The measurements of the inclusive J/$\psi$ yield at midrapidity ($\left | y \right | < 0.9$) and forward rapidity (2.5 $< y <$ 4) in Pb$-$Pb collisions at $\sqrt{s_{\mathrm{NN}}}=5.02$ TeV with the ALICE detector at the LHC are reported. The inclusive J/$\psi$ production yields and nuclear modification factors, $R_{\rm AA}$, are measured as a function of the collision centrality, J/$\psi$ transverse momentum ($p_{\rm T}$), and rapidity. The J/$\psi$ average transverse momentum and squared transverse momentum ($\langle p_{\mathrm{T}}\rangle$ and $\langle p_{\mathrm{T}}^{\mathrm{2}}\rangle$) are evaluated as a function of the centrality at midrapidity. Compared to the previous ALICE publications, here the entire Pb$-$Pb collisions dataset collected during the LHC Run 2 is used, which improves the precision of the measurements and extends the $p_{\rm T}$ coverage. The $p_{\rm T}$-integrated $R_{\rm AA}$ shows a hint of an increasing trend towards unity from semicentral to central collisions at midrapidity, while it is flat at forward rapidity. The $p_{\rm T}$-differential $R_{\rm AA}$ shows a strong suppression at high $p_{\rm T}$ with less suppression at low $p_{\rm T}$ where it reaches a larger value at midrapidity compared to forward rapidity. The ratio of the $p_{\rm T}$-integrated yields of J/$\psi$ to those of D$^{0}$ mesons is reported for the first time for the central and semicentral event classes at midrapidity. Model calculations implementing charmonium production via the coalescence of charm quarks and antiquarks during the fireball evolution (transport models) or in a statistical approach with thermal weights are in good agreement with the data at low $p_{\rm T}$. At higher $p_{\rm T}$, the data are well described by transport models and a model based on energy loss in the strongly-interacting medium produced in nuclear collisions at the LHC.
Inclusive J$/psi$ invariant yield as a function of pT in Pb-Pb collisions at $\sqrt{{s}_{NN}}$ = 5.02 TeV for 0-10% centrality interval and |y|< 0.9. The given systematic uncertainties are the total systematic ones and are mostly considered as fully correlated over pT.;
Inclusive J$/psi$ invariant yield as a function of pT in Pb-Pb collisions at $\sqrt{{s}_{NN}}$ = 5.02 TeV for 30-50% centrality interval and |y|< 0.9. The given systematic uncertainties are the total systematic ones and are mostly considered as fully correlated over pT.;
Inclusive J$/psi$ invariant yield as a function of pT in Pb-Pb collisions at $\sqrt{{s}_{NN}}$ = 5.02 TeV for 0-20% centrality interval and 2.5 < y < 4. The given systematic uncertainties are the total systematic ones. It contains the correlated uncertainties over pT which amount to 1.69%. ;
Measurements of the production of electrons from heavy-flavour hadron decays in pp collisions at $\sqrt{s} = 13$ TeV at midrapidity with the ALICE detector are presented down to a transverse momentum ($p_{\rm T}$) of 0.2 GeV$/c$ and up to $p_{\rm T} = 35$ GeV$/c$, which is the largest momentum range probed for inclusive electron measurements in ALICE. In p$-$Pb collisions, the production cross section and the nuclear modification factor of electrons from heavy-flavour hadron decays are measured in the $p_{\rm T}$ range $0.5 < p_{\rm T} < 26$ GeV$/c$ at $\sqrt{s_{\rm NN}} = 8.16$ TeV. The nuclear modification factor is found to be consistent with unity within the statistical and systematic uncertainties. In both collision systems, first measurements of the yields of electrons from heavy-flavour hadron decays in different multiplicity intervals normalised to the multiplicity-integrated yield (self-normalised yield) at midrapidity are reported as a function of the self-normalised charged-particle multiplicity estimated at midrapidity. The self-normalised yields in pp and p$-$Pb collisions grow faster than linear with the self-normalised multiplicity. A strong $p_{\rm T}$ dependence is observed in pp collisions, where the yield of high-$p_{\rm T}$ electrons increases faster as a function of multiplicity than the one of low-$p_{\rm T}$ electrons. The measurement in p$-$Pb collisions shows no $p_{\rm T}$ dependence within uncertainties. The self-normalised yields in pp and p$-$Pb collisions are compared with measurements of other heavy-flavour, light-flavour, and strange particles, and with Monte Carlo simulations.
