Version 2
Measurement of distributions sensitive to the underlying event in inclusive Z-boson production in $pp$ collisions at $\sqrt{s}=7$ TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abdallah, Jalal ; et al.
Eur.Phys.J.C 74 (2014) 3195, 2014.
Inspire Record 1315949 DOI 10.17182/hepdata.70547

A measurement of charged-particle distributions sensitive to the properties of the underlying event is presented for an inclusive sample of events containing a Z-boson , decaying to an electron or muon pair. The measurement is based on data collected using the ATLAS detector at the LHC in proton-proton collisions at a centre-of-mass energy of 7 TeV with an integrated luminosity of $4.6$ fb$^{-1}$. Distributions of the charged particle multiplicity and of the charged particle transverse momentum are measured in regions of azimuthal angle defined with respect to the Z-boson direction. The measured distributions are compared to similar distributions measured in jet events, and to the predictions of various Monte Carlo generators implementing different underlying event models.

132 data tables

Towards scalar pT sum density vs Z-boson pT, Born leptons : Statistical and systematic errors are added in quadrature.

Transverse scalar pT sum density vs Z-boson pT, Born leptons : Statistical and systematic errors are added in quadrature.

Away scalar pT sum density vs Z-boson pT, Born leptons : Statistical and systematic errors are added in quadrature.

More…

Search for contact interactions and large extra dimensions in the dilepton channel using proton-proton collisions at $\sqrt{s}$ = 8 TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abdallah, Jalal ; et al.
Eur.Phys.J.C 74 (2014) 3134, 2014.
Inspire Record 1305430 DOI 10.17182/hepdata.65760

A search is conducted for non-resonant new phenomena in dielectron and dimuon final states, originating from either contact interactions or large extra spatial dimensions. The LHC 2012 proton-proton collision dataset recorded by the ATLAS detector is used, corresponding to 20 fb$^{-1}$ at $\sqrt{s}$ = 8 TeV. The dilepton invariant mass spectrum is a discriminating variable in both searches, with the contact interaction search additionally utilizing the dilepton forward-backward asymmetry. No significant deviations from the Standard Model expectation are observed. Lower limits are set on the $\ell\ell q q$ contact interaction scale $\Lambda$ between 15.4 TeV and 26.3 TeV, at the 95% credibility level. For large extra spatial dimensions, lower limits are set on the string scale $M_{S}$ between 3.2 TeV to 5.0 TeV.

10 data tables

Reconstructed dielectron mass distributions for data and the SM background estimate.

Reconstructed dimuon mass distributions for data and the SM background estimate.

Reconstructed $\cos\theta^*$ distributions for data and the SM background estimate in the dielectron channel.

More…

Spin density matrix elements in exclusive $\omega$ electroproduction on $^1$H and $^2$H targets at 27.5 GeV beam energy

The HERMES collaboration Airapetian, A. ; Akopov, N. ; Akopov, Z. ; et al.
Eur.Phys.J.C 74 (2014) 3110, 2014.
Inspire Record 1305286 DOI 10.17182/hepdata.70751

Exclusive electroproduction of $\omega$ mesons on unpolarized hydrogen and deuterium targets is studied in the kinematic region of Q$^2$>1.0 GeV$^2$, 3.0 GeV < W < 6.3 GeV, and -t'< 0.2 GeV$^2$. Results on the angular distribution of the $\omega$ meson, including its decay products, are presented. The data were accumulated with the HERMES forward spectrometer during the 1996-2007 running period using the 27.6 GeV longitudinally polarized electron or positron beam of HERA. The determination of the virtual-photon longitudinal-to-transverse cross-section ratio reveals that a considerable part of the cross section arises from transversely polarized photons. Spin density matrix elements are presented in projections of Q$^2$ or -t'. Violation of s-channel helicity conservation is observed for some of these elements. A sizable contribution from unnatural-parity-exchange amplitudes is found and the phase shift between those amplitudes that describe transverse $\omega$ production by longitudinal and transverse virtual photons, $\gamma^{*}_{L} \to \omega_{T}$ and $\gamma^{*}_{T} \to \omega_{T}$, is determined for the first time. A hierarchy of helicity amplitudes is established, which mainly means that the unnatural-parity-exchange amplitude describing the $\gamma^*_T \to \omega_T$ transition dominates over the two natural-parity-exchange amplitudes describing the $\gamma^*_L \to \omega_L$ and $\gamma^*_T \to \omega_T$ transitions, with the latter two being of similar magnitude. Good agreement is found between the HERMES proton data and results of a pQCD-inspired phenomenological model that includes pion-pole contributions, which are of unnatural parity.

