Data on hadron production by e + e − annihilation at c.m. energies between 12 and 36.6 GeV have been collected using the JADE detector. They have been analysed in terms of single-photon and weak neutral-current exchange assuming production of quark-antiquark pairs with only d, u, s, c and b quarks to produce values for the quark weak neutral-current couplings. A further analysis in terms of the Glashow-Salam-Weinberg theory produced the result, sin 2 θ W = 0.22 ± 0.08 . The theory has therefore been tested in a new energy domain and within the context of the neutral weak couplings of the first, second and third generation quarks.
No description provided.
WIDTH(Z) = 2.5 GEV WAS ASSUMED. CONST(N=SIN2TW) WAS DETERMINED FROM RATIO(HADRONS/MU). FIRST ORDER QCD.
By combining results from the MARK-J at PETRA on Bhabha scattering, μ + μ - and τ + τ - production with recent world data from neutrino-electron scattering experiments, we determine unique values for the leptonic weak neutral current coupling constants g V and g A in the framework of electroweak models containing a single Z 0 . In contrast to previous analyses, we only use data from purely leptonic interactions, and therefore avoid the inherent uncertainties resulting from the use of hadronic targets. From the MARK-J data alone in the context of the standard SU(2) ⊗ U (1) model of Glashow, Weinberg and Salam, we find sin 2 θ W =0.24±0.11.
No description provided.
No description provided.
No description provided.
Muon-neutrino and -antineutrino scattering off electrons was detected in a 19-ton Al spark chamber, exposed to the wide-band ν (ν¯) beam from the CERN proton synchrotron. The background was determined experimentally. 11 (10) genuine νμ− (ν¯μ−) e scattering events were found. The respective cross sections are (1.1±0.6)×10−42(Eν/GeV) cm2 and (2.2±1.0)×10−42(Eν/GeV) cm2. The analysis excludes a pure V−A interaction, and makes a pure V or A theory improbable. The data agree well with the Salam-Weinberg model and sin2θW=0.35±0.08.
No description provided.
No description provided.