A measurement of the total $pp$ cross section at the LHC at $\sqrt{s}=8$ TeV is presented. An integrated luminosity of $500$ $\mu$b$^{-1}$ was accumulated in a special run with high-$\beta^{\star}$ beam optics to measure the differential elastic cross section as a function of the Mandelstam momentum transfer variable $t$. The measurement is performed with the ALFA sub-detector of ATLAS. Using a fit to the differential elastic cross section in the $-t$ range from $0.014$ GeV$^2$ to $0.1$ GeV$^2$ to extrapolate $t\rightarrow 0$, the total cross section, $\sigma_{\mathrm{tot}}(pp\rightarrow X)$, is measured via the optical theorem to be: $\sigma_{\mathrm{tot}}(pp\rightarrow X) = {96.07} \; \pm 0.18 \; ({{stat.}}) \pm 0.85 \; ({{exp.}}) \pm 0.31 \; ({extr.}) \; {mb} \;,$ where the first error is statistical, the second accounts for all experimental systematic uncertainties and the last is related to uncertainties in the extrapolation $t\rightarrow 0$. In addition, the slope of the exponential function describing the elastic cross section at small $t$ is determined to be $B = 19.74 \pm 0.05 \; ({{stat.}}) \pm 0.23 \; ({{syst.}}) \; {GeV}^{-2}$.
The measured total cross section, the first systematic error accounts for all experimental uncertainties and the second error for the extrapolation t-->0.
The nuclear slope of the differential eslastic cross section at small |t|, the first systematic error accounts for all experimental uncertainties and the second error for the extrapolation t-->0.
The total elastic cross section and the observed elastic cross section within the fiducial volume.
ω photoproduction off hydrogen and deuterium has been studied with the tagged photon beam of the ELSA accelerator in Bonn for photon energies up to 2.0 GeV. The ω meson has been identified via the ω → π$^{0}$ γ → γγγ decay mode, using the combined setup of the Crystal Barrel/TAPS detector systems. Both inclusive and exclusive analyses have been carried out. Differential and total cross-sections have been derived for ω mesons produced off free protons and off protons and neutrons bound in deuterium. The cross-section for the production off the bound neutron is found to be a factor of ≈ 1.3 larger than the one off the bound proton in the incident beam energy region 1.2 GeV < E$_{γ}$ < 1.6 GeV. For higher incident beam energies this factor goes down to ≈ 1.1 at 2.0 GeV. The cross-sections of this work have been used as normalization for transparency ratio measurements.
Differential cross-sections of $\omega$ mesons produced off the free proton versus $\cos(\theta^\omega_{\mathrm{c.m.}})$ and versus the momentum transfer to the nucleon, $t$, for incident photon energy $E_\gamma$ = 1.125-1.150 GeV.
Differential cross-sections of $\omega$ mesons produced off the free proton versus $\cos(\theta^\omega_{\mathrm{c.m.}})$ and versus the momentum transfer to the nucleon, $t$, for incident photon energy $E_\gamma$ = 1.150-1.175 GeV.
Differential cross-sections of $\omega$ mesons produced off the free proton versus $\cos(\theta^\omega_{\mathrm{c.m.}})$ and versus the momentum transfer to the nucleon, $t$, for incident photon energy $E_\gamma$ = 1.175-1.200 GeV.
A measurement of the total $pp$ cross section at the LHC at $\sqrt{s}=7$ TeV is presented. In a special run with high-$\beta^{\star}$ beam optics, an integrated luminosity of 80 $\mu$b$^{-1}$ was accumulated in order to measure the differential elastic cross section as a function of the Mandelstam momentum transfer variable $t$. The measurement is performed with the ALFA sub-detector of ATLAS. Using a fit to the differential elastic cross section in the $|t|$ range from 0.01 GeV$^2$ to 0.1 GeV$^2$ to extrapolate to $|t|\rightarrow 0$, the total cross section, $\sigma_{\mathrm{tot}}(pp\rightarrow X)$, is measured via the optical theorem to be: $$\sigma_{\mathrm{tot}}(pp\rightarrow X) = 95.35 \; \pm 0.38 \; ({\mbox{stat.}}) \pm 1.25 \; ({\mbox{exp.}}) \pm 0.37 \; (\mbox{extr.}) \; \mbox{mb},$$ where the first error is statistical, the second accounts for all experimental systematic uncertainties and the last is related to uncertainties in the extrapolation to $|t|\rightarrow 0$. In addition, the slope of the elastic cross section at small $|t|$ is determined to be $B = 19.73 \pm 0.14 \; ({\mbox{stat.}}) \pm 0.26 \; ({\mbox{syst.}}) \; \mbox{GeV}^{-2}$.