9 data tables

The 23 unpolarized and polarized $\omega$ SDMEs from the proton and deuteron data.

The 23 unpolarized and polarized $\omega$ SDMEs for the proton data in $Q^2$ intervals: $1.00 - 1.57 - 2.55 - 10.00$ GeV$^2$.

The 23 unpolarized and polarized $\omega$ SDMEs for the proton data in $-t'$ intervals: $0.000 - 0.044 - 0.105 - 0.200$ GeV$^2$.

More…

Search for supersymmetry in events with large missing transverse momentum, jets, and at least one tau lepton in 20 fb$^{-1}$ of $\sqrt{s}$=8 TeV proton-proton collision data with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abdallah, Jalal ; et al.
JHEP 09 (2014) 103, 2014.
Inspire Record 1304458 DOI 10.17182/hepdata.65525

A search for supersymmetry (SUSY) in events with large missing transverse momentum, jets, at least one hadronically decaying tau lepton and zero or one additional light leptons (electron/muon), has been performed using 20.3 fb$^{-1}$ of proton-proton collision data at $\sqrt{s} = 8$ TeV recorded with the ATLAS detector at the Large Hadron Collider. No excess above the Standard Model background expectation is observed in the various signal regions and 95% confidence level upper limits on the visible cross section for new phenomena are set. The results of the analysis are interpreted in several SUSY scenarios, significantly extending previous limits obtained in the same final states. In the framework of minimal gauge-mediated SUSY breaking models, values of the SUSY breaking scale $\Lambda$ below 63 TeV are excluded, independently of tan$\beta$. Exclusion limits are also derived for an mSUGRA/CMSSM model, in both the R-parity-conserving and R-parity-violating case. A further interpretation is presented in a framework of natural gauge mediation, in which the gluino is assumed to be the only light coloured sparticle and gluino masses below 1090 GeV are excluded.

113 data tables

Distribution of MTtau after all analysis requirements but the requirement on MTtau and the final requirement on HT for the 1tau ''Loose'' SR. The SM prediction includes the data-driven corrections discussed in the paper. MC events are normalized to data in the CRs corresponding to MTtau below 130 GeV. Also shown is the expected signal from typical mSUGRA, GMSB and bRPV samples. The last bin in the expected background distribution is an overflow bin.

Distribution of HT after the MTtau requirement for the 1-tau ''Loose'' SR. The SM prediction includes the data-driven corrections discussed in the paper. MC events are normalized to data in the CRs corresponding to MTtau below 130 GeV. Also shown is the expected signal from typical mSUGRA, GMSB and bRPV samples. The last bin in the expected background distribution is an overflow bin.

Distribution of MTtau after all analysis requirements but the requirement on MTtau and the final requirement on HT for the 1tau 'Tight'' SR. The SM prediction includes the data-driven corrections discussed in the paper. MC events are normalized to data in the CRs corresponding to MTtau below 130 GeV. Also shown is the expected signal from typical mSUGRA, GMSB and bRPV samples. The last bin in the expected background distribution is an overflow bin.

More…

Measurement of the $t\bar{t}$ production cross-section using $e\mu$ events with $b$-tagged jets in $pp$ collisions at $\sqrt{s}=7$ and 8 TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abdallah, Jalal ; et al.
Eur.Phys.J.C 74 (2014) 3109, 2014.
Inspire Record 1301856 DOI 10.17182/hepdata.65210

