Showing 10 of 200 results
Exclusive measurements of the $pp \to pp\pi^0\pi^0$ reaction have been performed at CELSIUS/WASA at energies from threshold up to $T_p$ = 1.3 GeV. Total and differential cross sections have been obtained. Here we concentrate on energies $T_p \ge$ 1 GeV, where the $\Delta\Delta$ excitation becomes the leading process. No evidence is found for a significant ABC effect beyond that given by the conventional $t$-channel $\Delta\Delta$ excitation. This holds also for the double-pionic fusion to the quasibound $^2$He. The data are compared to model predictions, which are based on both pion and $\rho$ exchange. Total and differential cross sections are at variance with these predictions and call for a profound modification of the $\rho$-exchange. A phenomenological modification allowing only a small $\rho$ exchange contribution leads to a quantitative description of the data.
Cross section taken from an earlier CELSIUS publication (PL B679(2009)30 - arXiv:0903.2087).
PI0_PI0 invariant mass distribution at an incident kinetic energy of 1000 MeV.
PI0_PI0 invariant mass distribution at an incident kinetic energy of 1100 MeV.
PI0_PI0 invariant mass distribution at an incident kinetic energy of 1200 MeV.
PI0_PI0 invariant mass distribution at an incident kinetic energy of 1300 MeV.
Distribution of the cosine of the PI0_PI0 opening angle (DELTA) at an incident kinetic energy of 1000 MeV.
Distribution of the cosine of the PI0_PI0 opening angle (DELTA) at an incident kinetic energy of 1100 MeV.
Distribution of the cosine of the PI0_PI0 opening angle (DELTA) at an incident kinetic energy of 1200 MeV.
Distribution of the cosine of the PI0_PI0 opening angle (DELTA) at an incident kinetic energy of 1300 MeV.
P_PI0 invariant mass distribution at an incident kinetic energy of 1000 MeV.
P_PI0 invariant mass distribution at an incident kinetic energy of 1100 MeV.
P_PI0 invariant mass distribution at an incident kinetic energy of 1200 MeV.
P_PI0 invariant mass distribution at an incident kinetic energy of 1300 MeV.
P_PI0_PI0 invariant mass distribution at an incident kinetic energy of 1000 MeV.
P_PI0_PI0 invariant mass distribution at an incident kinetic energy of 1100 MeV.
P_PI0_PI0 invariant mass distribution at an incident kinetic energy of 1200 MeV.
P_PI0_PI0 invariant mass distribution at an incident kinetic energy of 1300 MeV.
Distribution of the cosine of the Proton centre-of-mass angle at an incident kinetic energy of 1000 MeV.
Distribution of the cosine of the Proton centre-of-mass angle at an incident kinetic energy of 1100 MeV.
Distribution of the cosine of the Proton centre-of-mass angle at an incident kinetic energy of 1200 MeV.
Distribution of the cosine of the Proton centre-of-mass angle at an incident kinetic energy of 1300 MeV.
Distribution of the cosine of the PI0 centre-of-mass angle at an incident kinetic energy of 1000 MeV.
Distribution of the cosine of the PI0 centre-of-mass angle at an incident kinetic energy of 1100 MeV.
Distribution of the cosine of the PI0 centre-of-mass angle at an incident kinetic energy of 1200 MeV.
Distribution of the cosine of the PI0 centre-of-mass angle at an incident kinetic energy of 1300 MeV.
Distribution of the cosine of the PI0_PI0 centre-of-mass angle at an incident kinetic energy of 1000 MeV.
Distribution of the cosine of the PI0_PI0 centre-of-mass angle at an incident kinetic energy of 1100 MeV.
Distribution of the cosine of the PI0_PI0 centre-of-mass angle at an incident kinetic energy of 1200 MeV.
Distribution of the cosine of the PI0_PI0 centre-of-mass angle at an incident kinetic energy of 1300 MeV.
Distribution of the cosine of the PI0 angle in the PI0_PI0 subsystem at an incident kinetic energy of 1000 MeV.
Distribution of the cosine of the PI0 angle in the PI0_PI0 subsystem at an incident kinetic energy of 1100 MeV.
Distribution of the cosine of the PI0 angle in the PI0_PI0 subsystem at an incident kinetic energy of 1200 MeV.
Distribution of the cosine of the PI0 angle in the PI0_PI0 subsystem at an incident kinetic energy of 1300 MeV.
High-statistics measurements of differential cross sections and recoil polarizations for the reaction $\gamma p \rightarrow K^+ \Sigma^0$ have been obtained using the CLAS detector at Jefferson Lab. We cover center-of-mass energies ($\sqrt{s}$) from 1.69 to 2.84 GeV, with an extensive coverage in the $K^+$ production angle. Independent measurements were made using the $K^{+}p\pi^{-}$($\gamma$) and $K^{+}p$($\pi^-, \gamma$) final-state topologies, and were found to exhibit good agreement. Our differential cross sections show good agreement with earlier CLAS, SAPHIR and LEPS results, while offering better statistical precision and a 300-MeV increase in $\sqrt{s}$ coverage. Above $\sqrt{s} \approx 2.5$ GeV, $t$- and $u$-channel Regge scaling behavior can be seen at forward- and backward-angles, respectively. Our recoil polarization ($P_\Sigma$) measurements represent a substantial increase in kinematic coverage and enhanced precision over previous world data. At forward angles we find that $P_\Sigma$ is of the same magnitude but opposite sign as $P_\Lambda$, in agreement with the static SU(6) quark model prediction of $P_\Sigma \approx -P_\Lambda$. This expectation is violated in some mid- and backward-angle kinematic regimes, where $P_\Sigma$ and $P_\Lambda$ are of similar magnitudes but also have the same signs. In conjunction with several other meson photoproduction results recently published by CLAS, the present data will help constrain the partial wave analyses being performed to search for missing baryon resonances.
Differential cross section as a function of COS(THETA(K+,CM)) for the centre-of mass range 1.69 to 1.7 GeV.
Differential cross section as a function of COS(THETA(K+,CM)) for the centre-of mass range 1.7 to 1.71 GeV.
Differential cross section as a function of COS(THETA(K+,CM)) for the centre-of mass range 1.71 to 1.72 GeV.
Differential cross section as a function of COS(THETA(K+,CM)) for the centre-of mass range 1.72 to 1.73 GeV.
Differential cross section as a function of COS(THETA(K+,CM)) for the centre-of mass range 1.73 to 1.74 GeV.
Differential cross section as a function of COS(THETA(K+,CM)) for the centre-of mass range 1.74 to 1.75 GeV.
Differential cross section as a function of COS(THETA(K+,CM)) for the centre-of mass range 1.75 to 1.76 GeV.
Differential cross section as a function of COS(THETA(K+,CM)) for the centre-of mass range 1.76 to 1.77 GeV.
Differential cross section as a function of COS(THETA(K+,CM)) for the centre-of mass range 1.77 to 1.78 GeV.
Differential cross section as a function of COS(THETA(K+,CM)) for the centre-of mass range 1.78 to 1.79 GeV.
Differential cross section as a function of COS(THETA(K+,CM)) for the centre-of mass range 1.79 to 1.8 GeV.
Differential cross section as a function of COS(THETA(K+,CM)) for the centre-of mass range 1.8 to 1.81 GeV.
