Analyzing powers for πp elastic scattering at bombarding energies below the Δ(1232) resonance were measured at TRIUMF using the CHAOS spectrometer and a polarized spin target. This work presents π− data at six incident energies of 57, 67, 87, 98, 117, and 139 MeV, and a single π+ data set at 139 MeV. The higher energy measurements cover an angular range of 72°<~θc.m.<~180° while the lower energies were limited to 101°<~θc.m.<~180°. There is a high degree of consistency between this work and the predictions of the VPI/GWU group’s SM95 partial wave analysis.
Analysing power measurements for a 139 GeV PI+ beam (standard track).
Analysing power measurements for a 139 GeV PI- beam (standard track).
Analysing power measurements for a 117 GeV PI- beam (standard track).
Analyzing powers for πp elastic scattering were measured using the CHAOS spectrometer at energies spanning the Δ(1232) resonance. This work presents π+ data at the pion kinetic energies 117, 130, 139, 155, 169, 180, 193, 218, 241, and 267 MeV and π− data at 87, 117, 193, and 241 MeV, covering an angular range of 50°<~θc.m.<~180° at the higher energies and 90°<~θc.m.<~180° at the lower energies. Unique features of the spectrometer acceptance were employed to reduce systematic errors. Single-energy phase shift analyses indicate the resulting S11 and S31 phases favor the results of the SM95 phase shift analysis over that of the older KH80 analysis.
Measurement of the PI+ analysing power at 117 MeV.. The data were collected in the conventional mode and may be independently floated within the systematic error.
Measurement of the PI+ analysing power at 139 MeV.. The data were collected in the conventional mode and may be independently floated within the systematic error.
Measurement of the PI- analysing power at 87 MeV.. The data were collected in the conventional mode and may be independently floated within the systematic error.
Angular distributions of the analyzing powers for π+p→ and π−p→ elastic scattering have been measured in a single-scattering experiment employing a polarized proton target. Measurements were obtained for pion energies of 98, 139, 166, 215, and 263 MeV. The addition of these data to the existing πp database significantly reduces the uncertainties in all S and P phase shifts for πp reactions over the delta resonance.
Measured values of the analyzing power for PI+ P elastic scattering at incident kinetic energy 98 MeV.
Measured values of the analyzing power for PI+ P elastic scattering at incident kinetic energy 139 MeV.
Measured values of the analyzing power for PI+ P elastic scattering at incident kinetic energy 166 MeV.
The Fermilab hybrid 30-in. bubble-chamber spectrometer was exposed to a tagged 147-GeV/c positive beam containing π+, K+, and p. A sample of 3003 K+p, 19410 pp, and 20745 π+p interactions is used to derive σn, 〈n〉, f2cc, and 〈nc〉D for each beam particle. These values are compared to values obtained at other, mostly lower, beam momenta. The overall dependence of 〈n〉 on Ea, the available center-of-mass energy, for these three reactions as well as π−p and pp interactions has been determined.
No description provided.
No description provided.
No description provided.
We have measured the polarization for elastic scattering in the reaction π−p→π−p at 2.93 and 3.25 GeV/c using a polarized proton target and multiwire proportional chambers (MWPC's) with emphasis on large-angle scattering. Events were selected by fast scintillation-counter logic. Beam trajectories were measured with four MWPC's and the scattered-particle angles were measured with one or two MWPC's; elastic events were determined by coplanarity and angle-angle correlations. The polarization is in agreement with previous measurements below |t|=2.0 (GeV/c)2, and crosses from negative to positive near the secondary dip in the differential cross section dσdt. In the backward region, an energy dependence appears with the polarization being large and negative at 2.93 GeV/c and consistent with zero at 3.25 GeV/c.
No description provided.
No description provided.
A comprehensive measurement of the differential cross section for π±p and pp elastic scattering has been made at large center-of-mass angles. π−p and pp scattering were measured with incident laboratory momenta ranging from 2 to 9.5 GeV/c. π+p scattering was measured with momenta from 2 to 6.3 GeV/c. Scattering angles were in the range −0.3≲cosθc.m.≲0.4. The results of the experiment are compared to constituent models and statistical models.
No description provided.
We have measured π±p and pp elastic differential cross sections in the range |cosθc.m.|<0.35 for incident momenta from 2 to 9.7 GeV/c for π−p and pp and from 2 to 6.3 GeV/c for π+p. We find that the fixed-c.m.-angle πp differential cross sections cannot be described as simple functions of s. The data are compared to the energy and angular dependence predicted by the constituent model of Gunion, Brodsky, and Blankenbecler.
No description provided.
No description provided.
No description provided.
Large-angle π±p elastic-scattering cross sections, measured between 2 and 9 GeV/c in fine intervals of incident momentum and scattering angle, are used to search for cross-section fluctuations occurring for small changes in the center-of-mass energy as suggested by Ericson and Mayer-Kuckuck and by Frautschi. Significant fluctuations are observed.
No description provided.
No description provided.
No description provided.
As part of a program of measurements of the πp system we have measured the backward differential cross section for π+p elastic scattering at 16 momenta from 1.25 to 2.0 GeV/c inclusive. The angular region covered is -0.46 to -0.97 in cosθc.m.. The high resolution in u of 0.03 to 0.04 (GeV/c)2, together with good statistics, enables a detailed examination of the momentum and angular dependence of structure in this channel. The data are compared with distributions from other experiments and with the most recent phaseshift fit.
No description provided.
No description provided.
No description provided.
We have measured the backward differential cross section in π−p elastic scattering at 31 momenta from 1.28 to 3.0 GeV/c. These measurements covered the center-of-mass angular range of 125°-178° corresponding to −0.570≲cosθc.m.≲−0.999. Considerable structure in the angular distribution is found. We compare these data with data from other experimets and to predictions made by the latest phase-shift solution. We find, in general, good agreement with other data in the few regions of overlap. The fits from the phase-shift solution do not accurately reproduce these data at low momenta below 1.9 GeV/c but give excellent agreement above this momentum.
No description provided.
No description provided.
No description provided.