Differential and channel cross sections and hyperon polarizations are presented for the reactions K L o p → K S o p, π + Λ o , and π + Σ o at an average beam momentum of 550 MeV/ c . These data provide constraints on KN and K N amplitudes obtained from charged kaon reactions and reject one of the S = +1, I = 0 and one of the S = -1, I = 1 phase shift solutions.
No description provided.
Data are presented from a high statistics bubble chamber experiment to study K − p interactions in the c.m. energy range 1775 to 1957 MeV. For the reactions K − p → K − p, K − p → K 0 n , K − p → Λπ 0 and K − p → Σ ± π ∓ channel cross sections, differential cross sections and, where appropriate, polarisation distributions have been obtained. The channel cross sections for K − p → Σ 0 π 0 are presented. In general the results are in agreement with those previously published although a significant discrepancy has been found in the Σ ± π ∓ cross sections at the lower energies. New measurements of the Σ ± lifetimes have also been obtained ( τ Σ − = 1.49 ± 0.03 × 10 −10 sec, τ Σ + = 0.807 ± 0.013 × 10 −10 sec).
No description provided.
THE FORWARD DIFFERENTIAL CROSS SECTION IS THE EXTRAPOLATED VALUE OF THE LEGENDRE POLYNOMIAL FIT.
No description provided.
K − p reactions have been studied at 13 different incident momenta between 1138 and 1434 MeV/ c . This interval corresponds to a mass of the K − p system varying from 1858 to 1993 MeV. About 300 000 photographs were taken in the 81 cm Saclay hydrogen bubble chamber exposed to a separated K − beam at the CERN proton-synchrotron. A total of about 44 000 events were analyzed, from which partial and differential cross sections were determined. Polarizations were obtained for the two-body reactions where the decay of the Λ or Σ hyperon allowed their measurement. Data for the two-body channels are presented here as well as for the main quasi-two-body reactions.
PARTIAL CROSS SECTIONS. DATA AT 1.305 TO 1.434 GEV/C FOR FINAL STATES K- P, K- P PI0 AND K- N PI+ COME FROM THE HAIFA GROUP, S. DADO ET AL.
No description provided.
No description provided.
Measurements of the differential cross sections for π−d elastic scattering in the backward angular region are presented. These measurements were made at thirteen incident-pion momenta ranging from 496 to 1050 MeV/c, over the center-of-mass angular range 148° to 177°. The experiment was performed at the LBL Bevatron. Experimental apparatus consisted of a liquid deuterium target and a double-arm spectrometer which included scintillation-counter hodoscopes. Center-of-mass differential cross sections were found to be generally smooth over the angular range covered and can be fitted with low-order polynomials. The extrapolated differential cross sections at 180° scattering angle were found to decrease rapidly with increasing momentum, with a prominent peak near 700 MeV/c and a shoulder near 900 MeV/c. These data are discussed in terms of existing models employing "d*" structures, and are compared with other similar measurements.
.
.
.
Results on the channels K − p → Λ 0 η 0 , Λ 0 π 0 , Σ 0 π 0 , Λ 0 π 0 π 0 and Σ 0 π 0 π 0 are obtained in a K − p formation experiment using 1 million photographs taken in a heavy liquid bubble chamber filled with a CF 3 BrC 3 H 8 mixture. The results are compared with hydrogen bubble chamber (HBC) experiments and with experiments having full or partial gamma-ray detection. Our Λ 0 π 0 and Λ 0 + neutral cross section agree with HBC results. Our Σ 0 π 0 cross section does not exhibit a bump at 1670 MeV as previously seen in HBC experiments. Our Λ 0 π 0 π 0 data are dominated by a Σ (1385) π 0 production. Our Σ 0 π 0 π 0 data is consistent with the presence of some Σ (1405) π 0 production.
No description provided.
No description provided.
No description provided.
An accurate measurement of d σ d Ω (π − p → η n ) at 1531 MeV total energy (expanded) up to l = 4 Legendre polynomials) requires reconsideration of previous angular distribution fits which were expanded only up to l = 2 and of subsequent partial-wave analysis. An energy-dependent partial-wave analysis has been performed here for p η ∗ up to 450 MeV/ c . In addition to the well-known S 11 (1520 MeV) resonance, either the P 11 (1532 MeV) or the P 13 (1530 MeV) resonance is found to be strongly coupled to the η-n channel. In both cases, the P 11 (1729 MeV) resonance is needed as is the weakly coupled D 13 (1525 MeV) resonance. The decay states in the ηn channelare compared to the SU(3) and SU(6) W predictions.
No description provided.
No description provided.
Measurements are reported of the differential cross section for the reaction π−p→π−p,π0n,andηn at three angles close to 180° and for incident momenta in the range 0.6 to 1.0 GeV/c. The three measurements were made simultaneously at 1% intervals of beam momentum. The data on elastic scattering resolve a discrepancy between two earlier experiments. They also show clearly the effect of the opening of the ηn channel. The charge-exchange data show that I-spin bounds are not violated in the kinematic region covered. The ηn data can be adequately described with known s-channel resonances. No evidence for narrow N*'s is seen in any channel.
No description provided.
No description provided.
We report on partial results of the analysis of a p̄p backward elastic scattering experiment, between 175 and 750 MeV/ c . Various evidences are given of the resonant nature of a backward peak at the S-meson mass. Analysis leads to J PC =4 ++ , firmly connected to other experimental data with I G =1 − . All results agree for an assignment to the A 2 trajectory.
No description provided.
No description provided.
No description provided.
The backward angular distributions obtained in an experiment at the Zero Gradient Synchrotron of Argonne National Laboratory were used to systematically study the energy dependence of the 180° differential cross section for π+p elastic scattering in the center-of-mass energy region from 2159 to 3487 MeV. At each of 38 incident pion momenta between 2.0 and 6.0 GeV/c, a focusing spectrometer and scintillation counter hodoscopes were used to obtain differential cross sections for typically five pion scattering angles from 141° to 173° in the laboratory. Values for dσdΩ at 180° were then obtained by extrapolation. A resonance model and an interference model were used to perform fits to the energy dependence of dσdΩ (180°). Both models led to good fits to our data and yielded values for the masses, widths, parities, and the product of spin and elasticity for the Δ(2200), Δ(2420), Δ(2850), and Δ(3230) resonances. Our data confirm the existence of the Δ(3230) and require the negative-parity Δ(2200).
No description provided.
No description provided.
No description provided.
Targets made of C, Al, Cu, Pb, and U were exposed to π+, π−, and proton beams of 9.92 and 19.85 GeV/c (for p-Pb only) at the Brookhaven AGS. A magnetic spectrometer with spark chambers was used to detect elastically scattered particles in the Coulomb-nuclear interference region (5-35 mrad). Differential cross sections are presented and compared with an optical model, taking full account of multiple scattering in the target.
X ERROR TARG.THICKN. = 0.10 RAD.LENGTH. X ERROR D(THETA) = 0.3000 MRAD.
X ERROR TARG.THICKN. = 0.10 RAD.LENGTH. X ERROR D(THETA) = 0.3000 MRAD.
X ERROR TARG.THICKN. = 0.10 RAD.LENGTH. X ERROR D(THETA) = 0.3000 MRAD.