Differential cross sections for the elastic scattering of K + mesons on protons have been measured at 12 lab momenta between 130 and 755 MeV/ c using a hydrogen filled bubble chamber. The results are consistent with a repulsive S-wave nuclear force. A phase-shift analysis yielded the following values of the low-energy parameters: a S 1 2 =(0.309±0.002) fm , r S 1 2 =(0.032±0.02) fm a P 1 2 =(0.021±0.002) fm , a P 3 2 =(0.013±0.001) fm 3
No description provided.
No description provided.
No description provided.
The missing mass spectrum opposite the proton in a 750 000 picture exposure, 13 GeV/ c π + p bubble chamber experiment, is investigated in two and four pion channels for structures observed or denied by boson spectrometers at the same energy in the reaction π − p→X − p.
BREIT-WIGNER FITS.
FOR 1.6 < M(4PI) < 1.8 GEV.
Cross sections, differential cross sections, density matrix elements and statistical tensors are given for the reactions π + p → ( ϱ 0 , ω ) Δ ++ at 13.2 GeV/ c . A discussion of the results in terms of particle exchanges, quark model or dipole coupling constraints, and the equal phase hypothesis is presented in some detail for the high statistics ϱ 0 Δ ++ channel.
BREIT-WIGNER FITS WHICH CORRECT FOR RESONANCE TAILS AND BACKGROUNDS.
No description provided.
JACKSON FRAME DENSITY MATRIX ELEMENTS.
A recent spin-parity analysis of the π + π + π − system formed opposite a proton and a coherent deuteron by incident 13 GeV/ c 2 π + mesons, is extended to a three-pion mass of 1.9 GeV/ c . Relative proportions of the contributing partial waves are presented, from threshold, and the A 3 region is discussed in detail. Contrary to results with the (3 π ) − system, a change in phase is noted for the 2 − amplitude decaying to f 0 π + via am S-wave.
FOR A3+ DEFINED AS 2+ S-WAVE WITH 1.5 < M(3PI) < 1.8 GEV).
CONSTRAINT IMPLIES RHO(11) + RHO(1-1) = 0.
CONSTRAINT IMPLIES RHO(11) + RHO(1-1) = 0.
We have measured the cross section σ for electron - positron annihilation into three or more hadrons, with at least two charged particles in the final state, at 5 GeV center-of-mass energy. We find a model-independent lower limit of σ>9.1±1.0nb; assuming invariant phase-space production of pions, we calculate the detection efficiency of our detector to be (45 ± 11)%, yielding a cross section σ=21±5nb. The average charged hadron multiplicity is found to be n¯=4.3±0.6.
No description provided.
Evidence is presented for an enhancement in the ωππ mass spectrum at the A2 mass region in π+p interactions at 5 GeV/c. Assuming this effect to be the A2, we calculate the decay rate relative to the ρπ decay mode and obtain the results 0.29 ± 0.08 and 0.10 ± 0.04 for the two final states A20Δ++ and A2+p, respectively. Possible explanations of the discrepancy between these numbers are suggested.
No description provided.
We present differential cross-section data for the reaction π+p→π+p near 180° in the center-of-mass system at beam momenta between 3.25 GeVc and 10 GeVc.
No description provided.
No description provided.
Full angular distributions of the polarization parameter in elastic K+p scattering at 1.37, 1.45, 1.60, 1.71, 1.80, 1.89, 2.11, and 2.31 GeV/c are presented. These data were obtained in an experiment at the Zero Gradient Synchrotron using a polarized proton target with arrays of scintillation and Čerenkov counters to detect the scattered particles.
No description provided.
No description provided.
No description provided.
From an exposure of the Argonne National Laboratory 12-foot bubble chamber to a beam of 12.4-GeV/c protons we have obtained a 3649-event sample of the reaction pp→γ+anything, where we observe photon conversions into e+e− pairs in the liquid hydrogen. We find that the invariant cross section for this reaction does not separate in its x and P⊥ dependence at our energy. By setting upper bounds on the cross sections for inclusive η and Σ0 production, we show that π0 decay is the dominant source of photons and therefore measure the cross section for inclusive π0 production to be σ(π0)=(31.5±2.6) mb. Comparison with the inclusive π+ and π− cross sections at 12.0 GeV/c shows that the relation 2σ(π0)=σ(π+)+σ(π−) is well satisfied. We confirm earlier indications that the average number of π0's per inelastic pp interaction is approximately independent of the number of associated charged particles produced.
Axis error includes +- 8/8 contribution (THE CROSS SECTION FOR NON-PI0 GAMMA PRODUCTION IS LESS THAN 2.3 MB AND HAS BEEN NEGLECTED IN OBTAINING THE 31.5+-2.6 MB CROSS SECTION FOR THE INCLUSIVE PI0 PRODUCTION).
Results are presented on the elastic scattering of photons by protons. The incident photon energy ranged from 0.55 GeV to 4.5 GeV, and the four-momentum transfer t ranged from 0.12 to 1.0 (GeV/c)2. The data at large angles, 60°<θ*<115°, are characterized by a pronounced excitation of the D13(1518) resonance, a shoulder in the 1688-MeV mass region, and a precipitous drop thereafter in the cross section as a function of incident energy. The low-t data are characterized by a diffraction slope of 5 (GeV/c)−2. The data are inconsistent with the predictions of the vector-dominance model if the latter is restricted to ρ0, ω, and φ vector mesons.
No description provided.