The measured total cross section, the first systematic error accounts for all experimental uncertainties and the second error for the extrapolation t-->0.
The nuclear slope of the differential eslastic cross section at small |t|, the first systematic error accounts for all experimental uncertainties and the second error for the extrapolation t-->0.
The Optical Point dsigma/(elastic)/dt(t-->0), the total elastic cross section and the observed elastic cross section within the fiducial volume. The first systematic error accounts for all experimental uncertainties and the second error for the extrapolation t-->0.
The proton-dissociative diffractive photoproduction of J/psi mesons has been studied in ep collisions with the ZEUS detector at HERA using an integrated luminosity of 112 pb^-1. The cross section is presented as a function of the photon-proton centre-of-mass energy and of the squared four-momentum transfer at the proton vertex. The results are compared to perturbative QCD calculations.
The differential cross section DSIG/DT as a function of T.
The differential cross section DSIG/DT as a function of W in the ABS(T) range 2.0 to 2.5 GeV**2.
The differential cross section DSIG/DT as a function of W in the ABS(T) range 2.5 to 3.0 GeV**2.
Deeply virtual Compton scattering has been measured in e^+p collisions at HERA with the ZEUS detector using an integrated luminosity of 61.1 pb^-1. Cross sections are presented as a function of the photon virtuality, Q^2, and photon-proton centre-of-mass energy, W, for a wide region of the phase space, Q^2>~1.5 GeV^2 and 40<W<170 GeV. A subsample of events in which the scattered proton is measured in the leading proton spectrometer, corresponding to an integrated luminosity of 31.3 pb^-1, is used for the first direct measurement of the differential cross section as a function of t, where t is the square of the four-momentum transfer at the proton vertex.
The DVCS cross section as a function of Q**2.
The DVCS cross section as a function of W.
The DVCS cross section as a function of W in four Q**2 regions.
The dissociation of virtual photons, $\gamma^{\star} p \to X p$, in events with a large rapidity gap between $X$ and the outgoing proton, as well as in events in which the leading proton was directly measured, has been studied with the ZEUS detector at HERA. The data cover photon virtualities $Q^2>2$ GeV$^2$ and $\gamma^{\star} p$ centre-of-mass energies $40<W<240$ GeV, with $M_X>2$ GeV, where $M_X$ is the mass of the hadronic final state, $X$. Leading protons were detected in the ZEUS leading proton spectrometer. The cross section is presented as a function of $t$, the squared four-momentum transfer at the proton vertex and $\Phi$, the azimuthal angle between the positron scattering plane and the proton scattering plane. It is also shown as a function of $Q^2$ and $\xpom$, the fraction of the proton's momentum carried by the diffractive exchange, as well as $\beta$, the Bjorken variable defined with respect to the diffractive exchange.
The differential cross section DSIG/DT for the LRG and the LPS data samples.
The fitted exponential slope of the T distribution as a function of X(NAME=POMERON).
The fitted exponential slope of the T distribution as a function of X(NAME=POMERON).
The exclusive reactions $\gamma p \to K^{*0} \Sigma^+(1189)$ and $\gamma p \to K^{0} \pi^{0}\Sigma^+(1189)$, leading to the p 4$\pi^{0}$ final state, have been measured with a tagged photon beam for incident energies from threshold up to 2.5 GeV. The experiment has been performed at the tagged photon facility of the ELSA accelerator (Bonn). The Crystal Barrel and TAPS detectors were combined to a photon detector system of almost 4$\pi$ geometrical acceptance. Differential and total cross sections are reported. At energies close to the threshold, a flat angular distribution has been observed for the reaction $\gamma p\to K^{0} \pi^{0}\Sigma^+$ suggesting dominant s-channel production. $\Sigma^*(1385)$ and higher lying hyperon states have been observed. An enhancement in the forward direction in the angular distributions of the reaction $\gamma p \to K^{*0}\Sigma^+$ indicates a $t$-channel exchange contribution to the reaction mechanism. The experimental data are in reasonable agreement with recent theoretical predictions.