pT-differential cross section of electrons from heavy-flavour hadron decays in pp collisions at $\sqrt{s}$ = 13 TeV measured at midrapidity
pT-differential cross section of electrons from heavy-flavour hadron decays in p-Pb collisions at $\sqrt{s_{\rm NN}}$ = 8.16 TeV measured at midrapidity
The Nuclear modification factor RpPb of electrons from heavy-flavour hadron decays in p--Pb collisions at $\sqrt{s_{\rm NN}}$ = 8.16 TeV
The interactions of kaons (K) and antikaons ($\mathrm{\overline{K}}$) with few nucleons (N) were studied so far using kaonic atom data and measurements of kaon production and interaction yields in nuclei. Some details of the three-body KNN and $\mathrm{\overline{K}}$NN dynamics are still not well understood, mainly due to the overlap with multi-nucleon interactions in nuclei. An alternative method to probe the dynamics of three-body systems with kaons is to study the final state interaction within triplet of particles emitted in pp collisions at the Large Hadron Collider, which are free from effects due to the presence of bound nucleons. This Letter reports the first femtoscopic study of p$-$p$-$K$^+$ and p$-$p$-$K$^-$ correlations measured in high-multiplicity pp collisions at $\sqrt{s}$ = 13 TeV by the ALICE Collaboration. The analysis shows that the measured p$-$p$-$K$^+$ and p$-$p$-$K$^-$ correlation functions can be interpreted in terms of pairwise interactions in the triplets, indicating that the dynamics of such systems is dominated by the two-body interactions without significant contributions from three-body effects or bound states.
The (p-p)-K$^+$ correlation function obtained using the data-driven approach.
The p-(p-K$^+$) correlation function obtained using the data-driven approach.
Lower-order contributions to the p-p-K$^+$ correlation function obtained using the data-driven approach.
The first measurement of the top quark pair ($\mathrm{t\bar{t}}$) production cross section in proton-proton collisions at $\sqrt{s}$ = 13.6 TeV is presented. Data recorded with the CMS detector at the CERN LHC in Summer 2022, corresponding to an integrated luminosity of 1.21 fb$^{-1}$, are analyzed. Events are selected with one or two charged leptons (electrons or muons) and additional jets. A maximum likelihood fit is performed in event categories defined by the number and flavors of the leptons, the number of jets, and the number of jets identified as originating from b quarks. An inclusive $\mathrm{t\bar{t}}$ production cross section of 881 $\pm$ 23 (stat+syst) $\pm$ 20 (lumi) pb is measured, in agreement with the standard model prediction of 924 $^{+32}_{-40}$ pb.
Comparison of the number of observed (points) and predicted (filled histograms) events in the final analysis binning. The predictions are shown before fitting the model to the data. The lower panel of the plot displays the ratio of the event yields in data to the sum of predicted signal and background yields. The vertical bars on the points represent the statistical uncertainties in the data, while the hatched bands represent systematic uncertainty in the predictions, excluding the integrated luminosity. No b jet efficiency scale factors are applied in the plot, and no systematic uncertainty entering into the hatched bands is intended to cover thesefactors, which are free parameters in the fit.
Comparison of the number of observed (points) and predicted (filled histograms) events in the final analysis binning. The predictions are shown after fitting the model to the data. The lower panel of each plot displays the ratio of the event yields in data to the sum of predicted signal and background yields. The vertical bars on the points represent the statistical uncertainties in the data, while the hatched bands represent systematic uncertainty in the predictions, excluding the integrated luminosity. The hatched bands are greatly reduced due to additional constraint of the nuisances parameters as well as correlations between them.
