Total and differential cross sections for the exclusive reaction pp->pp rho^0 observed via the pi+pi- decay channel have been measured at beam momentum=3.67 GeV/c. The observed total meson production cross section is determined to be 23.4 +- 0.8 +-8 microb and is significantly lower than typical cross sections used in model calculations for heavy ion collisions. The differential cross sections measured indicate a strong anisotropy cos^2(theta^{CM}) in the rho^0 meson production.
Total cross section determined by normalising to the simultaneously measured ETA yield to the known cross section of 135 +- 35 MUB.
Data are presented on Pomeron-Pomeron interactions which produce a centralπ+π− system in proton-proton collisions at\(\sqrt s= 62 GeV\) at the CERN Intersecting Storage Rings. This process may favor the production of gluonic bound states. A partial-wave analysis of theπ+π− system shows evidence for the production of the statesf0(975),f0(1400), andf2(1270). The fitted mass for thef2(1270) is about 50 MeV below the world average. In addition, the production mechanism for thef2(1270) is uniquely different from that for the other final states in that there is a correlation between the outgoing protons. this is consistent with a picture of two-gluon exchange with thef2(1270) produced by gluon fusion, and could indicate that thef2(1270) has a glueball component.
No description provided.
Data are presented for the exclusive reaction pp → pp π+ π− at\(\sqrt s= 62GeV\) with two leading protons at large Feynman-x and a centrally produced π+;π− system. In this kinematical configuration one expects a substantial contribution from Double Pomeron Exchange, which is a potential source of glueballs. The experiment was performed at the CERN ISR using the Split Field Magnet spectrometer. In the mass range between 1,000 and 1,700 MeV/c2 the invariant mass distribution for the central π+;π− system exhibits a very significant signal for thef0(1270) and no other obvious resonant states.
No description provided.
We have studied the reactionspp→ppπ+π-,K+p→K+pπ+π−π, π+p→ π+,pπ+π− and π−p →π+π− at 147 GeV/c using the 30-inch Fermilab hybrid system. All four reactions were detected with the same apparatus and analyzed in the same way. The energy dependence of the channel cross section was found to beAp−0.6+B for thepp reaction andAp−1+B for the other three. About 90% of the cross section at 147 GeV/c can be accounted for by either beam or target diffraction. Some of the remaining cross section may come from double Pomeron exchange reactions which we tried to isolate. We have tested the hypothesis of a factorizable Pomeron and our data indicates a violation of this hypothesis. We show that the 3π mass enhancement in the mass region 1.2–1.4 GeV is diffractively produced in the π± beam reactions. Fourprong, four-constraint and six-prong, four-constraint cross sections are reported.
No description provided.
No description provided.
CROSS SECTIONS FOR DIFFRACTION DISSOCIATION OF BEAM. FEYNMAN X OF OUTGOING PROTON <-0.96.
None
No description provided.
No description provided.
No description provided.
Approximately 21 000 four-prong pp interactions at 13.1 GeV/ c have been studied using the CERN 2m hydrogen bubble chamber. The following reactions have been analyzed pp→ppπ + π − (1) pp→ppπ + π − π 0 (2) pp→ppπ + π + π − (3) The Δ-production is the dominant feature. We also observed the pππ decay of the N ∗ (1470) and N ∗ (1690). The ϱis weakly produced in the three reactions. The η and the α are observed in the reaction (2) and the presence of a ω isobar is discussed. Then the kinematical characteristics of the final particles are described.
NORMALIZED TO A TOTAL CROSS SECTION OF 39.6 +- 0.2 MB.
RESONANCE PRODUCTION ESTIMATED BY CUTS WITH MONTE-CARLO AND HAND-DRAWN PHASE SPACE DISTRIBUTIONS.