Differential cross section as a function of COS(THETA(K+,CM)) for the centre-of mass range 1.81 to 1.82 GeV.
Differential cross section as a function of COS(THETA(K+,CM)) for the centre-of mass range 1.82 to 1.83 GeV.
Differential cross section as a function of COS(THETA(K+,CM)) for the centre-of mass range 1.83 to 1.84 GeV.
Differential cross section as a function of COS(THETA(K+,CM)) for the centre-of mass range 1.84 to 1.85 GeV.
Differential cross section as a function of COS(THETA(K+,CM)) for the centre-of mass range 1.85 to 1.86 GeV.
Differential cross section as a function of COS(THETA(K+,CM)) for the centre-of mass range 1.86 to 1.87 GeV.
Differential cross section as a function of COS(THETA(K+,CM)) for the centre-of mass range 1.87 to 1.88 GeV.
Differential cross section as a function of COS(THETA(K+,CM)) for the centre-of mass range 1.88 to 1.89 GeV.
Differential cross section as a function of COS(THETA(K+,CM)) for the centre-of mass range 1.89 to 1.9 GeV.
Differential cross section as a function of COS(THETA(K+,CM)) for the centre-of mass range 1.9 to 1.91 GeV.
Differential cross section as a function of COS(THETA(K+,CM)) for the centre-of mass range 1.91 to 1.92 GeV.
Differential cross section as a function of COS(THETA(K+,CM)) for the centre-of mass range 1.92 to 1.93 GeV.
Differential cross section as a function of COS(THETA(K+,CM)) for the centre-of mass range 1.93 to 1.94 GeV.
Differential cross section as a function of COS(THETA(K+,CM)) for the centre-of mass range 1.94 to 1.95 GeV.
Differential cross section as a function of COS(THETA(K+,CM)) for the centre-of mass range 1.96 to 1.97 GeV.
Differential cross section as a function of COS(THETA(K+,CM)) for the centre-of mass range 1.97 to 1.98 GeV.
Differential cross section as a function of COS(THETA(K+,CM)) for the centre-of mass range 1.98 to 1.99 GeV.
Differential cross section as a function of COS(THETA(K+,CM)) for the centre-of mass range 1.99 to 2 GeV.
Differential cross section as a function of COS(THETA(K+,CM)) for the centre-of mass range 2 to 2.01 GeV.
Differential cross section as a function of COS(THETA(K+,CM)) for the centre-of mass range 2.01 to 2.02 GeV.
Differential cross section as a function of COS(THETA(K+,CM)) for the centre-of mass range 2.02 to 2.03 GeV.
Differential cross section as a function of COS(THETA(K+,CM)) for the centre-of mass range 2.03 to 2.04 GeV.
Differential cross section as a function of COS(THETA(K+,CM)) for the centre-of mass range 2.04 to 2.05 GeV.
Differential cross section as a function of COS(THETA(K+,CM)) for the centre-of mass range 2.05 to 2.06 GeV.
Differential cross section as a function of COS(THETA(K+,CM)) for the centre-of mass range 2.06 to 2.07 GeV.
Differential cross section as a function of COS(THETA(K+,CM)) for the centre-of mass range 2.07 to 2.08 GeV.
Differential cross section as a function of COS(THETA(K+,CM)) for the centre-of mass range 2.08 to 2.09 GeV.
Differential cross section as a function of COS(THETA(K+,CM)) for the centre-of mass range 2.09 to 2.1 GeV.
Differential cross section as a function of COS(THETA(K+,CM)) for the centre-of mass range 2.1 to 2.11 GeV.
Differential cross section as a function of COS(THETA(K+,CM)) for the centre-of mass range 2.11 to 2.12 GeV.
Differential cross section as a function of COS(THETA(K+,CM)) for the centre-of mass range 2.12 to 2.13 GeV.
Differential cross section as a function of COS(THETA(K+,CM)) for the centre-of mass range 2.13 to 2.14 GeV.
Differential cross section as a function of COS(THETA(K+,CM)) for the centre-of mass range 2.14 to 2.15 GeV.
Differential cross section as a function of COS(THETA(K+,CM)) for the centre-of mass range 2.15 to 2.16 GeV.
Differential cross section as a function of COS(THETA(K+,CM)) for the centre-of mass range 2.16 to 2.17 GeV.
Differential cross section as a function of COS(THETA(K+,CM)) for the centre-of mass range 2.17 to 2.18 GeV.
Differential cross section as a function of COS(THETA(K+,CM)) for the centre-of mass range 2.18 to 2.19 GeV.
Differential cross section as a function of COS(THETA(K+,CM)) for the centre-of mass range 2.19 to 2.2 GeV.
Differential cross section as a function of COS(THETA(K+,CM)) for the centre-of mass range 2.2 to 2.21 GeV.
Differential cross section as a function of COS(THETA(K+,CM)) for the centre-of mass range 2.21 to 2.22 GeV.
Differential cross section as a function of COS(THETA(K+,CM)) for the centre-of mass range 2.22 to 2.23 GeV.
Differential cross section as a function of COS(THETA(K+,CM)) for the centre-of mass range 2.23 to 2.24 GeV.
Differential cross section as a function of COS(THETA(K+,CM)) for the centre-of mass range 2.24 to 2.25 GeV.
Differential cross section as a function of COS(THETA(K+,CM)) for the centre-of mass range 2.25 to 2.26 GeV.
Differential cross section as a function of COS(THETA(K+,CM)) for the centre-of mass range 2.26 to 2.27 GeV.
Differential cross section as a function of COS(THETA(K+,CM)) for the centre-of mass range 2.27 to 2.28 GeV.
Differential cross section as a function of COS(THETA(K+,CM)) for the centre-of mass range 2.28 to 2.29 GeV.
Differential cross section as a function of COS(THETA(K+,CM)) for the centre-of mass range 2.29 to 2.3 GeV.
Differential cross section as a function of COS(THETA(K+,CM)) for the centre-of mass range 2.3 to 2.31 GeV.
Differential cross section as a function of COS(THETA(K+,CM)) for the centre-of mass range 2.31 to 2.32 GeV.
Differential cross section as a function of COS(THETA(K+,CM)) for the centre-of mass range 2.32 to 2.33 GeV.
Differential cross section as a function of COS(THETA(K+,CM)) for the centre-of mass range 2.33 to 2.34 GeV.
Differential cross section as a function of COS(THETA(K+,CM)) for the centre-of mass range 2.34 to 2.35 GeV.
Differential cross section as a function of COS(THETA(K+,CM)) for the centre-of mass range 2.35 to 2.36 GeV.
Differential cross section as a function of COS(THETA(K+,CM)) for the centre-of mass range 2.36 to 2.37 GeV.
Differential cross section as a function of COS(THETA(K+,CM)) for the centre-of mass range 2.37 to 2.38 GeV.
Differential cross section as a function of COS(THETA(K+,CM)) for the centre-of mass range 2.38 to 2.39 GeV.
Differential cross section as a function of COS(THETA(K+,CM)) for the centre-of mass range 2.39 to 2.4 GeV.
Differential cross section as a function of COS(THETA(K+,CM)) for the centre-of mass range 2.4 to 2.41 GeV.
