CIRCUS: an autonomous control system for antimatter, atomic and quantum physics experiments

The AEgIS collaboration Volponi, M. ; Huck, S. ; Caravita, R. ; et al.
EPJ Quant.Technol. 11 (2024) 10, 2024.
Inspire Record 2756315 DOI 10.17182/hepdata.156992

A powerful and robust control system is a crucial, often neglected, pillar of any modern, complex physics experiment that requires the management of a multitude of different devices and their precise time synchronisation. The AEgIS collaboration presents CIRCUS, a novel, autonomous control system optimised for time-critical experiments such as those at CERN's Antiproton Decelerator and, more broadly, in atomic and quantum physics research. Its setup is based on Sinara/ARTIQ and TALOS, integrating the ALPACA analysis pipeline, the last two developed entirely in AEgIS. It is suitable for strict synchronicity requirements and repeatable, automated operation of experiments, culminating in autonomous parameter optimisation via feedback from real-time data analysis. CIRCUS has been successfully deployed and tested in AEgIS; being experiment-agnostic and released open-source, other experiments can leverage its capabilities.

6 data tables

Synchronous voltage ramp-up to 20 V on three high-voltage amplifier channels 10 μs subsequent to the arrival of a common trigger pulse at zero time in the figure. The inset shows a zoom to the shoulder region for a better visualisation of the synchronicity.

A feedback loop uses the uncorrected laser pulse timings (red squares) to calculate the deviation from the user setting (solid black line) over the course of an hour, and corrects the timing of the subsequent desired laser pulse that is used for the actual experiment (blue circles). Independent of short-term to long-term drifts or even sudden jumps, the resulting timing is always close to the desired value.

A feedback loop uses the uncorrected laser pulse timings (red squares) to calculate the deviation from the user setting (solid black line) over the course of an hour, and corrects the timing of the subsequent desired laser pulse that is used for the actual experiment (blue circles). Independent of short-term to long-term drifts or even sudden jumps, the resulting timing is always close to the desired value.

More…