Date

Measurement of sigma(chi(c2)B(chi(c2) ---> J / psi gamma) / sigma(chi(c1)B(chi(c1) ---> J / psi gamma) in p anti-p collisions at s**(1/2) = 1.96-TeV

The CDF collaboration Abulencia, A. ; Adelman, Jahred A. ; Affolder, T. ; et al.
Phys.Rev.Lett. 98 (2007) 232001, 2007.
Inspire Record 746743 DOI 10.17182/hepdata.57248

We measure the ratio of cross section times branching fraction, $R_p \equiv \sigma_{\chi_{c2}} {\cal B}(\chi_{c2} \to J/\psi \gamma)/ \sigma_{\chi_{c1}} {\cal B}(\chi_{c1} \to J/\psi \gamma)$, in 1.1 fb$^{-1}$ of $p\bar{p}$ collisions at $\sqrt{s} =$ 1.96 TeV. This measurement covers the kinematic range $p_T(J/\psi)>4.0$ GeV/$c$, $|\eta(J/\psi)| < 1.0$, and $p_T(\gamma)>1.0$ GeV/$c$. For events due to prompt processes, we find $R_p = 0.395\pm0.016(stat.)\pm0.015(sys.)$. This result represents a significant improvement in precision over previous measurements of prompt $\chi_{c1,2}$ hadroproduction.

0 data tables match query

Measurement of the Inclusive $t\bar{t}$ Production Cross Section in $p\bar{p}$ Collisions at $\sqrt{s}=1.96$ TeV and Determination of the Top Quark Pole Mass

The D0 collaboration Abazov, Victor Mukhamedovich ; Abbott, Braden Keim ; Acharya, Bannanje Sripath ; et al.
Phys.Rev.D 94 (2016) 092004, 2016.
Inspire Record 1463281 DOI 10.17182/hepdata.78547

The inclusive cross section of top quark-antiquark pairs produced in $p\bar{p}$ collisions at $\sqrt{s}=1.96$ TeV is measured in the lepton$+$jets and dilepton decay channels. The data sample corresponds to 9.7 fb${}^{-1}$ of integrated luminosity recorded with the D0 detector during Run II of the Fermilab Tevatron Collider. Employing multivariate analysis techniques we measure the cross section in the two decay channels and we perform a combined cross section measurement. For a top quark mass of 172.5 GeV, we measure a combined inclusive top quark-antiquark pair production cross section of $\sigma_{t\bar{t}} = 7.26 \pm 0.13\,(\mathrm{stat.})\,^{+0.57}_{-0.50}\,(\mathrm{syst.})$ pb which is consistent with standard model predictions. We also perform a likelihood fit to the measured and predicted top quark mass dependence of the inclusive cross section, which yields a measurement of the pole mass of the top quark. The extracted value is $m_t = 172.8 \pm 1.1\,(\mathrm{theo.})\,^{+3.3}_{-3.1}\,(\mathrm{exp.})$ GeV.

0 data tables match query

Pion-Proton Charge-Exchange Scattering from 500 to 1300 MeV

Chiu, Charles B. ; Eandi, Richard D. ; Helmholz, A.Carl ; et al.
Phys.Rev. 156 (1967) 1415-1426, 1967.
Inspire Record 52278 DOI 10.17182/hepdata.750

Differential cross sections for the reaction π−p→π0n were measured at nine incident-pion kinetic energies in the interval from 500 to 1300 MeV. The negative pion beam from the bevatron was focused on a liquidhydrogen target completely surrounded by a cubic array of six steel-plate spark chambers. The spark chambers were triggered on events with neutral final states. Charge-exchange events were identified from the one-shower and two-shower events in the spark-chamber pictures. By the Monte Carlo technique, the π0 distributions were calculated from the bisector distributions of the two-shower π0 events together with the observed γ-ray distributions of the one-shower π0 events. These π0 distributions were fitted with both Legendre-polynomial expansions and power-series expansions by the method of least squares. The extrapolated forward differential cross sections are in good agreement with the dispersion calculations. The Legendre coefficients for the differential cross sections in isospin state T=12 were obtained by combining our results with available data on π±p elastic scattering. In the light of existing phase-shift solutions, the behavior of these coefficients is discussed. The D5F5 interference term that peaks near 900 MeV is verified to be in isospin state T=12 only. We report here also the total neutral cross sections and the cross sections for the production of neutral multipion final states 2π0n and 3π0n. The 4π solid angle and the calibrated energy response of the spark chambers contribute to the accuracy of the results.