Differential cross section as a function of COS(THETA(K+,CM)) for the centre-of mass range 2.41 to 2.42 GeV.
Differential cross section as a function of COS(THETA(K+,CM)) for the centre-of mass range 2.42 to 2.43 GeV.
Differential cross section as a function of COS(THETA(K+,CM)) for the centre-of mass range 2.43 to 2.44 GeV.
Differential cross section as a function of COS(THETA(K+,CM)) for the centre-of mass range 2.44 to 2.45 GeV.
Differential cross section as a function of COS(THETA(K+,CM)) for the centre-of mass range 2.45 to 2.46 GeV.
Differential cross section as a function of COS(THETA(K+,CM)) for the centre-of mass range 2.46 to 2.47 GeV.
Differential cross section as a function of COS(THETA(K+,CM)) for the centre-of mass range 2.47 to 2.48 GeV.
Differential cross section as a function of COS(THETA(K+,CM)) for the centre-of mass range 2.48 to 2.49 GeV.
Differential cross section as a function of COS(THETA(K+,CM)) for the centre-of mass range 2.49 to 2.5 GeV.
Differential cross section as a function of COS(THETA(K+,CM)) for the centre-of mass range 2.5 to 2.51 GeV.
Differential cross section as a function of COS(THETA(K+,CM)) for the centre-of mass range 2.51 to 2.52 GeV.
Differential cross section as a function of COS(THETA(K+,CM)) for the centre-of mass range 2.52 to 2.53 GeV.
Differential cross section as a function of COS(THETA(K+,CM)) for the centre-of mass range 2.53 to 2.54 GeV.
Differential cross section as a function of COS(THETA(K+,CM)) for the centre-of mass range 2.54 to 2.55 GeV.
Differential cross section as a function of COS(THETA(K+,CM)) for the centre-of mass range 2.55 to 2.56 GeV.
Differential cross section as a function of COS(THETA(K+,CM)) for the centre-of mass range 2.56 to 2.57 GeV.
Differential cross section as a function of COS(THETA(K+,CM)) for the centre-of mass range 2.57 to 2.58 GeV.
Differential cross section as a function of COS(THETA(K+,CM)) for the centre-of mass range 2.58 to 2.59 GeV.
Differential cross section as a function of COS(THETA(K+,CM)) for the centre-of mass range 2.59 to 2.6 GeV.
Differential cross section as a function of COS(THETA(K+,CM)) for the centre-of mass range 2.6 to 2.61 GeV.
Differential cross section as a function of COS(THETA(K+,CM)) for the centre-of mass range 2.61 to 2.62 GeV.
Differential cross section as a function of COS(THETA(K+,CM)) for the centre-of mass range 2.62 to 2.63 GeV.
Differential cross section as a function of COS(THETA(K+,CM)) for the centre-of mass range 2.63 to 2.64 GeV.
Differential cross section as a function of COS(THETA(K+,CM)) for the centre-of mass range 2.64 to 2.65 GeV.
Differential cross section as a function of COS(THETA(K+,CM)) for the centre-of mass range 2.65 to 2.66 GeV.
Differential cross section as a function of COS(THETA(K+,CM)) for the centre-of mass range 2.66 to 2.67 GeV.
Differential cross section as a function of COS(THETA(K+,CM)) for the centre-of mass range 2.67 to 2.68 GeV.
Differential cross section as a function of COS(THETA(K+,CM)) for the centre-of mass range 2.68 to 2.69 GeV.
Differential cross section as a function of COS(THETA(K+,CM)) for the centre-of mass range 2.69 to 2.7 GeV.
Differential cross section as a function of COS(THETA(K+,CM)) for the centre-of mass range 2.7 to 2.71 GeV.
Differential cross section as a function of COS(THETA(K+,CM)) for the centre-of mass range 2.71 to 2.72 GeV.
Differential cross section as a function of COS(THETA(K+,CM)) for the centre-of mass range 2.72 to 2.73 GeV.
Differential cross section as a function of COS(THETA(K+,CM)) for the centre-of mass range 2.75 to 2.76 GeV.
Differential cross section as a function of COS(THETA(K+,CM)) for the centre-of mass range 2.76 to 2.77 GeV.
Differential cross section as a function of COS(THETA(K+,CM)) for the centre-of mass range 2.77 to 2.78 GeV.
Differential cross section as a function of COS(THETA(K+,CM)) for the centre-of mass range 2.78 to 2.79 GeV.
Differential cross section as a function of COS(THETA(K+,CM)) for the centre-of mass range 2.79 to 2.8 GeV.
Differential cross section as a function of COS(THETA(K+,CM)) for the centre-of mass range 2.8 to 2.81 GeV.
Differential cross section as a function of COS(THETA(K+,CM)) for the centre-of mass range 2.81 to 2.82 GeV.
Differential cross section as a function of COS(THETA(K+,CM)) for the centre-of mass range 2.82 to 2.83 GeV.
Differential cross section as a function of COS(THETA(K+,CM)) for the centre-of mass range 2.83 to 2.84 GeV.
Differential cross section as a function of the centre-of-mass energy for the angular range COS(THETA(K+,CM) from -0.95 to -0.85.
Differential cross section as a function of the centre-of-mass energy for the angular range COS(THETA(K+,CM) from -0.85 to -0.75.
Differential cross section as a function of the centre-of-mass energy for the angular range COS(THETA(K+,CM) from -0.75 to -0.65.
Differential cross section as a function of the centre-of-mass energy for the angular range COS(THETA(K+,CM) from -0.65 to -0.55.
Differential cross section as a function of the centre-of-mass energy for the angular range COS(THETA(K+,CM) from -0.55 to -0.45.
Differential cross section as a function of the centre-of-mass energy for the angular range COS(THETA(K+,CM) from -0.45 to -0.35.
Differential cross section as a function of the centre-of-mass energy for the angular range COS(THETA(K+,CM) from -0.35 to -0.25.
Differential cross section as a function of the centre-of-mass energy for the angular range COS(THETA(K+,CM) from -0.25 to -0.15.
Differential cross section as a function of the centre-of-mass energy for the angular range COS(THETA(K+,CM) from -0.15 to -0.05.
Differential cross section as a function of the centre-of-mass energy for the angular range COS(THETA(K+,CM) from -0.05 to 0.05.
Differential cross section as a function of the centre-of-mass energy for the angular range COS(THETA(K+,CM) from 0.05 to 0.15.
Differential cross section as a function of the centre-of-mass energy for the angular range COS(THETA(K+,CM) from 0.15 to 0.25.
Differential cross section as a function of the centre-of-mass energy for the angular range COS(THETA(K+,CM) from 0.25 to 0.35.
Differential cross section as a function of the centre-of-mass energy for the angular range COS(THETA(K+,CM) from 0.35 to 0.45.
Differential cross section as a function of the centre-of-mass energy for the angular range COS(THETA(K+,CM) from 0.45 to 0.55.
Differential cross section as a function of the centre-of-mass energy for the angular range COS(THETA(K+,CM) from 0.55 to 0.65.
Differential cross section as a function of the centre-of-mass energy for the angular range COS(THETA(K+,CM) from 0.65 to 0.75.
Differential cross section as a function of the centre-of-mass energy for the angular range COS(THETA(K+,CM) from 0.75 to 0.85.