Result for the inclusive ttbar production cross section
The NA62 experiment at CERN, designed to study the ultra-rare decay $K^+ \to \pi^+\nu\overline{\nu}$, has also collected data in beam-dump mode. In this configuration, dark photons may be produced by protons dumped on an absorber and reach a decay volume beginning 80 m downstream. A search for dark photons decaying in flight to $\mu^+\mu^-$ pairs is reported, based on a sample of $1.4 \times 10^{17}$ protons on dump collected in 2021. No evidence for a dark photon signal is observed. A region of the parameter space is excluded at 90% CL, improving on previous experimental limits for dark photon masses between 215 and 550 MeV$/c^2$.
90% CL upper limit in dark photon coupling vs mass parameter space.
90% CL upper limit in \(BR(B \rightarrow K a, a \rightarrow \mu^+ \mu^-)\) vs lifetime \(\tau \) parameter space.
A generic search is presented for the associated production of a Z boson or a photon with an additional unspecified massive particle X, pp $\to$ pp + Z/$\gamma$ + X, in proton-tagged events from proton-proton collisions at $\sqrt{s}$ = 13 TeV, recorded in 2017 with the CMS detector and the CMS-TOTEM precision proton spectrometer. The missing mass spectrum is analysed in the 600-1600 GeV range and a fit is performed to search for possible deviations from the background expectation. No significant excess in data with respect to the background predictions has been observed. Model-independent upper limits on the visible production cross section of pp $\to$ pp + Z/$\gamma$ + X are set.
Comparison of the $m_{miss}$ shapes for the simulated signal events within the fiducial region and those outside it, after including the effect of PU protons as describe in the text, for a generated $m_{X}$ mass of 1000 GeV. The distributions are shown for multi(+z)-multi(−z) proton reconstruction categories.
Comparison of the $m_{miss}$ shapes for the simulated signal events within the fiducial region and those outside it, after including the effect of PU protons as describe in the text, for a generated $m_{X}$ mass of 1000 GeV. The distributions are shown for multi(+z)-single(−z) proton reconstruction categories.
Comparison of the $m_{miss}$ shapes for the simulated signal events within the fiducial region and those outside it, after including the effect of PU protons as describe in the text, for a generated $m_{X}$ mass of 1000 GeV. The distributions are shown for single(+z)-multi(−z) proton reconstruction categories.
The production of four top quarks ($\mathrm{t\bar{t}t\bar{t}}$) is studied with LHC proton-proton collision data samples collected by the CMS experiment at a center-of-mass energy of 13 TeV, and corresponding to integrated luminosities of up to 138 fb$^{-1}$. Events that have no leptons (all-hadronic), one lepton, or two opposite-sign leptons (where lepton refers only to prompt electrons or prompt muons) are considered. This is the first $\mathrm{t\bar{t}t\bar{t}}$ measurement that includes the all-hadronic final state. The observed significance of the $\mathrm{t\bar{t}t\bar{t}}$ signal in these final states of 3.9 standard deviations (1.5 expected) provides evidence for $\mathrm{t\bar{t}t\bar{t}}$ production, with a measured cross section of 36 $^{+12}_{-11}$ fb. Combined with earlier CMS results in other final states, the signal significance is 4.0 standard deviations (3.2 expected). The combination returns an observed cross section of 17 $\pm$ 4 (stat) $\pm$ 3 (syst) fb, which is consistent with the standard model prediction.
The jet multiplicity for $N_\textrm{b} \geq 4$ in the opposite-sign dilepton channel for the combined 2017--2018 dataset with dilepton decay categories combined. Here, $\textrm{t}\bar{\textrm{t}} + \geq 1 \textrm{b}$ refers to $\textrm{t}\bar{\textrm{t}}$ events with at least one additional b jet, $\textrm{t}\bar{\textrm{t}} + 0 \textrm{b}$ includes all other $\textrm{t}\bar{\textrm{t}}$ events not produced in association with a boson, and EW refers to events that contain W and Z bosons but no top quarks. The backgrounds and $\textrm{t}\bar{\textrm{t}}\textrm{t}\bar{\textrm{t}}$ signal (derived from the fit) are shown as a stacked histogram. The hatched bands correspond to the estimated total uncertainty after the fit.
