^2 < 1.30 GeV^2 for Positive hadrons.

PT dependences of the differential multiplicities for 0.0060 < x_Bjorken < 0.0080 and 1.30 < Q^2 < 1.70 GeV^2 for Positive hadrons.

More…

Inclusive production of pi0, eta, eta'(958), K0(S) and Lambda in two- and three-jet events from hadronic Z decays.

The ALEPH collaboration Barate, R. ; Decamp, D. ; Ghez, Philippe ; et al.
Eur.Phys.J.C 16 (2000) 613, 2000.
Inspire Record 507531 DOI 10.17182/hepdata.49106

The production rates and the inclusive cross sections of the isovector meson${\rm \pi^0}$, the isoscalar mesons$\eta$and

25 data tables

Inclusive cross section for PI0 production in hadronic events.

Inclusive cross section for ETA production in hadronic events.

Inclusive cross section for ETAPRIME production in hadronic events.

More…

Studies of quantum chromodynamics with the ALEPH detector

The ALEPH collaboration Barate, R. ; Buskulic, D. ; Decamp, D. ; et al.
Phys.Rept. 294 (1998) 1-165, 1998.
Inspire Record 428072 DOI 10.17182/hepdata.47582

Previously published and as yet unpublished QCD results obtained with the ALEPH detector at LEP1 are presented. The unprecedented statistics allows detailed studies of both perturbative and non-perturbative aspects of strong interactions to be carried out using hadronic Z and tau decays. The studies presented include precise determinations of the strong coupling constant, tests of its flavour independence, tests of the SU(3) gauge structure of QCD, study of coherence effects, and measurements of single-particle inclusive distributions and two-particle correlations for many identified baryons and mesons.

44 data tables

Charged particle sphericity distribution.

Charged particle aplanarity distribution.

Charged particle Thrust distribution.

More…

Deep Inelastic Scattering of Polarized Electrons by Polarized $^3$He and the Study of the Neutron Spin Structure

The E142 collaboration Anthony, P.L. ; Arnold, R.G. ; Band, H.R. ; et al.
Phys.Rev.D 54 (1996) 6620-6650, 1996.
Inspire Record 424108 DOI 10.17182/hepdata.22340

The neutron longitudinal and transverse asymmetries $A^n_1$ and $A^n_2$ have been extracted from deep inelastic scattering of polarized electrons by a polarized $^3$He target at incident energies of 19.42, 22.66 and 25.51 GeV. The measurement allows for the determination of the neutron spin structure functions $g^n_1 (x,Q^2)$ and $g^n_2(x,Q^2)$ over the range $0.03 < x < 0.6$ at an average $Q^2$ of 2 (GeV$/c)^2$. The data are used for the evaluation of the Ellis-Jaffe and Bjorken sum rules. The neutron spin structure function $g^n_1 (x,Q^2)$ is small and negative within the range of our measurement, yielding an integral ${\int_{0.03}^{0.6} g_1^n(x) dx}= -0.028 \pm 0.006 (stat) \pm 0.006 (syst) $. Assuming Regge behavior at low $x$, we extract $\Gamma_1^n=\int^1_0 g^n_1(x)dx = -0.031 \pm 0.006 (stat)\pm 0.009 (syst) $. Combined with previous proton integral results from SLAC experiment E143, we find $\Gamma_1^p - \Gamma_1^n = 0.160 \pm 0.015$ in agreement with the Bjorken sum rule prediction $\Gamma^p_1 - \Gamma ^n_1 = 0.176 \pm 0.008$ at a $Q^2$ value of 3 (GeV$/c)^2$ evaluated using $\alpha_s = 0.32\pm 0.05$.

12 data tables

No description provided.

No description provided.

No description provided.

More…

Measurement of the D*+- cross-section in two photon collisions at LEP

The ALEPH collaboration Buskulic, D. ; Casper, D. ; De Bonis, I. ; et al.
Phys.Lett.B 355 (1995) 595-605, 1995.
Inspire Record 394752 DOI 10.17182/hepdata.47950

The inclusive production of D ∗± mesons in photon-photon collisions has been measured by the Aleph experiment at LEP with a beam energy of 45 GeV. The D ∗+ are detected in their decay to D 0 π + with the D 0 observed in three separate decay modes: (1) K − π + , (2) K − π + π 0 and (3) K − π + π − π + , and analagously for the D ∗− modes. A total of 33 events was observed from an integrated luminosity of 73 pb −1 which corresponds to a cross section for Σ( e + e − → e + e − D ∗± X ) of 155 ± 33 ± 21 pb. This result is compatible with both the direct production γγ → c c in the Born approximation and with a more complete calculation which includes both radiative QCD corrections and contributions in which one of the photons is first resolved into its quark and gluon constituents. The shapes of distributions for events containing a D ∗+ are found to be better described by the latter.

1 data table

No description provided.


Measurement of Drell-Yan electron and muon pair differential cross-sections in anti-p p collisions at s**(1/2) = 1.8-TeV

The CDF collaboration Abe, F. ; Albrow, Michael G. ; Amidei, Dante E. ; et al.
Phys.Rev.D 49 (1994) R1-R6, 1994.
Inspire Record 355927 DOI 10.17182/hepdata.42543

We measure the Drell-Yan differential cross section d2σdMdy||y|<1 over the mass range 11<M<150 GeV/c2 using dielectron and dimuon data from p¯p collisions at a center-of-mass energy of s=1.8 TeV. Our results show the 1M3 dependence that is expected from the naive Drell-Yan model. In comparison to the predictions of recent QCD calculations we find our data favor those parton distribution functions with the largest quark contributions in the x interval 0.006 to 0.03.

3 data tables

Dielectron differential cross section.

Dimuon differential cross section.

Drell-Yan differential cross section for combined dielectron and dimuon data. Error includes both statistics and systematics.


Determination of the neutron spin structure function..

The E142 collaboration Anthony, P.L. ; Arnold, R.G. ; Band, H.R. ; et al.
Phys.Rev.Lett. 71 (1993) 959-962, 1993.
Inspire Record 359353 DOI 10.17182/hepdata.19693

The spin structure function of the neutron g1n has been determined over the range 0.03<x<0.6 at an average Q2 of 2 (GeV/c)2 by measuring the asymmetry in deep inelastic scattering of polarized electrons from a polarized He3 target at energies between 19 and 26 GeV. The integral of the neutron spin structure function is found to be F01g1n(x)dx=-0.022±0.011. Earlier reported proton results together with the Bjorken sum rule predict F01g1n(x)dx=-0.059±0.019.

2 data tables

No description provided.

Extrapolarity to full x range.