Differential cross section as a function of the centre-of-mass energy for the angular range COS(THETA(K+,CM) from 0.85 to 0.95.
Recoil polarization as a function of the centre-of-mass energy for the angular range COS(THETA(K+,CM) from -0.85 to -0.75.
Recoil polarization as a function of the centre-of-mass energy for the angular range COS(THETA(K+,CM) from -0.75 to -0.65.
Recoil polarization as a function of the centre-of-mass energy for the angular range COS(THETA(K+,CM) from -0.65 to -0.55.
Recoil polarization as a function of the centre-of-mass energy for the angular range COS(THETA(K+,CM) from -0.55 to -0.45.
Recoil polarization as a function of the centre-of-mass energy for the angular range COS(THETA(K+,CM) from -0.45 to -0.35.
Recoil polarization as a function of the centre-of-mass energy for the angular range COS(THETA(K+,CM) from -0.35 to -0.25.
Recoil polarization as a function of the centre-of-mass energy for the angular range COS(THETA(K+,CM) from -0.25 to -0.15.
Recoil polarization as a function of the centre-of-mass energy for the angular range COS(THETA(K+,CM) from -0.15 to -0.05.
Recoil polarization as a function of the centre-of-mass energy for the angular range COS(THETA(K+,CM) from -0.05 to 0.05.
Recoil polarization as a function of the centre-of-mass energy for the angular range COS(THETA(K+,CM) from 0.05 to 0.15.
Recoil polarization as a function of the centre-of-mass energy for the angular range COS(THETA(K+,CM) from 0.15 to 0.25.
Recoil polarization as a function of the centre-of-mass energy for the angular range COS(THETA(K+,CM) from 0.25 to 0.35.
Recoil polarization as a function of the centre-of-mass energy for the angular range COS(THETA(K+,CM) from 0.35 to 0.45.
Recoil polarization as a function of the centre-of-mass energy for the angular range COS(THETA(K+,CM) from 0.45 to 0.55.
Recoil polarization as a function of the centre-of-mass energy for the angular range COS(THETA(K+,CM) from 0.55 to 0.65.
Recoil polarization as a function of the centre-of-mass energy for the angular range COS(THETA(K+,CM) from 0.65 to 0.75.
Recoil polarization as a function of the centre-of-mass energy for the angular range COS(THETA(K+,CM) from 0.75 to 0.85.
Recoil polarization as a function of the centre-of-mass energy for the angular range COS(THETA(K+,CM) from 0.85 to 0.95.
We present a measurement of direct photon pair production cross sections using 4.2 fb-1 of data collected with the D0 detector at the Fermilab Tevatron proton-antiproton Collider. We measure single differential cross sections as a function of the diphoton mass, the transverse momentum of the diphoton system, the azimuthal angle between the photons, and the polar scattering angle of the photons, as well as the double differential cross sections considering the last three kinematic variables in three diphoton mass bins. The results are compared with different perturbative QCD predictions and event generators.
Single differential cross section DSIG/DM.
Single differential cross section DSIG/DPT.
Single differential cross section DSIG/DPHI.
Single differential cross section DSIG/DCOS(THETA).
Double differential cross section D2SIG/DM/DPT in the diphoton mass range 30 TO 50 GeV.
Double differential cross section D2SIG/DM/DPHI in the diphoton mass range 30 TO 50 GeV.
Double differential cross section D2SIG/DM/DCOS(THETA) in the diphoton mass range 30 TO 50 GeV.
Double differential cross section D2SIG/DM/DPT in the diphoton mass range 50 TO 80 GeV.
Double differential cross section D2SIG/DM/DPHI in the diphoton mass range 50 TO 80 GeV.
Double differential cross section D2SIG/DM/DCOS(THETA) in the diphoton mass range 50 TO 80 GeV.
Double differential cross section D2SIG/DM/DPT in the diphoton mass range 80 TO 350 GeV.
Double differential cross section D2SIG/DM/DPHI in the diphoton mass range 80 TO 350 GeV.
Double differential cross section D2SIG/DM/DCOS(THETA) in the diphoton mass range 80 TO 350 GeV.
Differential cross sections of the reaction gamma d to K+ Sigma- (p) have been measured with the CLAS detector at Jefferson Lab using incident photons with energies between 1.1 and 3.6 GeV. This is the first complete set of strangeness photoproduction data on the neutron covering a broad angular range. At energies close to threshold and up to E_gamma ~ 1.8 GeV, the shape of the angular distribution is suggestive of the presence of s-channel production mechanisms. For E_gamma > 1.8 GeV, a clear forward peak appears and becomes more prominent as the photon energy increases, suggesting contributions from t-channel production mechanisms. These data can be used to constrain future analysis of this reaction.
Differential cross section for the reaction GAMMA DEUT --> K+ SIGMA-(P) at incident photon energy 1.15 GeV.. Errors contain both statistics and systematics.
Differential cross section for the reaction GAMMA DEUT --> K+ SIGMA-(P) at incident photon energy 1.25 GeV.. Errors contain both statistics and systematics.
Differential cross section for the reaction GAMMA DEUT --> K+ SIGMA-(P) at incident photon energy 1.35 GeV.. Errors contain both statistics and systematics.
Differential cross section for the reaction GAMMA DEUT --> K+ SIGMA-(P) at incident photon energy 1.45 GeV.. Errors contain both statistics and systematics.
Differential cross section for the reaction GAMMA DEUT --> K+ SIGMA-(P) at incident photon energy 1.55 GeV.. Errors contain both statistics and systematics.
Differential cross section for the reaction GAMMA DEUT --> K+ SIGMA-(P) at incident photon energy 1.65 GeV.. Errors contain both statistics and systematics.
Differential cross section for the reaction GAMMA DEUT --> K+ SIGMA-(P) at incident photon energy 1.75 GeV.. Errors contain both statistics and systematics.
Differential cross section for the reaction GAMMA DEUT --> K+ SIGMA-(P) at incident photon energy 1.85 GeV.. Errors contain both statistics and systematics.
Differential cross section for the reaction GAMMA DEUT --> K+ SIGMA-(P) at incident photon energy 1.95 GeV.. Errors contain both statistics and systematics.
Differential cross section for the reaction GAMMA DEUT --> K+ SIGMA-(P) at incident photon energy 2.05 GeV.. Errors contain both statistics and systematics.
Differential cross section for the reaction GAMMA DEUT --> K+ SIGMA-(P) at incident photon energy 2.15 GeV.. Errors contain both statistics and systematics.
Differential cross section for the reaction GAMMA DEUT --> K+ SIGMA-(P) at incident photon energy 2.25 GeV.. Errors contain both statistics and systematics.
Differential cross section for the reaction GAMMA DEUT --> K+ SIGMA-(P) at incident photon energy 2.35 GeV.. Errors contain both statistics and systematics.
Differential cross section for the reaction GAMMA DEUT --> K+ SIGMA-(P) at incident photon energy 2.45 GeV.. Errors contain both statistics and systematics.
Differential cross section for the reaction GAMMA DEUT --> K+ SIGMA-(P) at incident photon energy 2.55 GeV.. Errors contain both statistics and systematics.
