We have measured the polarization of J/Psi and Psi(2S) mesons produced in p\bar{p} collisions at \sqrt{s} = 1.8 TeV, using data collected at CDF during 1992-95. The polarization of promptly produced J/Psi [Psi(2S)] mesons is isolated from those produced in B-hadron decay, and measured over the kinematic range 4[5.5] < P_T < 20 GeV/c and |y| < 0.6. For P_T \gessim 12 GeV/c we do not observe significant polarization in the prompt component.
Polarization for prompt J/PSIs (Q=PROMPT) and for J/PSI from B meson decays(NAME=BEAUTY).
Polarization for prompt PSI(2S) (NAME=PROMPT) and for PSI(2S) from B meson decays (NAME=B).
The$\tau$polarisation has been studied with the${\rm e^+e^-}\to \tau^+\tau^-$data collected by the DELPHI detector at LEP in
The errors are statistical and systematic combined in quadrature.
No description provided.
Inclusive measurements of the pion differential cross sections and analyzing powers have been carried out for the pp→pnπ+ reaction at 420 and 500 MeV using the SASP spectrometer at TRIUMF. Pion energies from the onset of the continuum down to about 25 MeV were covered in the angular range from 23° to 100° (lab). Total cross sections of 0.750±0.075 mb and 2.77±0.28 mb were determined for the pp→pnπ+ reaction at 420 and 500 MeV, respectively. The experimental results are presented and discussed within the framework of a partial wave analysis. Theoretical predictions from a covariant one-boson-exchange model that includes final state interactions, provide a good description of the data. The pion spectra, in the region corresponding to low relative np energies, are also well described by a final state interaction model that uses the pp→dπ+ cross sections as input. Details of the determination of the background corrections and detector efficiencies will be discussed.
No description provided.
Only statistical errors are given.
Only statistical errors are given.
Analyzing powers for p→n→pp(S01)π− were measured at beam energies 353, 404, and 440 MeV by extracting the quasifree process from p→d→pppπ−. Partial wave amplitude analysis yields a significant contribution from the isospin 1, s-wave channel. This contribution is relatively much larger than that expected from theoretical models which have been successful in describing the isospin 1, s-wave channel behavior of pp→ppπ0 cross sections at threshold.
Axis error includes +- 0.0/0.0 contribution (?////).
Axis error includes +- 0.0/0.0 contribution (?////).
Axis error includes +- 0.0/0.0 contribution (?////).
High quality analyzing powers for the π−p→→π0n reaction have been obtained with a polarized proton target over a broad angular range at incident kinetic energies of 98.1, 138.8, 165.9, and 214.4 MeV. This experiment nearly doubled the existing πN single-charge-exchange database for energies ranging from 10 to 230 MeV, with 36 new analyzing powers. The Neutral Meson Spectrometer was used to detect the outgoing neutral pions. The data are well described by recent phase-shift analyses. When combined with high-precision and accurate cross section data at the same energies, the data can provide a good test of the degree of isospin breaking in the region of the Δ(1232) resonance. They will also be helpful for constraining the evaluation of the pion-nucleon σ term from the scattering amplitudes.
First error is total uncertainty.
First error is total uncertainty.
First error is total uncertainty.
In the Standard Model, b quarks produced in e^+e^- annihilation at the Z^0 peak have a large average longitudinal polarization of -0.94. Some fraction of this polarization is expected to be transferred to b-flavored baryons during hadronization. The average longitudinal polarization of weakly decaying b baryons, <P_L^{\Lambda_b}>, is measured in approximately 4.3 million hadronic Z^0 decays collected with the OPAL detector between 1990 and 1995 at LEP. Those b baryons that decay semileptonically and produce a \Lambda baryon are identified through the correlation of the baryon number of the \Lambda and the electric charge of the lepton. In this semileptonic decay, the ratio of the neutrino energy to the lepton energy is a sensitive polarization observable. The neutrino energy is estimated using missing energy measurements. From a fit to the distribution of this ratio, the value <P_L^{\Lambda_b}> = -0.56^{+0.20}_{-0.13} +/- 0.09 is obtained, where the first error is statistical and the second systematic.