Differential cross section D(SIG)/DCOS(THETA(SIG+)) for the GAMMA P --> K0 PI0 SIGMA+ reaction for beam energies 1500-1700 and 1700-1850 MeV.
Differential cross section D(SIG)/DCOS(THETA(SIG+)) for the GAMMA P --> K0 PI0 SIGMA+ reaction for beam energies 1850-2000 and 2000-2150 MeV.
Differential cross section D(SIG)/DCOS(THETA(SIG+)) for the GAMMA P --> K0 PI0 SIGMA+ reaction for beam energies 2150-2300 and 2300-2500 MeV.
Electroproduction of exclusive $\phi$ vector mesons has been studied with the CLAS detector in the kinematical range $1.6\leq Q^2\leq 3.8$ GeV$^{2}$, $0.0\leq t^{\prime}\leq 3.6$ GeV$^{2}$, and $2.0\leq W\leq 3.0$ GeV. The scaling exponent for the total cross section as $1/(Q^2+M_{\phi}^2)^n$ was determined to be $n=2.49\pm 0.33$. The slope of the four-momentum transfer $t'$ distribution is $b_{\phi}=0.98 \pm 0.17$ GeV$^{-2}$. The data are consistent with the assumption of s-channel helicity conservation (SCHC). Under this assumption, we determine the ratio of longitudinal to transverse cross sections to be $R=0.86 \pm 0.24$. A 2-gluon exchange model is able to reproduce the main features of the data.
Axis error includes +- 18.6/18.6 contribution.
Axis error includes +- 18.6/18.6 contribution.
Axis error includes +- 18.6/18.6 contribution.
Exclusive rho^0 electroproduction at HERA has been studied with the ZEUS detector using 120 pb^{-1} of integrated luminosity collected during 1996-2000. The analysis was carried out in the kinematic range of photon virtuality 2 < Q^2 < 160 GeV$^2, and gamma^* p centre-of-mass energy 32 < W < 180 GeV. The results include the Q^2 and W dependence of the gamma^* p --> rho^0 p cross section and the distribution of the squared-four-momentum transfer to the proton. The helicity analysis of the decay-matrix elements of the rho^0 was used to study the ratio of the gamma^* p cross section for longitudinal and transverse photon as a function of Q^2 and W. Finally, an effective Pomeron trajectory was extracted. The results are compared to various theoretical predictions.
Measurement of the spin density matrix element r_04_00 as a function of Q**2.
Measurement of the spin density matrix element RE(r_04_10) as a function of Q**2.
Measurement of the spin density matrix element r_04_1-1 as a function of Q**2.
Exclusive electroproduction of $\phi$ mesons has been studied in $e^\pm p$ collisions at $\sqrt{s}=318 \gev$ with the ZEUS detector at HERA using an integrated luminosity of 65.1 pb$^{-1}$. The $\gamma^*p$ cross section is presented in the kinematic range $2<Q^2<70 \gev^2$, $35<W<145 \gev$ and ${|t|}<0.6 \gev^2$. The cross sections as functions of $Q^2$, $W$, $t$ and helicity angle $\theta_h$ are compared to cross sections for other vector mesons. The ratios $R$ of the cross sections for longitudinally and transversely polarized virtual photons are presented as functions of $Q^2$ and $W$. The data are also compared to predictions from theoretical models.
Exclusive GAMMA* P --> PHI P cross section in the Q**2 range 2 to 3 GeV**2.
Exclusive GAMMA* P --> PHI P cross section in the Q**2 range 3 to 5 GeV**2.
Exclusive GAMMA* P --> PHI P cross section in the Q**2 range 5 to 9 GeV**2.