Differential cross section for the reaction GAMMA DEUT --> K+ SIGMA-(P) at incident photon energy 2.65 GeV.. Errors contain both statistics and systematics.
Differential cross section for the reaction GAMMA DEUT --> K+ SIGMA-(P) at incident photon energy 2.75 GeV.. Errors contain both statistics and systematics.
Differential cross section for the reaction GAMMA DEUT --> K+ SIGMA-(P) at incident photon energy 2.85 GeV.. Errors contain both statistics and systematics.
Differential cross section for the reaction GAMMA DEUT --> K+ SIGMA-(P) at incident photon energy 2.95 GeV.. Errors contain both statistics and systematics.
Differential cross section for the reaction GAMMA DEUT --> K+ SIGMA-(P) at incident photon energy 3.05 GeV.. Errors contain both statistics and systematics.
Differential cross section for the reaction GAMMA DEUT --> K+ SIGMA-(P) at incident photon energy 3.15 GeV.. Errors contain both statistics and systematics.
Differential cross section for the reaction GAMMA DEUT --> K+ SIGMA-(P) at incident photon energy 3.25 GeV.. Errors contain both statistics and systematics.
Differential cross section for the reaction GAMMA DEUT --> K+ SIGMA-(P) at incident photon energy 3.35 GeV.. Errors contain both statistics and systematics.
Differential cross section for the reaction GAMMA DEUT --> K+ SIGMA-(P) at incident photon energy 3.45 GeV.. Errors contain both statistics and systematics.
Differential cross section for the reaction GAMMA DEUT --> K+ SIGMA-(P) at incident photon energy 3.55 GeV.. Errors contain both statistics and systematics.
We present measurements of the differential cross section and Lambda recoil polarization for the gamma p to K+ Lambda reaction made using the CLAS detector at Jefferson Lab. These measurements cover the center-of-mass energy range from 1.62 to 2.84 GeV and a wide range of center-of-mass K+ production angles. Independent analyses were performed using the K+ p pi- and K+ p (missing pi -) final-state topologies/ results from these analyses were found to exhibit good agreement. These differential cross section measurements show excellent agreement with previous CLAS and LEPS results and offer increased precision and a 300 MeV increase in energy coverage. The recoil polarization data agree well with previous results and offer a large increase in precision and a 500 MeV extension in energy range. The increased center-of-mass energy range that these data represent will allow for independent study of non-resonant K+ Lambda photoproduction mechanisms at all production angles.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 1.62-1.63 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 1.63-1.64 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 1.64-1.65 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 1.65-1.66 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 1.66-1.67 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 1.67-1.68 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 1.68-1.69 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 1.69-1.7 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 1.7-1.71 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 1.71-1.72 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 1.72-1.73 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 1.73-1.74 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 1.74-1.75 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 1.75-1.76 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 1.76-1.77 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 1.77-1.78 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 1.78-1.79 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 1.79-1.8 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 1.8-1.81 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 1.81-1.82 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 1.82-1.83 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 1.83-1.84 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 1.84-1.85 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 1.85-1.86 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 1.86-1.87 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 1.87-1.88 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 1.88-1.89 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 1.89-1.9 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 1.9-1.91 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 1.91-1.92 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 1.92-1.93 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 1.93-1.94 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 1.94-1.95 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 1.96-1.97 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 1.97-1.98 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 1.98-1.99 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 1.99-2 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 2-2.01 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 2.01-2.02 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 2.02-2.03 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 2.03-2.04 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 2.04-2.05 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 2.05-2.06 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 2.06-2.07 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 2.07-2.08 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 2.08-2.09 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 2.09-2.1 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 2.1-2.11 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 2.11-2.12 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 2.12-2.13 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 2.13-2.14 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 2.14-2.15 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 2.15-2.16 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 2.16-2.17 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 2.17-2.18 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 2.18-2.19 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 2.19-2.2 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 2.2-2.21 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 2.21-2.22 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 2.22-2.23 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 2.23-2.24 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 2.24-2.25 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 2.25-2.26 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 2.26-2.27 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 2.27-2.28 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 2.28-2.29 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 2.29-2.3 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 2.3-2.31 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 2.31-2.32 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 2.32-2.33 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 2.33-2.34 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 2.34-2.35 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 2.35-2.36 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 2.36-2.37 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 2.37-2.38 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 2.38-2.39 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 2.39-2.4 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 2.4-2.41 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 2.41-2.42 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 2.42-2.43 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 2.43-2.44 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 2.44-2.45 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 2.45-2.46 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 2.46-2.47 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 2.47-2.48 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 2.48-2.49 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 2.49-2.5 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 2.5-2.51 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 2.51-2.52 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 2.52-2.53 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 2.53-2.54 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 2.54-2.55 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 2.55-2.56 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 2.56-2.57 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 2.57-2.58 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 2.58-2.59 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 2.59-2.6 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 2.6-2.61 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 2.61-2.62 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 2.62-2.63 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 2.63-2.64 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 2.64-2.65 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 2.65-2.66 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 2.66-2.67 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 2.67-2.68 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 2.68-2.69 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 2.69-2.7 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 2.7-2.71 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 2.71-2.72 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 2.72-2.73 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 2.75-2.76 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 2.76-2.77 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 2.77-2.78 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 2.78-2.79 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 2.79-2.8 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 2.8-2.81 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 2.81-2.82 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 2.82-2.83 GeV.
Differential cross section as a function of COS(THETA(K)) for the centre-of-mass range 2.83-2.84 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 1.62-1.63 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 1.63-1.64 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 1.64-1.65 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 1.65-1.66 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 1.66-1.67 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 1.67-1.68 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 1.68-1.69 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 1.69-1.7 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 1.7-1.71 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 1.71-1.72 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 1.72-1.73 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 1.73-1.74 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 1.74-1.75 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 1.75-1.76 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 1.76-1.77 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 1.77-1.78 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 1.78-1.79 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 1.79-1.8 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 1.8-1.81 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 1.81-1.82 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 1.82-1.83 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 1.83-1.84 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 1.84-1.85 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 1.85-1.86 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 1.86-1.87 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 1.87-1.88 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 1.88-1.89 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 1.89-1.9 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 1.9-1.91 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 1.91-1.92 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 1.92-1.93 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 1.93-1.94 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 1.94-1.95 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 1.95-1.96 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 1.96-1.97 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 1.97-1.98 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 1.98-1.99 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 1.99-2 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 2-2.01 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 2.01-2.02 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 2.02-2.03 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 2.03-2.04 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 2.04-2.05 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 2.05-2.06 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 2.06-2.07 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 2.07-2.08 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 2.08-2.09 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 2.09-2.1 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 2.1-2.11 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 2.11-2.12 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 2.12-2.13 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 2.13-2.14 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 2.14-2.15 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 2.15-2.16 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 2.16-2.17 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 2.17-2.18 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 2.18-2.19 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 2.19-2.2 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 2.2-2.21 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 2.21-2.22 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 2.22-2.23 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 2.23-2.24 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 2.24-2.25 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 2.25-2.26 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 2.26-2.27 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 2.27-2.28 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 2.28-2.29 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 2.29-2.3 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 2.3-2.31 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 2.31-2.32 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 2.32-2.33 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 2.33-2.34 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 2.34-2.35 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 2.35-2.36 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 2.36-2.37 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 2.37-2.38 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 2.38-2.39 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 2.39-2.4 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 2.4-2.41 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 2.41-2.42 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 2.42-2.43 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 2.43-2.44 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 2.44-2.45 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 2.45-2.46 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 2.46-2.47 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 2.47-2.48 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 2.48-2.49 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 2.49-2.5 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 2.5-2.51 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 2.51-2.52 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 2.52-2.53 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 2.53-2.54 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 2.54-2.55 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 2.55-2.56 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 2.56-2.57 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 2.57-2.58 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 2.58-2.59 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 2.59-2.6 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 2.6-2.61 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 2.61-2.62 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 2.62-2.63 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 2.63-2.64 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 2.64-2.65 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 2.65-2.66 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 2.66-2.67 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 2.67-2.68 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 2.68-2.69 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 2.69-2.7 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 2.7-2.71 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 2.71-2.72 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 2.72-2.73 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 2.73-2.74 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 2.74-2.75 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 2.75-2.76 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 2.76-2.77 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 2.77-2.78 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 2.78-2.79 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 2.79-2.8 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 2.8-2.81 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 2.81-2.82 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 2.82-2.83 GeV.