The inclusive top quark pair ($t\bar{t}$) production cross-section $\sigma_{t\bar{t}}$ has been measured in $pp$ collisions at $\sqrt{s}=7$ TeV and $\sqrt{s}=8$ TeV with the ATLAS experiment at the LHC, using $t\bar{t}$ events with an opposite-charge $e\mu$ pair in the final state. The measurement was performed with the 2011 7 TeV dataset corresponding to an integrated luminosity of 4.6 fb$^{-1}$ and the 2012 8 TeV dataset of 20.3 fb$^{-1}$. The cross-section was measured to be: $\sigma_{t\bar{t}}=182.9\pm 3.1\pm 4.2\pm 3.6 \pm 3.3$ pb ($\sqrt{s}=7$ TeV) and $\sigma_{t\bar{t}}=242.9\pm 1.7\pm 5.5\pm 5.1\pm 4.2$ pb ($\sqrt{s}=8$ TeV, updated as described in the Addendum), where the four uncertainties arise from data statistics, experimental and theoretical systematic effects, the knowledge of the integrated luminosity and of the LHC beam energy. The results are consistent with recent theoretical QCD calculations at next-to-next-to-leading order. Fiducial measurements corresponding to the experimental acceptance of the leptons are also reported, together with the ratio of cross-sections measured at the two centre-of-mass energies. The inclusive cross-section results were used to determine the top quark pole mass via the dependence of the theoretically-predicted cross-section on $m_t^{\rm pole}$, giving a result of $m_t^{\rm pole}=172.9^{+2.5}_{-2.6}$ GeV. By looking for an excess of $t\bar{t}$ production with respect to the QCD prediction, the results were also used to place limits on the pair-production of supersymmetric top squarks $\tilde{t}_1$ with masses close to the top quark mass decaying via $\tilde{t}_1\rightarrow t\tilde{\chi}^0_1$ to predominantly right-handed top quarks and a light neutralino $\tilde{\chi}_0^1$, the lightest supersymmetric particle. Top squarks with masses between the top quark mass and 177 GeV are excluded at the 95% confidence level.

3 data tables

95% CL exclusion limit on signal strength.

95% CL exclusion limit on signal cross section for the 7 TeV dataset.

95% CL exclusion limit on signal cross section for the 8 TeV dataset.


Measurement of the $Z/\gamma^*$ boson transverse momentum distribution in $pp$ collisions at $\sqrt{s}$ = 7 TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abdallah, Jalal ; et al.
JHEP 09 (2014) 145, 2014.
Inspire Record 1300647 DOI 10.17182/hepdata.64354

This paper describes a measurement of the $Z/\gamma^*$ boson transverse momentum spectrum using ATLAS proton-proton collision data at a centre-of-mass energy of $\sqrt{s}$ = 7 TeV at the LHC. The measurement is performed in the $Z/\gamma^* \rightarrow e^+e^-$ and $Z/\gamma^* \rightarrow \mu^+\mu^-$ channels, using data corresponding to an integrated luminosity of 4.7 fb$^{-1}$. Normalized differential cross sections as a function of the $Z/\gamma^*$ boson transverse momentum are measured for transverse momenta up to 800 GeV. The measurement is performed inclusively for $Z/\gamma^*$ rapidities up to 2.4, as well as in three rapidity bins. The channel results are combined, compared to perturbative and resummed QCD calculations and used to constrain the parton shower parameters of Monte Carlo generators.

3 data tables

The measured normalized cross section (1/SIG(FID))*D(SIG(FID))/DPT(Z) at the Born level in bins of PT(Z) for the Z/GAMMA* --> E+ E- and Z/GAMMA* --> MU+ MU- channels, and correction factors to the bare- and dressed-level cross sections. The relative statistical and total uncorrelated systematic uncertainties are given for each channel as well as the correlated systematic uncertainties.

The measured normalized combined (electron and muon channels) cross section (1/SIG(FID))*D(SIG(FID))/DPT(Z) inclusive in rapidity. The cross sections at Born and dressed levels are given as well as the relative statistical and total uncorrelated systematic uncertainties as well as the correlated systematic uncertainties.

The measured normalized combined (electron and muon channels) cross section (1/SIG(FID))*D(SIG(FID))/DPT(Z) for 0 <= ABS(YRAP(Z)) < 1, 1 <= ABS(YRAP(Z)) < 2 and 2 <= ABS(YRAP(Z)) < 2.4. The cross sections at Born and dressed levels are given as well as the relative statistical and systematic uncertainties for uncorrelated and correlated sources.


