Toward the goal of experimentally determining pp elastic scattering amplitudes at 6 GeV/c, we have measured a linear combination of triple-spin correlation parameters and also a linear combination of spintransfer parameters over the |t| range between 0.2 and 1.0 (GeV/c)2. A horizontally polarized beam (S direction) was obtained by precessing the spin of the polarized beam from the Argonne Zero Gradient Synchrotron using a superconducting solenoid. The target protons were polarized vertically (N direction) and the polarization of the recoil protons was measured with a carbon polarimeter. The results are consistent with the amplitude corresponding to π exchange being almost real and positive.
KSS = (S00S) AND HSNS = (SN0S) MEASURED HERE CONTAIN SMALL ADMIXTURES OF THE OTHER SPIN-TRANSFER AND TRIPLE-SPIN CORRELATION PARAMETERS RESPECTIVELY DUE TO THE POLARIZED TARGET MAGNETIC FIELD - SEE TEXT. MEAN VALUE OF HSNS OVER THIS T-RANGE IS 0.098 +- 0.085. PARITY CONSERVATION REQUIRES THE VANISHING OF THE PARAMETERS KSN, HSNN, (000S) AND DNS, WHILE (000N) MUST AGREE WITH THE SINGLE SCATTERING POLARIZATION PARAMETER (0N00).
Proton-proton elastic scattering at 400 GeV/c has been measured in the region 5.4<−t<14.4 GeV2 with no sign of a second dip or "break." If the data are fitted by exp(At), the slope A decreases from 1.5±0.1 to 0.7±0.2 GeV−2 over the range. At fixed t the 400-GeV/c cross sections are about 0.6 times those at 200 GeV/c in this t range. At fixed θc.m.=15°, dσdt∝s−n where n=9.7±0.3.
No description provided.
No description provided.
We have measured the spin-spin correlation parameter CLL=(L, L;0, 0) in p−p elastic scattering around θc.m.=90° from plab=1.0 to 3.0 GeV/c. We observe a rapid energy dependence in CLL and describe our interpretation of the results.
No description provided.
No description provided.
No description provided.
Proton-proton and proton-deuteron elastic scattering has been measured for incident laboratory energy from 50 to 400 GeV; minimum |t| values were, for p−p, 0.0005 (GeV/c)2, and for p−d, 0.0008 (GeV/c)2. From the differential cross sections we have determined the ratios of the real to imaginary parts of the forward scattering amplitude, ρpp and ρpd, for p−p and p−d scattering. Using a Glauber approach and a sum-of-exponentials form factor we obtain ρpn for p−n scattering.
No description provided.
No description provided.
FROM GLAUBER ANALYSIS. THE SYSTEMATIC ERRORS DUE TO THE UNCERTAINTY IN THE DEUTERON FORM FACTOR ARE COMPARABLE WITH THE STATISTICAL ERRORS.
We have measured π±p and pp elastic differential cross sections in the range |cosθc.m.|<0.35 for incident momenta from 2 to 9.7 GeV/c for π−p and pp and from 2 to 6.3 GeV/c for π+p. We find that the fixed-c.m.-angle πp differential cross sections cannot be described as simple functions of s. The data are compared to the energy and angular dependence predicted by the constituent model of Gunion, Brodsky, and Blankenbecler.
No description provided.
No description provided.
No description provided.
The absolute normalisation of the polarisation in pp elastic scattering at 24 degrees lab has been determined by means of a double-scattering experiment to an accuracy of +or-1.5% at five energies between 200 and 520 MeV.
No description provided.
Measurements of the total cross section have been performed at the ISR with c.m. energies between 23.5 GeV and 62.5 GeV. Two independent experimental methods have been applied, a measurement of total interaction rate and of small angle elastic scattering. Both experiments give consistent results showing that the total cross section increases by (11.8±1.5) % over the ISR energy range. This experiment has also measured the slope of the forward diffraction peak in elastic scattering at small momentum transfer. The elastic cross section shows the same relative rise as the total cross section, and the ratio λ of elastic to total cross section approaches a constant value of λ =0.178±0.003.
.
TOTAL CROSS SECTION FROM (INTERACTION RATE)/(LUMINOSITY). SYSTEMATIC ERROR <0.8 PCT.
TOTAL CROSS SECTION FROM APPLYING THE OPTICAL THEOREM TO SMALL ANGLE ELASTIC SCATTERING EXTRAPOLATED TO T=0.
Measurements of the polarization parameter and angular distributions in pp elastic scattering at incident energies of 100 and 300 GeV are reported. The data cover the kinematic range 0.18<−t<2.0 GeV2. They are found to be consistent with absorption-model predictions.
No description provided.
No description provided.
THE ANGULAR DISTRIBUTION IN THE PUBLISHED FIGURE IS NORMALIZED TO D(SIG)/DT AT -T = 0.55 GEV**2 FROM AKERLOF ET AL., PR D14, 2864 (1976).
The parameters D, R, R' and P for pp elastic scattering have been measured in the centre-of-mass angular range 13 degrees to 58 degrees with an accuracy of about +or-0.02 at 209, 324, 379, 425 and 515 MeV. These results are incorporated with earlier data into a phase-shift analysis. Phase-shifts are generally in agreement with the theoretical predictions of the Paris group, although the F-wave spin-orbit combination is rather stronger than predicted. The fitted value for the pi 0pp coupling constant in g02=14.06+or-0.65.
No description provided.
No description provided.
No description provided.
Data on coherent elastic and inelastic deuteron-proton scattering are presented. The measurements were made at the CERN ISR with a single arm spectrometer, at s = 2800 GeV 2 and momentum transfer squared (− t ) in the range 0.15 to 0.42 GeV 2 . The data are compared with elastic and inelastic diffractive proton-proton scattering data taken with the same apparatus at the same s and t values. The t dependence of the elastic dp → dp differential cross section is compared to simple predictions based on Glauber theory. The differential cross sections for pp → pX and dp → dX are also compared for M X 2 → 280 GeV 2 , where M X denotes the mass of system X recoiling against the measured proton and deuteron.
No description provided.
INVARIANT AND SINGLE DIFFRACTIVE INCLUSIVE DIFFERENTIAL CROSS SECTIONS.