0 data tables match query

First Measurement of the $t\bar{t}$ Differential Cross Section ${d\sigma/d}M_{t\overline{t}}$ in $p\bar{p}$ Collisions at $\sqrt{s}=1.96$ TeV

The CDF collaboration Aaltonen, T. ; Adelman, Jahred A. ; Akimoto, T. ; et al.
Phys.Rev.Lett. 102 (2009) 222003, 2009.
Inspire Record 815615 DOI 10.17182/hepdata.52377

We present a measurement of the $\ttbar$ differential cross section with respect to the $\ttbar$ invariant mass, dSigma/dMttbar, in $\ppbar$ collisions at $\sqrt{s}=1.96$ TeV using an integrated luminosity of $2.7\invfb$ collected by the CDF II experiment. The $\ttbar$ invariant mass spectrum is sensitive to a variety of exotic particles decaying into $\ttbar$ pairs. The result is consistent with the standard model expectation, as modeled by \texttt{PYTHIA} with \texttt{CTEQ5L} parton distribution functions.

0 data tables match query

Measurement of the differential cross sections for isolated direct photon pair production in $p \bar p$ collisions at $\sqrt{s} = 1.96$ TeV

The D0 collaboration Abazov, V.M. ; Abbott, Braden Keim ; Acharya, Bannanje Sripath ; et al.
Phys.Lett.B 725 (2013) 6-14, 2013.
Inspire Record 1215307 DOI 10.17182/hepdata.60556

We present measurements of direct photon pair production cross sections using 8.5 fb$^{-1}$ of data collected with the D0 detector at the Fermilab Tevatron $p \bar p$ collider. The results are presented as differential distributions of the photon pair invariant mass $d\sigma/dM_{\gamma \gamma}$, pair transverse momentum $d \sigma /dp^{\gamma \gamma}_T$, azimuthal angle between the photons $d\sigma/d\Delta \phi_{\gamma \gamma}$, and polar scattering angle in the Collins-Soper frame $d\sigma /d|\cos \theta^*|$. Measurements are performed for isolated photons with transverse momenta $p^{\gamma}_T>18 ~(17)$ GeV for the leading (next-to-leading) photon in $p_T$, pseudorapidities $|\eta^{\gamma}|<0.9$, and a separation in $\eta-\phi$ space $\Delta\mathcal R_{\gamma\gamma} > 0.4$. We present comparisons with the predictions from Monte Carlo event generators {\sc diphox} and {\sc resbos} implementing QCD calculations at next-to-leading order, $2\gamma${\sc nnlo} at next-to-next-to-leading order, and {\sc sherpa} using matrix elements with higher-order real emissions matched to parton shower.

0 data tables match query

Measurement of the double-differential inclusive jet cross section in proton-proton collisions at $\sqrt{s}$ = 5.02 TeV

The CMS collaboration Hayrapetyan, Aram ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
JHEP 01 (2025) 011, 2025.
Inspire Record 2750408 DOI 10.17182/hepdata.146028

The inclusive jet cross section is measured as a function of jet transverse momentum $p_\mathrm{T}$ and rapidity $y$. The measurement is performed using proton-proton collision data at $\sqrt{s}$ = 5.02 TeV, recorded by the CMS experiment at the LHC, corresponding to an integrated luminosity of 27.4 pb$^{-1}$. The jets are reconstructed with the anti-$k_\mathrm{T}$ algorithm using a distance parameter of $R$ = 0.4, within the rapidity interval $\lvert y\rvert$$\lt$ 2, and across the kinematic range 0.06 $\lt$$p_\mathrm{T}$$\lt$ 1 TeV. The jet cross section is unfolded from detector to particle level using the determined jet response and resolution. The results are compared to predictions of perturbative quantum chromodynamics, calculated at both next-to-leading order and next-to-next-to-leading order. The predictions are corrected for nonperturbative effects, and presented for a variety of parton distribution functions and choices of the renormalization / factorization scales and the strong coupling $\alpha_\mathrm{S}$.

0 data tables match query

Search for $CP$ violation in events with top quarks and Z bosons at $\sqrt{s}$ = 13 and 13.6 TeV

The CMS collaboration Hayrapetyan, Aram ; Makarenko, Vladimir ; Tumasyan, Armen ; et al.
CMS-TOP-24-012, 2025.
Inspire Record 2925585 DOI 10.17182/hepdata.157847