Polarization(LAMBDA) as a function of COS(THETA(K)) for the centre-of-mass range 2.83-2.84 GeV.
Exclusive measurements of the reaction pp -> dpi+pi0 have been carried out at T_p = 1.1 GeV at the CELSIUS storage ring using the WASA detector. The isovector pi+pi0 channel exhibits no enhancement at low invariant pipi masses, i. e. no ABC effect. The differential distributions are in agreement with the conventional t-channel Delta-Delta excitation process, which also accounts for the observed energy dependence of the total cross section. This is an update of a previously published version -- see important note at the end of the article.
Updated total cross section for the reaction P P --> DEUT PI+ PI0, from the erratum.
Angular distribution of the PI0 in the CM system for the process P P --> DEUT PI+ PI0. As described in the erratum, these values should be multiplied by a factor of 2.3.
Angular distribution of the deuterium in the CM system for the process P P --> DEUT PI+ PI0. As described in the erratum, these values should be multiplied by a factor of 2.3.
The HARP collaboration has presented measurements of the double-differential pi+/pi- production cross-section in the range of momentum 100 MeV/c <= p 800 MeV/c and angle 0.35 rad <= theta <= 2.15 rad with proton beams hitting thin nuclear targets. In many applications the extrapolation to long targets is necessary. In this paper the analysis of data taken with long (one interaction length) solid cylindrical targets made of carbon, tantalum and lead is presented. The data were taken with the large acceptance HARP detector in the T9 beam line of the CERN PS. The secondary pions were produced by beams of protons with momenta 5 GeV/c, 8 GeV/c and 12 GeV/c. The tracking and identification of the produced particles were performed using a small-radius cylindrical time projection chamber (TPC) placed inside a solenoidal magnet. Incident protons were identified by an elaborate system of beam detectors. Results are obtained for the double-differential yields per target nucleon d2 sigma / dp dtheta. The measurements are compared with predictions of the MARS and GEANT4 Monte Carlo simulations.
Differential cross section for PI+ production with a C target in the angular range 0.35 to 0.55 radians.. The errors are the square root of the diagonal elements of the covariant matrix.
Differential cross section for PI+ production with a C target in the angular range 0.55 to 0.75 radians.. The errors are the square root of the diagonal elements of the covariant matrix.
Differential cross section for PI+ production with a C target in the angular range 0.75 to 0.95 radians.. The errors are the square root of the diagonal elements of the covariant matrix.
Differential cross section for PI+ production with a C target in the angular range 0.95 to 1.15 radians.. The errors are the square root of the diagonal elements of the covariant matrix.
Differential cross section for PI+ production with a C target in the angular range 1.15 to 1.35 radians.. The errors are the square root of the diagonal elements of the covariant matrix.
Differential cross section for PI+ production with a C target in the angular range 1.35 to 1.55 radians.. The errors are the square root of the diagonal elements of the covariant matrix.
Differential cross section for PI+ production with a C target in the angular range 1.55 to 1.75 radians.. The errors are the square root of the diagonal elements of the covariant matrix.
Differential cross section for PI+ production with a C target in the angular range 1.75 to 1.95 radians.. The errors are the square root of the diagonal elements of the covariant matrix.
Differential cross section for PI+ production with a C target in the angular range 1.95 to 2.15 radians.. The errors are the square root of the diagonal elements of the covariant matrix.
Differential cross section for PI- production with a C target in the angular range 0.35 to 0.55 radians.. The errors are the square root of the diagonal elements of the covariant matrix.
Differential cross section for PI- production with a C target in the angular range 0.55 to 0.75 radians.. The errors are the square root of the diagonal elements of the covariant matrix.
Differential cross section for PI- production with a C target in the angular range 0.75 to 0.95 radians.. The errors are the square root of the diagonal elements of the covariant matrix.
Differential cross section for PI- production with a C target in the angular range 0.95 to 1.15 radians.. The errors are the square root of the diagonal elements of the covariant matrix.
Differential cross section for PI- production with a C target in the angular range 1.15 to 1.35 radians.. The errors are the square root of the diagonal elements of the covariant matrix.
Differential cross section for PI- production with a C target in the angular range 1.35 to 1.55 radians.. The errors are the square root of the diagonal elements of the covariant matrix.
Differential cross section for PI- production with a C target in the angular range 1.55 to 1.75 radians.. The errors are the square root of the diagonal elements of the covariant matrix.
Differential cross section for PI- production with a C target in the angular range 1.75 to 1.95 radians.. The errors are the square root of the diagonal elements of the covariant matrix.
Differential cross section for PI- production with a C target in the angular range 1.95 to 2.15 radians.. The errors are the square root of the diagonal elements of the covariant matrix.
Differential cross section for PI+ production with a TA target in the angular range 0.35 to 0.55 radians.. The errors are the square root of the diagonal elements of the covariant matrix.
Differential cross section for PI+ production with a TA target in the angular range 0.55 to 0.75 radians.. The errors are the square root of the diagonal elements of the covariant matrix.
Differential cross section for PI+ production with a TA target in the angular range 0.75 to 0.95 radians.. The errors are the square root of the diagonal elements of the covariant matrix.
Differential cross section for PI+ production with a TA target in the angular range 0.95 to 1.15 radians.. The errors are the square root of the diagonal elements of the covariant matrix.
Differential cross section for PI+ production with a TA target in the angular range 1.15 to 1.35 radians.. The errors are the square root of the diagonal elements of the covariant matrix.
Differential cross section for PI+ production with a TA target in the angular range 1.35 to 1.55 radians.. The errors are the square root of the diagonal elements of the covariant matrix.
Differential cross section for PI+ production with a TA target in the angular range 1.55 to 1.75 radians.. The errors are the square root of the diagonal elements of the covariant matrix.
Differential cross section for PI+ production with a TA target in the angular range 1.75 to 1.95 radians.. The errors are the square root of the diagonal elements of the covariant matrix.
Differential cross section for PI+ production with a TA target in the angular range 1.95 to 2.15 radians.. The errors are the square root of the diagonal elements of the covariant matrix.