Search for squarks and gluinos with the ATLAS detector in final states with jets and missing transverse momentum using $\sqrt{s}=8$ TeV proton--proton collision data

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abdallah, Jalal ; et al.
JHEP 09 (2014) 176, 2014.
Inspire Record 1298722 DOI 10.17182/hepdata.64973

A search for squarks and gluinos in final states containing high-$p_{\rm T}$ jets, missing transverse momentum and no electrons or muons is presented. The data were recorded in 2012 by the ATLAS experiment in $\sqrt{s}=8$ TeV proton-proton collisions at the Large Hadron Collider, with a total integrated luminosity of $20.3 \mathrm{fb}^{-1}$. No significant excess above the Standard Model expectation is observed. Results are interpreted in a variety of simplified and specific supersymmetry-breaking models assuming that R-parity is conserved and that the lightest neutralino is the lightest supersymmetric particle. An exclusion limit at the 95% confidence level on the mass of the gluino is set at 1330 GeV for a simplified model incorporating only a gluino and the lightest neutralino. For a simplified model involving the strong production of first- and second-generation squarks, squark masses below 850 GeV (440 GeV) are excluded for a massless lightest neutralino, assuming mass degenerate (single light-flavour) squarks. In mSUGRA/CMSSM models with $\tan\beta=30$, $A_0=-2m_0$ and $\mu> 0$, squarks and gluinos of equal mass are excluded for masses below 1700 GeV. Additional limits are set for non-universal Higgs mass models with gaugino mediation and for simplified models involving the pair production of gluinos, each decaying to a top squark and a top quark, with the top squark decaying to a charm quark and a neutralino. These limits extend the region of supersymmetric parameter space excluded by previous searches with the ATLAS detector.

195 data tables

The effective mass distribution in 2-jet loose signal region.

The effective mass distribution in 2-jet medium and tight signal regions.

The effective mass distribution in 2-jet (W) signal region.

More…

Measurement of the low-mass Drell-Yan differential cross section at sqrt(s)=7 TeV using the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abajyan, Tatevik ; Abbott, Brad ; et al.
JHEP 06 (2014) 112, 2014.
Inspire Record 1288706 DOI 10.17182/hepdata.64183

The differential cross section for the process $Z/\gamma^*\rightarrow ll$ ($l=e,\mu$) as a function of dilepton invariant mass is measured in pp collisions at $\sqrt{s}=$ 7 TeV at the LHC using the ATLAS detector. The measurement is performed in the $e$ and $\mu$ channels for invariant masses between 26 GeV and 66 GeV using an integrated luminosity of 1.6 fb$^{-1}$ collected in 2011 and these measurements are combined. The analysis is extended to invariant masses as low as 12 GeV in the muon channel using 35 pb$^{-1}$ of data collected in 2010. The cross sections are determined within fiducial acceptance regions and corrections to extrapolate the measurements to the full kinematic range are provided. Next-to-next-to-leading-order QCD predictions provide a significantly better description of the results than next-to-leading-order QCD calculations, unless the latter are matched to a parton shower calculation.

13 data tables

The nominal electron-channel differential Born-level fiducial cross section. The statistical and systematic uncertainties are given for each invariant mass bin. The luminosity uncertainty 1.8% is not included.

The systematic uncertainties of the nominal electron-channel cross-section measurement. Some sources of uncertainty have both correlated and uncorrelated components. Correlated uncertainties arise from the uncertainty in the electroweak background contributions delta(e.w.)_cor, from corrections to the Monte Carlo modelling of the Z/gamma* pT spectra, delta(pTrw)_cor, the electron identification efficiency, delta(id)_cor1 and delta(id)_cor2, the reconstruction efficiency, delta(rec)_cor, and from the Geant4 simulation, delta(geant4)_cor. Uncorrelated uncertainties arise from the isolation and trigger efficiency corrections, delta(trig) and delta(iso) respectively, unfolding uncertainties, delta(res)_unf, and the statistical precision of the signal Monte Carlo, delta(MC). The electron identification efficiency uncertainties have several components other than the two largest correlated parts above. These additional components are all combined into a single uncorrelated error source delta(id)_unc. The uncertainty on the normalisation of the multijet background is given by delta(multijet). The luminosity uncertainty 1.8% is not included.

The nominal muon-channel differential Born-level fiducial cross section. The statistical, systematic, and total uncertainties are given for each invariant mass bin. The luminosity uncertainty 1.8% is not included.