The distribution of the BDT discriminants for the 2016--2018 data set for three different categories in the combined single-electron and single-muon channels. The three categories are defined by the number of resolved t tags ($N_\textrm{RT}$), b tags ($N_\textrm{b}$), and jets ($N_\textrm{j}$), selected as representative based on their sensitivity to signal. Here, $\textrm{t}\bar{\textrm{t}} + \geq 1 \textrm{b}$ refers to $\textrm{t}\bar{\textrm{t}}$ events with at least one additional b jet, while $\textrm{t}\bar{\textrm{t}} + 0 \textrm{b}$ includes all other $\textrm{t}\bar{\textrm{t}}$ events not produced in association with a boson. The TOP grouping contains single top quark production along with the other $\textrm{t}\bar{\textrm{t}}$ processes not explicitly shown, and EW refers to events that contain W and Z bosons but no top quarks. The backgrounds and $\textrm{t}\bar{\textrm{t}}\textrm{t}\bar{\textrm{t}}$ signal (derived from the fit) are shown as a stacked histogram. The hatched bands correspond to the estimated total uncertainty after the fit. While the bins are shown to be equal width, they do not correspond to equal width in BDT value.
The distribution of the BDT discriminants for the full 2016--2018 data set in the all-hadronic channel. The sample VR category shown is defined by $N_\textrm{RT}=1$, $N_\textrm{BT} \geq 1$, $H_T > 1400$ GeV. The background from QCD multijet and $\textrm{t}\bar{\textrm{t}}$ production is derived from control regions in the data. Estimates for the $\textrm{t}\bar{\textrm{t}}\textrm{t}\bar{\textrm{t}}$ signal and other backgrounds are shown using simulated samples. The hatched bands correspond to the estimated total uncertainty.
A search for decays to invisible particles of Higgs bosons produced in association with a top-antitop quark pair or a vector boson, which both decay to a fully hadronic final state, has been performed using proton-proton collision data collected at $\sqrt{s}$ = 13 TeV by the CMS experiment at the LHC, corresponding to an integrated luminosity of 138 fb$^{-1}$. The 95% confidence level upper limit set on the branching fraction of the 125 GeV Higgs boson to invisible particles, $\mathcal{B}$(H $\to$ inv), is 0.54 (0.39 expected), assuming standard model production cross sections. The results of this analysis are combined with previous $\mathcal{B}$(H $\to$ inv) searches carried out at $\sqrt{s}$ = 7, 8, and 13 TeV in complementary production modes. The combined upper limit at 95% confidence level on $\mathcal{B}$(H $\to$ inv) is 0.15 (0.08 expected).
Observed and expected 95% CL upper limits on ${{(\sigma_{\text{H}}/\sigma_{\text{H}}^{\mathrm{SM}}) \times {{\mathcal{B}(\text{H} \to \text{inv})}}}}$ for hadronic final states of ttH and resolved VH channels, and their combination, using data from 2016--2018 and assuming a SM Higgs boson with a mass of 125 GeV.
Observed and expected 95% CL upper limits on ${{(\sigma_{\text{H}}/\sigma_{\text{H}}^{\mathrm{SM}}) \times {{\mathcal{B}(\text{H} \to \text{inv})}}}}$ for the VBF, ttH, VH and ggH channels using all available CMS data, and their combination, assuming a SM Higgs boson with a mass of 125 GeV.
Observed and expected 95% CL upper limits on ${{(\sigma_{\text{H}}/\sigma_{\text{H}}^{\mathrm{SM}}) \times {{\mathcal{B}(\text{H} \to \text{inv})}}}}$ for the VBF, ttH, VH and ggH channels using Run2 CMS data, and their combination, assuming a SM Higgs boson with a mass of 125 GeV.
A study of multiplicity and pseudorapidity distributions of inclusive photons measured in pp and p$-$Pb collisions at a center-of-mass energy per nucleon$-$nucleon collision of $\sqrt{s_{\rm NN}} = 5.02$ TeV using the ALICE detector in the forward pseudorapidity region $2.3 < \eta_{\rm lab} < 3.9$ is presented. Measurements in p$-$Pb collisions are reported for two beam configurations in which the directions of the proton and lead ion beam were reversed. The pseudorapidity distributions in p$-$Pb collisions are obtained for seven centrality classes which are defined based on different event activity estimators, i.e., the charged-particle multiplicity measured at midrapidity as well as the energy deposited in a calorimeter at beam rapidity. The inclusive photon multiplicity distributions for both pp and p$-$Pb collisions are described by double negative binomial distributions. The pseudorapidity distributions of inclusive photons are compared to those of charged particles at midrapidity in \pp collisions and for different centrality classes in p$-$Pb collisions. The results are compared to predictions from various Monte Carlo event generators. None of the generators considered in this paper reproduces the inclusive photon multiplicity distributions in the reported multiplicity range. The pseudorapidity distributions are, however, better described by the same generators.