Differential cross section for PI- production with a TA target in the angular range 0.35 to 0.55 radians.. The errors are the square root of the diagonal elements of the covariant matrix.
Differential cross section for PI- production with a TA target in the angular range 0.55 to 0.75 radians.. The errors are the square root of the diagonal elements of the covariant matrix.
Differential cross section for PI- production with a TA target in the angular range 0.75 to 0.95 radians.. The errors are the square root of the diagonal elements of the covariant matrix.
Differential cross section for PI- production with a TA target in the angular range 0.95 to 1.15 radians.. The errors are the square root of the diagonal elements of the covariant matrix.
Differential cross section for PI- production with a TA target in the angular range 1.15 to 1.35 radians.. The errors are the square root of the diagonal elements of the covariant matrix.
Differential cross section for PI- production with a TA target in the angular range 1.35 to 1.55 radians.. The errors are the square root of the diagonal elements of the covariant matrix.
Differential cross section for PI- production with a TA target in the angular range 1.55 to 1.75 radians.. The errors are the square root of the diagonal elements of the covariant matrix.
Differential cross section for PI- production with a TA target in the angular range 1.75 to 1.95 radians.. The errors are the square root of the diagonal elements of the covariant matrix.
Differential cross section for PI- production with a TA target in the angular range 1.95 to 2.15 radians.. The errors are the square root of the diagonal elements of the covariant matrix.
Differential cross section for PI+ production with a PB target in the angular range 0.35 to 0.55 radians.. The errors are the square root of the diagonal elements of the covariant matrix.
Differential cross section for PI+ production with a PB target in the angular range 0.55 to 0.75 radians.. The errors are the square root of the diagonal elements of the covariant matrix.
Differential cross section for PI+ production with a PB target in the angular range 0.75 to 0.95 radians.. The errors are the square root of the diagonal elements of the covariant matrix.
Differential cross section for PI+ production with a PB target in the angular range 0.95 to 1.15 radians.. The errors are the square root of the diagonal elements of the covariant matrix.
Differential cross section for PI+ production with a PB target in the angular range 1.15 to 1.35 radians.. The errors are the square root of the diagonal elements of the covariant matrix.
Differential cross section for PI+ production with a PB target in the angular range 1.35 to 1.55 radians.. The errors are the square root of the diagonal elements of the covariant matrix.
Differential cross section for PI+ production with a PB target in the angular range 1.55 to 1.75 radians.. The errors are the square root of the diagonal elements of the covariant matrix.
Differential cross section for PI+ production with a PB target in the angular range 1.75 to 1.95 radians.. The errors are the square root of the diagonal elements of the covariant matrix.
Differential cross section for PI+ production with a PB target in the angular range 1.95 to 2.15 radians.. The errors are the square root of the diagonal elements of the covariant matrix.
Differential cross section for PI- production with a PB target in the angular range 0.35 to 0.55 radians.. The errors are the square root of the diagonal elements of the covariant matrix.
Differential cross section for PI- production with a PB target in the angular range 0.55 to 0.75 radians.. The errors are the square root of the diagonal elements of the covariant matrix.
Differential cross section for PI- production with a PB target in the angular range 0.75 to 0.95 radians.. The errors are the square root of the diagonal elements of the covariant matrix.
Differential cross section for PI- production with a PB target in the angular range 0.95 to 1.15 radians.. The errors are the square root of the diagonal elements of the covariant matrix.
Differential cross section for PI- production with a PB target in the angular range 1.15 to 1.35 radians.. The errors are the square root of the diagonal elements of the covariant matrix.
Differential cross section for PI- production with a PB target in the angular range 1.35 to 1.55 radians.. The errors are the square root of the diagonal elements of the covariant matrix.
Differential cross section for PI- production with a PB target in the angular range 1.55 to 1.75 radians.. The errors are the square root of the diagonal elements of the covariant matrix.
Differential cross section for PI- production with a PB target in the angular range 1.75 to 1.95 radians.. The errors are the square root of the diagonal elements of the covariant matrix.
Differential cross section for PI- production with a PB target in the angular range 1.95 to 2.15 radians.. The errors are the square root of the diagonal elements of the covariant matrix.
High-statistics differential cross sections and spin density matrix elements for the reaction $\gamma p \to p \omega$ have been measured using the CLAS at Jefferson Lab for center-of-mass (CM) energies from threshold up to 2.84 GeV. Results are reported in 112 10-MeV wide CM energy bins, each subdivided into $\cos{\theta_{CM}^{\omega}}$ bins of width 0.1. These are the most precise and extensive $\omega$ photoproduction measurements to date. A number of prominent structures are clearly present in the data. Many of these have not previously been observed due to limited statistics in earlier measurements.
Differential cross section for the W range 1.72 to 1.73 GeV.
Differential cross section for the W range 1.73 to 1.74 GeV.
Differential cross section for the W range 1.74 to 1.75 GeV.
Differential cross section for the W range 1.75 to 1.76 GeV.
Differential cross section for the W range 1.76 to 1.77 GeV.
Differential cross section for the W range 1.77 to 1.78 GeV.
Differential cross section for the W range 1.78 to 1.79 GeV.
Differential cross section for the W range 1.79 to 1.80 GeV.
Differential cross section for the W range 1.80 to 1.81 GeV.
Differential cross section for the W range 1.81 to 1.82 GeV.
Differential cross section for the W range 1.82 to 1.83 GeV.
Differential cross section for the W range 1.83 to 1.84 GeV.
Differential cross section for the W range 1.84 to 1.85 GeV.
Differential cross section for the W range 1.85 to 1.86 GeV.
Differential cross section for the W range 1.86 to 1.87 GeV.
Differential cross section for the W range 1.87 to 1.88 GeV.
Differential cross section for the W range 1.88 to 1.89 GeV.
Differential cross section for the W range 1.89 to 1.90 GeV.
Differential cross section for the W range 1.90 to 1.91 GeV.
Differential cross section for the W range 1.91 to 1.92 GeV.
Differential cross section for the W range 1.92 to 1.93 GeV.
Differential cross section for the W range 1.93 to 1.94 GeV.
Differential cross section for the W range 1.94 to 1.95 GeV.
Differential cross section for the W range 1.96 to 1.97 GeV.
Differential cross section for the W range 1.97 to 1.98 GeV.
Differential cross section for the W range 1.98 to 1.99 GeV.
Differential cross section for the W range 1.99 to 2.00 GeV.
Differential cross section for the W range 2.00 to 2.01 GeV.
Differential cross section for the W range 2.01 to 2.02 GeV.
Differential cross section for the W range 2.02 to 2.03 GeV.
Differential cross section for the W range 2.03 to 2.04 GeV.
Differential cross section for the W range 2.04 to 2.05 GeV.
Differential cross section for the W range 2.05 to 2.06 GeV.
Differential cross section for the W range 2.06 to 2.07 GeV.
Differential cross section for the W range 2.07 to 2.08 GeV.
Differential cross section for the W range 2.08 to 2.09 GeV.
Differential cross section for the W range 2.09 to 2.10 GeV.
Differential cross section for the W range 2.10 to 2.11 GeV.
Differential cross section for the W range 2.11 to 2.12 GeV.
Differential cross section for the W range 2.12 to 2.13 GeV.
Differential cross section for the W range 2.13 to 2.14 GeV.