More…

Measurement of the 4l Cross Section at the Z Resonance and Determination of the Branching Fraction of Z->4l in pp Collisions at sqrt(s) = 7 and 8 TeV with ATLAS

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abdallah, Jalal ; et al.
Phys.Rev.Lett. 112 (2014) 231806, 2014.
Inspire Record 1286892 DOI 10.17182/hepdata.64611

Measurements of four-lepton (4$\ell$, $\ell=e,\mu$) production cross sections at the $Z$ resonance in $pp$ collisions at the LHC with the ATLAS detector are presented. For dilepton and four-lepton invariant mass region $m_{\ell^+\ell^-} > 5$ GeV and $80 < m_{4\ell} < 100$ GeV, the measured cross sections are $76 \pm 18 \text { (stat) } \pm 4 \text { (syst) } \pm 1.4 \text { (lumi) }$ fb and $107 \pm 9 \text{ (stat) } \pm 4 \text{ (syst) } \pm 3.0 \text { (lumi) }$ fb at $\sqrt s$ = 7 and 8 TeV, respectively. By subtracting the non-resonant 4$\ell$ production contributions and normalizing with $Z\rightarrow \mu^+\mu^-$ events, the branching fraction for the $Z$ boson decay to $4\ell$ is determined to be $\left( 3.20 \pm 0.25\text{ (stat)} \pm 0.13\text{ (syst)} \right) \times 10^{-6}$, consistent with the Standard Model prediction.

7 data tables

The measured individual cross sections in the fiducial region and the combined cross sections for 4-muon and 4-electron final states at a centre-of-collision energy of 7 TeV.

The measured individual cross sections in the fiducial region and the combined cross sections for 2-muon-2-electron final states at a centre-of-collision energy of 7 TeV.

The measured cross section for four-lepton final states at a centre-of-collision energy of 7 TeV.

More…

Search for Quantum Black-Hole Production in High-Invariant-Mass Lepton+Jet Final States Using Proton-Proton Collisions at sqrt(s) = 8 TeV and the ATLAS Detector

The ATLAS collaboration Aad, Georges ; Abajyan, Tatevik ; Abbott, Brad ; et al.
Phys.Rev.Lett. 112 (2014) 091804, 2014.
Inspire Record 1263762 DOI 10.17182/hepdata.62447

This Letter presents a search for quantum black-hole production using 20.3 inverse fb of data collected with the ATLAS detector in pp collisions at the LHC at sqrt(s) = 8 TeV. The quantum black holes are assumed to decay into a lepton (electron or muon) and a jet. In either channel, no event with a lepton-jet invariant mass of 3.5 TeV or more is observed, consistent with the expected background. Limits are set on the product of cross sections and branching fractions for the lepton+jet final states of quantum black holes produced in a search region for invariant masses above 1 TeV. The combined 95% confidence level upper limit on this product for quantum black holes with threshold mass above 3.5 TeV is 0.18 fb. This limit constrains the threshold quantum black-hole mass to be above 5.3 TeV in the model considered.

3 data tables

The combined 95% CL upper limits on the cross section times branching fraction (SIG*BR) for Quantum Black Holes decaying to a lepton and jet, as a function of the threshold mass, Mth.

Numbers of observed events and expected background events for electron+jet channel, along with acceptance (A), experimental efficiency (EPSILON), cumulative efficiency (A*EPSILON), total cross section (SIG*BR) and 95% CL observed upper limit, for various values of the threshold mass, Mth. The leading order cross sections have a statistical precision of the order of 1%. The uncertainties on the predicted background include both statistical and systematic components. Acceptance is calculated using generator-level quantities by imposing selection criteria that apply directly to phase space (electron/jet eta, electron/jet pT, Delta(eta), Delta(phi), <eta>, and Minv). All other selections, which in general correspond to event and object quality criteria, are used to calculate the efficiency on the events included in the acceptance. The cumulative signal efficiency is the product of the acceptance and experimental efficiency.

Numbers of observed events and expected background events for muon+jet channel, along with acceptance (A), experimental efficiency (EPSILON), cumulative efficiency (A*EPSILON), total cross section (SIG*BR) and 95% CL observed upper limit, for various values of the threshold mass, Mth. The leading order cross sections have a statistical precision of the order of 1%. The uncertainties on the predicted background include both statistical and systematic components. Acceptance is calculated using generator-level quantities by imposing selection criteria that apply directly to phase space (muon/jet eta, muon/jet pT, Delta(eta), Delta(phi), <eta>, and Minv). All other selections, which in general correspond to event and object quality criteria, are used to calculate the efficiency on the events included in the acceptance. The cumulative signal efficiency is the product of the acceptance and experimental efficiency.