Inclusive photon multiplicity distribution measured within $2.3<\eta_{\rm lab}<3.9$ in pp collisions at $\sqrt{s} = 5020~\mathrm{GeV}$.
Inclusive photon multiplicity distribution measured within $2.3<\eta_{\rm lab}<3.9$ in p-Pb collisions at $\sqrt{s_\mathrm{NN}} = 5020~\mathrm{GeV}$.
Inclusive photon multiplicity distribution measured within $2.3<\eta_{\rm lab}<3.9$ in Pb-p collisions at $\sqrt{s_\mathrm{NN}} = 5020~\mathrm{GeV}$.
The azimuthal ($\Delta\varphi$) correlation distributions between heavy-flavor decay electrons and associated charged particles are measured in pp and p$-$Pb collisions at $\sqrt{s_{\rm{NN}}} = 5.02$ TeV. Results are reported for electrons with transverse momentum $4<p_{\rm T}<16$ GeV/$c$ and pseudorapidity $|\eta|<0.6$. The associated charged particles are selected with transverse momentum $1<p_{\rm T}<7$ GeV/$c$, and relative pseudorapidity separation with the leading electron $|\Delta\eta| < 1$. The correlation measurements are performed to study and characterize the fragmentation and hadronization of heavy quarks. The correlation structures are fitted with a constant and two von Mises functions to obtain the baseline and the near- and away-side peaks, respectively. The results from p$-$Pb collisions are compared with those from pp collisions to study the effects of cold nuclear matter. In the measured trigger electron and associated particle kinematic regions, the two collision systems give consistent results. The $\Delta\varphi$ distribution and the peak observables in pp and p$-$Pb collisions are compared with calculations from various Monte Carlo event generators.
$\Delta\varphi$ distribution between heavy-flavor decay electrons and associated charged particles for $4 < p_{\rm T}^{\rm e} < 12$ ${\rm GeV}/c$ and $1 < p_{\rm T}^{\rm assoc} < 7$ ${\rm GeV}/c$ in pp collisions at $\sqrt{s_{\rm{NN}}} = 5.02$ TeV. The publication shows $\Delta\varphi$ distribution only for the ranges $1 < p_{\rm T}^{\rm assoc} < 2$, $2 < p_{\rm T}^{\rm assoc} < 3$, and $5 < p_{\rm T}^{\rm assoc} < 7$ ${\rm GeV}/c$.
$\Delta\varphi$ distribution between heavy-flavor decay electrons and associated charged particles for $4 < p_{\rm T}^{\rm e} < 12$ ${\rm GeV}/c$ and $1 < p_{\rm T}^{\rm assoc} < 7$ ${\rm GeV}/c$ in p$\textendash$Pb collisions at $\sqrt{s_{\rm{NN}}} = 5.02$ TeV. The publication shows $\Delta\varphi$ distribution only for the ranges $1 < p_{\rm T}^{\rm assoc} < 2$, $2 < p_{\rm T}^{\rm assoc} < 3$, and $5 < p_{\rm T}^{\rm assoc} < 7$ ${\rm GeV}/c$.
Baseline of $\Delta\varphi$ distribution between heavy-flavor decay electrons and associated charged particles for $4 < p_{\rm T}^{\rm e} < 12$ ${\rm GeV}/c$ in pp and p$\textendash$Pb collisions at $\sqrt{s_{\rm{NN}}} = 5.02$ TeV. The publication shows $\Delta\varphi$ distribution only for the ranges $1 < p_{\rm T}^{\rm assoc} < 2$, $2 < p_{\rm T}^{\rm assoc} < 3$, and $5 < p_{\rm T}^{\rm assoc} < 7$ ${\rm GeV}/c$.