Charge conjugate states are included.
A nonzero difference of the analyzing powers due to charge symmetry breaking has been measured with high precision in np elastic scattering at a neutron beam energy of 347 MeV. The neutron beam and proton target were alternately polarized for the measurements of An and Ap. A mirror-symmetric detection system was used to cancel geometry-related systematic errors. From fits of the measured asymmetry angular distributions over the range of 53.4°<~θcm<~86.9°, the difference in the zero-crossing angles of the analyzing powers was determined to be 0.438°±0.054°(stat.)±0.051°(syst.) in the center-of-mass system. Using the experimentally determined slope of the analyzing power dA/dθ=(−1.35±0.05)×10−2 deg−1 (c.m.), this is equivalent to ΔA≡An−Ap=[59±7(stat.)±7(syst.)±2(syst.)]×10−4. The shape of ΔA(θ) in the vicinity of the zero-crossing angle has also been extracted. Predictions of nucleon-nucleon interaction models based on meson exchange agree well with the results.
(C=N) or (C=P) stands for polarized beam or target.
We present experimental results on measuring a single spin asymmetry in η-meson production in the interaction of transversely polarized protons and antiprotons at p lab = 200 GeV / c with a proton target in the region 0.2 < x F < 0.7 for p ↑ p , 0.3 < x F < 0.7 for p ̄ ↑p and 0.7 < p T < 2.0 GeV / c . A comparison of single spin asymmetries in π- and η-meson production is made.
The true asymmetry for ETA production in proton-proton collisions.
The true asymmetry for ETA production in antiproton-proton collisions.
Measurements of the pp spin correlation coefficients Axx, Ayy, and Axz and analyzing power Ay for pp elastic scattering at 197.8 MeV over the angular range 4.5°–17.5° have been carried out. The statistical accuracy is approximately ±0.01 for Amn and ±0.004 for Ay, while the corresponding scale factor uncertainties are 2.4% and 1.3%, respectively. The experiment makes use of a polarized hydrogen gas target internal to a proton storage ring (IUCF Cooler) and a circulating beam of polarized protons. The target polarization (Q=0.79) is switched in sign and in direction (x,y,z) every 2 s by reversing a weak guide field (about 0.3 mT). The forward-scattered protons are detected in two sets of wire chambers and a scintillator, while recoil protons are detected in coincidence with the forward protons by silicon strip detectors placed 5 cm from the proton beam. The background rate from scattering by the walls of the target cell is (0.2±0.2)% of the good event rate. Analysis methods and comparisons with pp potential models and pp partial wave analyses are described.
No description provided.
The reaction $\gamma p \rightarrow \omega p$ $(\omega \rightarrow \pi~+\pi~-\pi~0$ and $\pi~0\rightarrow\gamma\gamma)$ has been studied in $ep$ interactions using the \mbox{ZEUS} detector at photon-proton centre-of-mass energies between $70$ and $90\uni{GeV}$ and $|t| < 0.6\uni{GeV}~2$, where $t$ is the squared four momentum transferred at the proton vertex. The elastic \ome photoproduction cross section has been measured to be $\sigma_{\gamma p\rightarrow \omega p} = 1.21\pm 0.12\pm 0.23 \mu\mbox{b}$. The differential cross section $d\sigma_{\gamma p\rightarrow \omega p} /d|t|$ has an exponential shape $\mbox{e}~{-b |t|}$ with a slope $b = 10.0\pm 1.2\pm 1.3\uni{GeV}~{-2}$. The angular distributions of the decay pions are consistent with {\it s}-channel helicity conservation. When compared to low energy data, the features of $\omega$ photoproduction as measured at HERA energies are in agreement with those of a soft diffractive process. Previous measurements of the $\rho~0$ and $\phi$ photoproduction cross sections at HERA show a similar behaviour.
Total Elastic Cross Section.
No description provided.
SLOPE OF DSIG/DT distribution.