The reactionsπ−p→K0(890) Λ,K0(890)Σ0 andK0(890)Σ0 are studied at an incident momentum of 3.95 GeV/c using data from a high statistics bubble chamber experiment corresponding to ∼90 events/μb. The differential cross sections, density matrix elements of the vector meson and hyperon polarizations are presented. A transversity amplitude analysis is performed for each of the reactions. The results are compared with those obtained for the SU(3) related processesK−p→ϕΔ, ϕΣ0, ϕΣ0(1385) andϱ−Σ+(1385) and with predictions of the additive quark model and SU(6) sum rules.
BREIT-WIGNER FIT WITH BACKGROUND POLYNOMIAL.
BACKWARD CROSS SECTION.
TOTAL CROSS SECTION USING SLICING TECHNIQUE. FORWARD (-TP < 1.2 GEV**2) CROSS SECTION IS 25 +- 2 MUB: DOUBLE MASS CUT GIVES 20 +- 7 PCT BACKGROUND CONTAMINATION.
Precise measurements att=0 of the KLp→KSp amplitude (modulus and phase) were made. Over 50000 Kπ2 decays along with normalizing Kμ3 events were detected behind a 7.2-m-long liquid-hydrogen regenerator. The momentum dependence of the modulus and phase are presented, and the results are combined with those of other experiments to extract the relevant parameters of ω exchange.
RESULTS USING ETA+- = 2.15E-3.
RESULTS USING ETA+- = 2.27E-3.
We present measurements of the differential and polarization cross sections for the reactions KL0p→Ks0p, Λπ+, Σ0π+, and Λπ+π0 made in a hydrogen bubble chamber exposed to a beam of KL0 with incident momentum 550±35 MeV/c. The quasielastic data imposes additional constraints on the partial-wave analyses of the KN and K¯N systems. Our data show no strong energy-dependent effects in the region of the reported Σ(1580), JP=32− state. The phase of the forward regeneration amplitude was found to be about - 160° independent of KL0 momentum.
SYSTEMATIC ERRORS INCLUDED.
ROUGH FIT - POSSIBLY OTHER SYSTEMATIC ERRORS.
No description provided.
The energy dependence of the modulus and phase of the K L 0 -K S 0 regeneration amplitude on hydrogen in the range of 14–50 GeV has been investigated at the Serpukhov 70 GeV accelerator. It has been established that the modulus of the modified regeneration amplitude decreases with increasing momentum as 2|ƒ 21 0 (p)|/k = (0.84 ± 0.42) · p −0.50±0.15 mb . The amplitude phase is energy-independent and its mean value is ϕ 21 0 = −132° ± 5°. The results obtained are compared with other experiments and with predictions of different theoretical models.
TABLE ALSO CALCULATES FORWARD DIFFERENTIAL CROSS SECTION AND SIG(AK0 P) - SIG(K0 P) TOTAL CROSS SECTION DIFFERENCES.
The K L o p → K S o p differential and total cross-section and the forward scattering amplitude phase φ have been measured in the 1.5 to 2.3 GeV centre of mass energy range. The data is compared with predictions based on recent K ± N phase shift solutions. Best agreement is found for K + N solutions which do not warrant an I=0 P 1 2 exotic Z ∗ o (1800) baryon.
No description provided.
No description provided.
The modulus and the phase of the K L o −K S o regeneration amplitude on carbon have been measured. In a momentum range of 16–40 GeV/ c the phase is constant within experimental error bars and coincides with the regeneration phase on hydrogen. Both the modulus and the phase of the regeneration amplitude on carbon are in agreement with optical model predictions.
ASSUMING A CONSTANT PHASE INDEPENDENT OF MOMENTUM, THE CARBON REGENERATION AMPLITUDE HAS A PHASE OF -130 +- 17 DEG.
The amplitude and phase for coherent regeneration in hydrogen and deuterium have been measured for six momentum bins in the range 3.5-10.5 GeV/c. Over this region the phase, ϕf, is consistent with being constant and has the value - 60°±8° for hydrogen and - 46°±8° for deuterium. Power-law fits of the form plabn for the amplitudes when combined with other data give n=−0.60±0.02 for hydrogen and n=−0.52±0.02 for deuterium.
No description provided.
NOTE PHASE IS HERE DEFINED AS THE PHASE OF I*AMP(NAME=REGEN) AND SO DIFFERS BY 90 DEG FROM USUAL DEFINITION.
The differential cross sections for KL0p→KS0p scattering are presented in several momentum intervals between 1 and 10 GeVc. The data are strongly peaked in the forward direction, characteristic of a large s-channel helicity-nonflip scattering amplitude in this reaction, and a distinct break in the differential cross section occurs at |t|=0.3 GeV2. The phase of the forward scattering amplitude, φ, is consistent with being independent of momentum. The average value of the phase, φ=−133.9±4.0∘, corresponds to a Regge trajectory α(0)=0.49±0.05 in agreement with the canonical ρ, ω0 Regge intercept, α(0)∼0.5. However, this result disagrees with the Regge trajectory determined from the energy dependence of the forward cross section, α(0)=0.30±0.03, indicating a breaking of the Regge phase-energy relation. Comparisons of KL0p→KS0p and π−p→π0n scattering data reveal substantial differences in the energy dependence of the differential cross sections. Comparisons to KN charge-exchange data then suggest that direct-channel (absorption) effects may explain the differences in πN and KN channels.
No description provided.
No description provided.
No description provided.
None
No description provided.
We have studied the proper time distribution of coherent π + π − decays from a 3 – 10 GeV/ c K L o beam incident on a one meter liquid hydrogen target using a wire spark chamber spectrometer in the 3 0 neutral beam at SLAC. We find ∣(ƒ(0) − ƒ (0))/k∣ = 0.43 ± 0.11 mb , φ(ƒ(0) − ƒ (0)) = -101 0 ± 42 0 .
No description provided.