A search for the violation of the charge-parity ($CP$) symmetry in the production of top quarks in association with Z bosons is presented, using events with at least three charged leptons and additional jets. The search is performed in a sample of proton-proton collision data collected by the CMS experiment at the CERN LHC in 2016-2018 at a center-of-mass energy of 13 TeV and in 2022 at 13.6 TeV, corresponding to a total integrated luminosity of 173 fb$^{-1}$. For the first time in this final state, observables that are odd under the $CP$ transformation are employed. Also for the first time, physics-informed machine-learning techniques are used to construct these observables. While for standard model (SM) processes the distributions of these observables are predicted to be symmetric around zero, $CP$-violating modifications of the SM would introduce asymmetries. Two $CP$-odd operators $\mathcal{O}_\text{tW}^\text{I}$ and $\mathcal{O}_\text{tZ}^\text{I}$ in the SM effective field theory are considered that may modify the interactions between top quarks and electroweak bosons. The obtained results are consistent with the SM prediction within two standard deviations, and exclusion limits on the associated Wilson coefficients of $-$2.7 $\lt$$c_\text{tW}^\text{I}$$\lt$ 2.5 and $-$0.2 $\lt$$c_\text{tZ}^\text{I}$$\lt$ 2.0 are set at 95% confidence level. The largest discrepancy is observed in $c_\text{tZ}^\text{I}$ where data is consistent with positive values, with an observed local significance with respect to the SM hypothesis of 2.5 standard deviations, when only linear terms are considered.

0 data tables match query

Comparison of the Line Reversed Channels anti-p p --> pi- pi+ and pi+ p --> p pi+ at 6-GeV/c

Stein, N.A. ; Edelstein, R.M. ; Green, D.R. ; et al.
Phys.Rev.Lett. 39 (1977) 378-381, 1977.
Inspire Record 124936 DOI 10.17182/hepdata.20964

Differential cross sections have been measured for p¯p→π−π+ (1) and its line-reversed partner π+p→pπ+ (2) in the range tmin>t>−1.5 (GeV/c)2 at 6 GeV/c. Clear structure is seen in the differential cross section for Reaction (1) at t∼−0.4 (GeV/c)2. However, this feature is quite different from the striking dip seen in (2) at t∼−0.15 (GeV/c)2, indicating a failure of line reversal and disagreement with simple Regge models.

0 data tables match query

Measurement of the $\mathrm{t\bar{t}}$ charge asymmetry in events with highly Lorentz-boosted top quarks in pp collisions at $\sqrt{s}$ = 13 TeV

The CMS collaboration Tumasyan, Armen ; Adam, Wolfgang ; Andrejkovic, Janik Walter ; et al.
Phys.Lett.B 846 (2023) 137703, 2023.
Inspire Record 2132366 DOI 10.17182/hepdata.127992

The measurement of the charge asymmetry in top quark pair events with highly Lorentz-boosted top quarks decaying to a single lepton and jets is presented. The analysis is performed using proton-proton collisions at $\sqrt{s}$ = 13 TeV with the CMS detector at the LHC and corresponding to an integrated luminosity of 138 fb$^{-1}$. The selection is optimized for top quarks produced with large Lorentz boosts, resulting in nonisolated leptons and overlapping jets. The top quark charge asymmetry is measured for events with a $\mathrm{t\bar{t}}$ invariant mass larger than 750 GeV and corrected for detector and acceptance effects using a binned maximum likelihood fit. The measured top quark charge asymmetry of (0.42 $_{-0.69}^{+0.64}$)% is in good agreement with the standard model prediction at next-to-next-to-leading order in quantum chromodynamic perturbation theory with next-to-leading-order electroweak corrections. The result is also presented for two invariant mass ranges, 750-900 and $\gt$ 900 GeV.

0 data tables match query

Measurements of polarization and spin correlation and observation of entanglement in top quark pairs using lepton+jets events from proton-proton collisions at $\sqrt{s}$ = 13 TeV

The CMS collaboration Hayrapetyan, Aram ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
Phys.Rev.D 110 (2024) 112016, 2024.
Inspire Record 2829523 DOI 10.17182/hepdata.153301

Measurements of the polarization and spin correlation in top quark pairs ($\mathrm{t\bar{t}}$) are presented using events with a single electron or muon and jets in the final state. The measurements are based on proton-proton collision data from the LHC at $\sqrt{s}$ = 13 TeV collected by the CMS experiment, corresponding to an integrated luminosity of 138 fb$^{-1}$. All coefficients of the polarization vectors and the spin correlation matrix are extracted simultaneously by performing a binned likelihood fit to the data. The measurement is performed inclusively and in bins of additional observables, such as the mass of the $\mathrm{t\bar{t}}$ system and the top quark scattering angle in the $\mathrm{t\bar{t}}$ rest frame. The measured polarization and spin correlation are in agreement with the standard model. From the measured spin correlation, conclusions on the $\mathrm{t\bar{t}}$ spin entanglement are drawn by applying the Peres-Horodecki criterion. The standard model predicts entangled spins for $\mathrm{t\bar{t}}$ states at the production threshold and at high masses of the $\mathrm{t\bar{t}}$ system. Entanglement is observed for the first time in events at high $\mathrm{t\bar{t}}$ mass, where a large fraction of the $\mathrm{t\bar{t}}$ decays are space-like separated, with an expected and observed significance of above 5 standard deviations.

0 data tables match query