An analysis has been made of 64 600 events of the type K−p→K−p and 22 800 events of the type K−p→K¯0n in the Berkeley 25-in. hydrogen bubble chamber. Differential cross sections have been measured in intervals of 10 MeV/c over the momentum range 220 to 470 MeV/c. Legendre-polynomial fits to the distributions have been made, and the coefficients show structure from the resonant D-wave [Λ(1520)] and background S and P waves. No new structure is observed. The total K−p cross section determined from measurements of all final states seen in this exposure is also presented.
No description provided.
No description provided.
No description provided.
We present the first evidence for K ∗ (1780) production in a non-exchange channel. This comes from a study of the reaction K − p → K° π − p at 14.3 GeV/ c . We also present evidence for K ∗ ° (1780) production in the charge exchange channel K − p → K − π + n. No significant K ππ , K ω and K η decay modes are found. The decay angular distribution, the spin-parity assignments and the production mechanism are discussed. With plausible assumptions on the production mechanism, the J P = 3 − spin-parity is favoured.
No description provided.
We have studied photoproduction using a 1 m streamer chamber at DESY and a tagged photon beam with an energy range of 1.6 GeV < E γ < 6.3 GeV. We analysed approximately 30 000 events and report topological, channel and resonance production cross sections for a large number of reactions with three and five outgoing charged particles.
CHANNEL CROSS SECTIONS FOR 3, 5 AND 7 PRONG REACTIONS.
'PARAMETRIZATION'.
'INTERFERENCE'.
None
No description provided.
No description provided.
No description provided.
Measurements of the cross section for the reaction p+p→π0+anything have been completed. The data cover a range of incident proton energies 50-400 GeV, π0 transverse momenta 0.3-4 GeV/c, and laboratory angles 30-275 mrad. The experiment was performed using the internal proton beam at the Fermi National Accelerator Laboratory. A lead-glass counter was used to detect photons from the decay of π0's produced by collisions in thin targets of hydrogen or carbon. Tables of the measured cross sections are presented.
No description provided.
No description provided.
No description provided.
The cross section e + e − → π + π − π o has been measured in the φ energy region and at three other energies (915, 990, 1076 MeV) chosen outside the ω and φ resonances. In the same experiment the energy position and the width of the φ resonance have been determined from the φ →K S o K L o channel. It is found that the magnitude and energy dependence of the experimental cross section are well described by coherent production of ω and φ in the whole energy range 770 to 1076 MeV. Our data clearly show an interference effect which corresponds to an opposite sign between the two products g γω g ω →3 π and g γφ g φ →3 π of the coupling constants.
EXPERIMENTAL CROSS SECTIONS - RADIATIVE CORRECTIONS CAN BE SIGNIFICANT.
The radiative decay models of the φ-meson have been studied: e + e − → φ → ηγ →3 γ ; e + e − → φ → π o γ →3 γ . Cross sections σ φ → ηγ →3 γ and σ φ → π o γ →3 γ have been measured at five energies in the φ-meson energy region and clearly show the φ-resonance in the ηγ → 3 γ mode as well as in the π o γ → 3 γ mode. From a Breit-Wigner fit to the experimental data the values of the branching ratios are deduced: B φ → ηγ = (1.5 ± 0.4) × 10 −2 ; B φ → π o γ = (1.4 ± 0.5) × 10 −3 .
REMOVING RADIATIVE CORRECTIONS, THE PHI PEAK CROSS SECTIONS ARE 66 NB +- 25 PCT <ETA GAMMA> AND 6.5 NB +- 30 PCT <PI0 GAMMA>.
We have observed the production of high-mass I=32 baryon resonances in π+p interactions at 13 GeV/c. The most prominent of these is found to be the F37 Δ(1950). It is produced by one-pion exchange and the data are well described by on-shell π+p phase shifts. Decays into pπ+ and pπ+π0 are observed and the Δ(1950) is found to have a mass 1.880 ± 0.010 GeV and width of 0.180 ± 0.030 GeV with a production cross section of 43 ± 4 μb.
RESONANCE BACKGROUNDS SUBTRACTED.
Proton-deuteron elastic scattering has been measured in the four-momentum transfer squared region 0.013<|t|<0.14 (GeV/c)2 and for incident proton beam momenta from 50 to 400 GeV/c. The data can be fitted with the Bethe interference formula. We observe shrinkage of the diffraction cone with increasing energy equal to (0.94±0.04)ln(s1 GeV2) (GeV/c)−2. This shrinkage is greater than that observed in pp elastic scattering. The ratio of the elastic to the total cross section is approximately 0.1 and independent of energy above ∼ 150 GeV. In order to extract information on pn scattering we fit our data using the Glauber approach and a form factor which is the sum of exponentials. The values we obtain for the slope parameter in pn scattering are sensitive to the details of the inelastic double-scattering term.
.
.
.
The possible existence of new vector mesons above the ρ is investigated. The conclusion is that our data are compatible with the existence of the ρ′-meson only if we assume as a firm theoretical prediction the Gounaris-Sakurai tail of the standard ρ-meson. Furthermore our data are compatible with the existence of the ρ″-meson if we assume the validity of the\(\bar p\)p model for the calculation of the multihadron cross-section.
THESE MEASUREMENTS OF THE PION FORM FACTOR ARE GIVEN IN D. BOLLINI ET AL., NCL 14, 418 (1975).
THESE MEASUREMENTS OF THE FOUR CHARGED PION CROSS SECTION ARE GIVEN IN M. BERNARDINI ET AL., PL 53B, 384 (1974).
THESE MEASUREMENTS OF THE TOTAL HADRONIC CROSS SECTION ARE GIVEN IN M. BERNARDINI ET AL., PL 51B, 200 (1974).