Pion-deuteron coherent scattering at 895 mev/c

Bradamante, F. ; Conetti, S. ; Fidecaro, G. ; et al.
Phys.Lett.B 28 (1968) 191-194, 1968.
Inspire Record 56839 DOI 10.17182/hepdata.29099

The elastic scattering cross-section of π - on deuterium at 895 MeV/ c measured with counters and wire spark chambers is given in a region of momentum transfer between 0.16 and 0.96 (GeV/ c ) 2 .

1 data table

No description provided.


Structure in the angular distribution of high energy proton-proton scattering

Allaby, J.V. ; Binon, F.G. ; Diddens, A.N. ; et al.
Phys.Lett.B 28 (1968) 67-71, 1968.
Inspire Record 54033 DOI 10.17182/hepdata.29155

Results are presented on measurements of elastic proton-proton scattering at 19.2 and 21.1 GeV/ c in the angular region where previously structure had been observed at lower energies.

1 data table

'1'. '2'. '3'.


NEUTRON - PROTON ELASTIC SCATTERING 8-GeV/c TO 30-GeV/c

Gibbard, Bruce G. ; Jones, Lawrence W. ; Longo, Michael J. ; et al.
Phys.Rev.Lett. 24 (1970) 22-24, 1970.
Inspire Record 52711 DOI 10.17182/hepdata.21622

The differential cross section for neutron-proton elastic scattering was measured in the diffraction region with incident-neutron momenta between 8 and 30 GeV/c. The experiment was a spark-chamber-counter experiment, conducted at the alternating-gradient synchrotron. Results are presented and compared with currently available lower energy np data and comparable energy pp data.

1 data table

No description provided.


STUDY OF p p INTERACTIONS AT 28.5-BeV/c IN TWO AND FOUR PRONG FINAL STATES

Connolly, P.L. ; Ellis, W.E. ; Hough, Paul V.C. ; et al.
C671122-2, 1967.
Inspire Record 1100201 DOI 10.17182/hepdata.50281

None

1 data table

'1'. '2'. '3'.


Neutron proton elastic scattering from 1-GeV to 6-GeV.

Kreisler, M. ; Martin, F. ; Perl, Martin L. ; et al.
Phys.Rev.Lett. 16 (1966) 1217-1220, 1966.
Inspire Record 49861 DOI 10.17182/hepdata.3557

None

5 data tables

'1'. '2'. '3'.

No description provided.

No description provided.

More…

Elastic Scattering and Cross Sections in Antiproton-Proton Interactions at 3.3 and 3.7 BeV/c

Ferbel, T. ; Firestone, A. ; Sandweiss, J. ; et al.
Phys.Rev. 137 (1965) B1250-B1255, 1965.
Inspire Record 944963 DOI 10.17182/hepdata.466

The elastic, the pion-production, and the multipion-annihilation cross sections for antiproton-proton interactions at 3.28 and 3.66 BeV/c incident antiproton momenta have been measured. A comparison of the elastic interactions at 3.28 BeV/c with a purely-absorbing disc optical model gave a best value for the radius of interaction of 1.3 F. The real part of the forward scattering amplitude has been found to be less than 20% of the imaginary part. A study of the asymmetries in double elastic scatters yielded a value for a polarizing power of the hydrogen consistent with zero when averaged over production angles.

6 data tables

No description provided.

More…

Electron-Proton Scattering at High-Momentum Transfer

Berkelman, K. ; Feldman, M. ; Littauer, R.M. ; et al.
Phys.Rev. 130 (1963) 2061-2068, 1963.
Inspire Record 46839 DOI 10.17182/hepdata.26788

The elastic electron-proton scattering cross section has been measured at laboratory angles between 90° and 144° and for values of the four-momentum transfer squared between 25 and 45 F−2 (incident electron laboratory energies from 830 to 1360 MeV). Both the scattered electrons and the recoil protons were momentum analyzed and counted in coincidence, making possible background-free measurements down to cross sections of the order of 10−35 cm2/sr. The data are consistent with the Rosenbluth formula, and the resulting form factors tie on well with previous measurements at lower momentum transfer, continuing the established trend.

6 data tables

No description provided.

No description provided.

No description provided.

More…

Electromagnetic Form Factors of the Proton

Bumiller, F. ; Croissiaux, M. ; Dally, E. ; et al.
Phys.Rev. 124 (1961) 1623-1631, 1961.
Inspire Record 47220 DOI 10.17182/hepdata.26853

This paper reports experimental findings on the Dirac (F1) and Pauli (F2) form factors of the proton. The form factors have been obtained by using the Rosenbluth formula and the method of intersecting ellipses in analyzing the elastic electron-proton scattering cross sections. A range of energies covering the interval 200-1000 Mev for the incident electrons is explored. Scattering angles vary from 35° to 145°. Values as high as q2≅31 f−2 (q=energy−momentumtransfer) are investigated, but form factors can be reliably determined only up to about q2=25 f−2. Splitting of the form factors is confirmed. The newly measured data are in good agreement with earlier Stanford data on the form factors and also with the predictions of a recent theoretical model of the proton. Consistency in determining the values of the form factors at different energies and angles gives support to the techniques of quantum electrodynamics up to q2≅25 f−2. At the extreme conditions of this experiment (975 Mev, 145°) the behavior of the form factors may be exhibiting some anomaly.

24 data tables

No description provided.

No description provided.

No description provided.

More…