Differential cross sections have been measured for nucleon-isobar production and elastic scattering in p−p interactions from 6.2 to 29.7 GeVc in the laboratory angle range 8<θsc<265 mrad. N*' s at 1236, 1410, 1500, 1690, and 2190 MeV were observed. Computer fits to the mass spectra under varying assumptions of resonance and background shapes show that conclusions on t and s dependence are only slightly affected despite typical variations in absolute normalization of ± 35%. Logarithmic t slopes in the small- |t| range are ∼15 (GeVc)−2 for the N*(1410), ∼5 (GeVc)−2 for the N*'s at 1500, 1690, and 2190 MeV, and ∼9 (GeVc)−2 for elastic scattering. Also for the small- |t| data, cross sections for N*'s at 1410, 1500, 1690, and 2190 MeV and for elastic scattering vary only slightly with Pinc consistent with the dominance of Pomeranchuk exchange and with diffraction dissociation. A fit of N*(1690) total cross sections to the form σ∝P−n gives n=0.34±0.06, while for elastic scattering n=0.20±0.05. For the N*(1690) the effective Regge trajectory has the slope αeff′(0)=0.38±0.17. When compared with N* production in π−, K−, and p¯ beams these data also agree with approximate factorization of the Pomeranchuk trajectory. N*(1236) cross sections are consistent with other measurements at similar momenta. For −t>1 (GeVc)−2, elastic scattering cross sections decrease approximately as Pinc−2, and they and N*(1500)− and N*(1690)− production cross sections have t slopes consistent with 1.6 (GeVc)−2.
No description provided.
No description provided.
No description provided.
Inclusive hadron production in muon-proton inelastic scattering has been measured for q2>0.5 (GeV/c)2 and 10<ν<135 GeV. The results are presented in the form of the transverse momentum distribution of charged hadrons and the hadron invariant structure function F(x′). Results are given for different regions of q2 and s.
No description provided.
No description provided.
No description provided.
Most events with high neutral transverse energy, E T 0 , produced in pp colisions at √ s = 62.3 GeV, are jet-like. The evidence for this is presented, based on data collected using an electromagnetic calorimeter covering 90% of 2π in azimuth. The spectrum d N /d E T 0 has been measured over the E T 0 range from 10 to 35 GeV. Properties of the observed jets are discussed.
No description provided.
We present data on proton-proton collisions, obtained at the CERN Intersecting Storage Rings, in which two roughly back-to-back π 0 's of high transverse momentum ( p T ) were produced. The angular distribution of the dipion axis relative to the collision axis is found to be independent of both the effective mass m of the dipion system and the centre-of-mass energy √ s of the proton-proton collision. The cross-sections d σ d m at the values of √ s satisfy a scaling law of the form d σ d m = G(x) m n , where x = m(π 0 , π 0 )//trs and n = 6.5 ± 0.5 . We show from our data that the leading π 0 carries most of the momentum of the scattered parton. Given this fact, the axis of the dipion system follows closely the direction of the scattered constituents, and we exploit this to determine the angular dependence of the hard-scattering subprocess. We also compare our data with the lowest order QCD predictions using structure functions as determined in deep-inelastic scattering and fragmentation functions from electron-positron annihilation.
No description provided.
We have measured cross section for γ , K S °, Λ and Λ production at 102 GeV/ c and find: σ ( γ ) = 170 ± 16 mb ., σ ( K S °) = 4.6 ± 0.5 mb ., σ ( Λ ) = 3.2 ± 0.4 mb ., and σ( Λ ) = 0.23 ± 0.10 mb. Both 〈 n π °〉 and 〈 n Ks °〉 appear to rise linearly with n - while the ratio 〈 n Ks °〉/〈 n π °〉 is approximately independent of n - . The integrated invariant cross section as a function of x as well as d σ /d y and d σ /d p T 2 are presented and compared with other data.
No description provided.
The total cross section of the reaction $pp\to ppK^+K^-$ has been determined for proton--proton reactions with $p_{beam}=3.67 GeV/c$. This represents the first cross section measurement of the $pp \to ppK^-K^+$ channel near threshold, and is equivalent to the inclusive $pp\to ppK^-X$ cross section at this beam momentum. The cross section determined at this beam momentum is about a factor 20 lower than that for inclusive $pp\to ppK^+X$ meson production at the same CM energy above the corresponding threshold. This large difference in the $K^+$ and $K^-$ meson inclusive production cross sections in proton-proton reactions is in strong contrast to cross sections measured in sub-threshold heavy ion collisions, which are similar in magnitude at the same energy per nucleon below the respective thresholds.
Total exclusive production cross section for the resonant and non-resonant channels.
Total PHI meson production cross section after correction for the corresponding partial width (C.Caso et al. EPJ C1(98)1).
The reaction e p→e'p π 0 has been measured at W =2.55 GeV a fixed electron scattering angle of 10.3°. Two magnetic spectrometers and a lead glass hodoscope were used to detect all four final state particles. Electroproduction cross sections in the t range −0.15 to −1.4 (GeV/ c ) 2 at q 2 = −0.22, −0.55 and −0.85 (GeV/ c ) 2 are presented. Above | t |=0.6 (GeV/ c ) 2 the cross sections are considerably smaller than those for photoproduction.
NUMERICAL VALUES MEASURED FROM GRAPH IN PREPRINT BY TDBW.
New measurements are reported of total cross sections for π ± , K ± , p and p on protons and deuterons at 11 momenta between 23 and 280 GeV/ c .
No description provided.
No description provided.
No description provided.
None
No description provided.
A measurement of direct photon production in pp collisions at a center of mass energy ∝ s =63 GeV is reported. Arrays of lead-glass calorimeters and multiwire proportional chambers were used as photon detectors. Data are presented in the transverse momentum range from 4.5 to 10 GeV/ c and compared with QCD predictions. The event structure of this sample is compared with that of a set dominated by high transverse momentum π O ́ ' s .
Final Average Results from inside and outside detector.
Results for the inside detector.
Results for the outside detector.