We report the results of a pion-electron scattering experiment to measure the charge radius of the pion. The experiment was performed in a 50 GeV/ c negative, unseparated beam at the IHEP accelerator, Serpukhov, and has been briefly reported in an earlier publication [1]. A magnetic spectrometer instrumented with wire spark chambers was used to record the incident pion trajectory and the angles and momenta of the scattered particles. Events are reconstructed by detailed trackfinding programs, and a set of kinematic and geometric cuts define the elastic sample. Electrons are identified both by kinematic criteria and pulse height information from total absorption lead glass Čerenkov counters. The final elastic sample consisted of 40 000 πe events in the region of four-momentum transfer squared 0.013 (GeV/ c ) 2 ⩽ q 2 ⩽ 0.036 (GeV/ c ) 2 . A full error matrix fit to the form factors of the pion gave the r.m.s. charge radius of the pion: 〈r π 2 〉 1 2 = (0.78 −0.10 +0.09 ) fm .
Axis error includes +- 0.7/0.7 contribution (DUE TO ACCIDENTAL ANTI-COINCIDENCES).
No description provided.
No description provided.
Electron-proton elastic scattering cross sections have been measured at squared four-momentum transfers q 2 of 0.67, 1.00, 1.17, 1.50, 1.75, 2.33 and 3.00 (GeV/ c ) 2 and Electron scattering angles θ e between 10° and 20° and at about 86° in the laboratory. The proton electromagnetic form factors G E p and G M p were determined. The results indicate that G E p ( q 2 ) decreases faster with increasing q 2 than G M p ( q 2 ). Quasi-elastic electron-deuteron cross sections have been determined at values of q 2 = 0.39, 0.565, 0.78, 1.0 and 1.5 (GeV/ c ) 2 and scattering angles between 10° and 12°. At q 2 = 0.565 (GeV/ c 2 data have also been taken with θ e = 35° and at q 2 = 1.0 and 1.5 (GeV/ c ) 2 with θ e = 86°. Electron-proton as well as electron-neutron scattering cross sections have been deduced by the ratio method. The theoretical uncertainties of this procedure are shown to be small by comparison of the bound with the free proton cross sections. The magnetic form factor of the neutron G M n derived from the data is consistent with the scaling law. The charge form factor of the neutron is found to be small.
Axis error includes +- 2.1/2.1 contribution (NORMALISATION ERROR).
Axis error includes +- 2.1/2.1 contribution (NORMALISATION ERROR).
Axis error includes +- 2.1/2.1 contribution (NORMALISATION ERROR).
We have extracted the strong interaction form factors from K o e3 and K o μ3 data of our previously reported K o L experiment in a manner which does not assume an explicit q 2 = ( p K − p π ) 2 dependence. We present the unparameterized form factors ƒ + (q 2 ) from the K o L → πeν and K o L → πμν modes and ƒ o (q 2 ) and ξ ( q 2 ) from the K o L → πμν data. A comparison of these unparameterized results is made with the results of the Dalitz plot analyses.
The conventional form factor f+ is studied.
We measured the elastic and inelastic scattering of electrons on deuterium at 180° for four incident energies (70, 140, 210 and 280 MeV). The data were analysed with a technique allowing an accurate comparison between experiment and theory. We observed a good agreement for the inelastic data with the expected cross section, using the presently available models and nucleon form factors. The experimental elastic cross section is systematically larger than the predicted cross sections.
No description provided.
No description provided.
No description provided.
None
No description provided.
No description provided.
No description provided.