Differential cross section for the W range 2.14 to 2.15 GeV.
Differential cross section for the W range 2.15 to 2.16 GeV.
Differential cross section for the W range 2.16 to 2.17 GeV.
Differential cross section for the W range 2.17 to 2.18 GeV.
Differential cross section for the W range 2.18 to 2.19 GeV.
Differential cross section for the W range 2.19 to 2.20 GeV.
Differential cross section for the W range 2.20 to 2.21 GeV.
Differential cross section for the W range 2.21 to 2.22 GeV.
Differential cross section for the W range 2.22 to 2.23 GeV.
Differential cross section for the W range 2.23 to 2.24 GeV.
Differential cross section for the W range 2.24 to 2.25 GeV.
Differential cross section for the W range 2.25 to 2.26 GeV.
Differential cross section for the W range 2.26 to 2.27 GeV.
Differential cross section for the W range 2.27 to 2.28 GeV.
Differential cross section for the W range 2.28 to 2.29 GeV.
Differential cross section for the W range 2.29 to 2.30 GeV.
Differential cross section for the W range 2.30 to 2.31 GeV.
Differential cross section for the W range 2.31 to 2.32 GeV.
Differential cross section for the W range 2.32 to 2.33 GeV.
Differential cross section for the W range 2.33 to 2.34 GeV.
Differential cross section for the W range 2.34 to 2.35 GeV.
Differential cross section for the W range 2.35 to 2.36 GeV.
Differential cross section for the W range 2.36 to 2.37 GeV.
Differential cross section for the W range 2.37 to 2.38 GeV.
Differential cross section for the W range 2.38 to 2.39 GeV.
Differential cross section for the W range 2.39 to 2.40 GeV.
Differential cross section for the W range 2.40 to 2.41 GeV.
Differential cross section for the W range 2.41 to 2.42 GeV.
Differential cross section for the W range 2.42 to 2.43 GeV.
Differential cross section for the W range 2.43 to 2.44 GeV.
Differential cross section for the W range 2.44 to 2.45 GeV.
Differential cross section for the W range 2.45 to 2.46 GeV.
Differential cross section for the W range 2.46 to 2.47 GeV.
Differential cross section for the W range 2.47 to 2.48 GeV.
Differential cross section for the W range 2.48 to 2.49 GeV.
Differential cross section for the W range 2.49 to 2.50 GeV.
Differential cross section for the W range 2.50 to 2.51 GeV.
Differential cross section for the W range 2.51 to 2.52 GeV.
Differential cross section for the W range 2.52 to 2.53 GeV.
Differential cross section for the W range 2.53 to 2.54 GeV.
Differential cross section for the W range 2.54 to 2.55 GeV.
Differential cross section for the W range 2.55 to 2.56 GeV.
Differential cross section for the W range 2.56 to 2.57 GeV.
Differential cross section for the W range 2.57 to 2.58 GeV.
Differential cross section for the W range 2.58 to 2.59 GeV.
Differential cross section for the W range 2.59 to 2.60 GeV.
Differential cross section for the W range 2.60 to 2.61 GeV.
Differential cross section for the W range 2.61 to 2.62 GeV.
Differential cross section for the W range 2.62 to 2.63 GeV.
Differential cross section for the W range 2.63 to 2.64 GeV.
Differential cross section for the W range 2.64 to 2.65 GeV.
Differential cross section for the W range 2.65 to 2.66 GeV.
Differential cross section for the W range 2.66 to 2.67 GeV.
Differential cross section for the W range 2.67 to 2.68 GeV.
Differential cross section for the W range 2.68 to 2.69 GeV.
Differential cross section for the W range 2.69 to 2.70 GeV.
Differential cross section for the W range 2.70 to 2.71 GeV.
Differential cross section for the W range 2.71 to 2.72 GeV.
Differential cross section for the W range 2.72 to 2.73 GeV.
Differential cross section for the W range 2.75 to 2.76 GeV.
Differential cross section for the W range 2.76 to 2.77 GeV.
Differential cross section for the W range 2.77 to 2.78 GeV.
Differential cross section for the W range 2.78 to 2.79 GeV.
Differential cross section for the W range 2.79 to 2.80 GeV.
Differential cross section for the W range 2.80 to 2.81 GeV.
Differential cross section for the W range 2.81 to 2.82 GeV.
Differential cross section for the W range 2.82 to 2.83 GeV.
Differential cross section for the W range 2.83 to 2.84 GeV.
Spin density matrix elements for the W range 1.72 to 1.73 GeV.
Spin density matrix elements for the W range 1.73 to 1.74 GeV.
Spin density matrix elements for the W range 1.74 to 1.75 GeV.
Spin density matrix elements for the W range 1.75 to 1.76 GeV.
Spin density matrix elements for the W range 1.76 to 1.77 GeV.
Spin density matrix elements for the W range 1.77 to 1.78 GeV.
Spin density matrix elements for the W range 1.78 to 1.79 GeV.
Spin density matrix elements for the W range 1.79 to 1.80 GeV.
Spin density matrix elements for the W range 1.80 to 1.81 GeV.
Spin density matrix elements for the W range 1.81 to 1.82 GeV.
Spin density matrix elements for the W range 1.82 to 1.83 GeV.
Spin density matrix elements for the W range 1.83 to 1.84 GeV.
Spin density matrix elements for the W range 1.84 to 1.85 GeV.
Spin density matrix elements for the W range 1.85 to 1.86 GeV.
Spin density matrix elements for the W range 1.86 to 1.87 GeV.
Spin density matrix elements for the W range 1.87 to 1.88 GeV.
Spin density matrix elements for the W range 1.88 to 1.89 GeV.
Spin density matrix elements for the W range 1.89 to 1.90 GeV.
Spin density matrix elements for the W range 1.90 to 1.91 GeV.
Spin density matrix elements for the W range 1.91 to 1.92 GeV.
Spin density matrix elements for the W range 1.92 to 1.93 GeV.
Spin density matrix elements for the W range 1.93 to 1.94 GeV.
Spin density matrix elements for the W range 1.94 to 1.95 GeV.
Spin density matrix elements for the W range 1.95 to 1.96 GeV.
Spin density matrix elements for the W range 1.96 to 1.97 GeV.
Spin density matrix elements for the W range 1.97 to 1.98 GeV.
Spin density matrix elements for the W range 1.98 to 1.99 GeV.
Spin density matrix elements for the W range 1.99 to 2.00 GeV.
Spin density matrix elements for the W range 2.00 to 2.01 GeV.
Spin density matrix elements for the W range 2.01 to 2.02 GeV.
Spin density matrix elements for the W range 2.02 to 2.03 GeV.
Spin density matrix elements for the W range 2.03 to 2.04 GeV.
Spin density matrix elements for the W range 2.04 to 2.05 GeV.
Spin density matrix elements for the W range 2.05 to 2.06 GeV.
Spin density matrix elements for the W range 2.06 to 2.07 GeV.
Spin density matrix elements for the W range 2.07 to 2.08 GeV.
Spin density matrix elements for the W range 2.08 to 2.09 GeV.
Spin density matrix elements for the W range 2.09 to 2.10 GeV.
Spin density matrix elements for the W range 2.10 to 2.11 GeV.
Spin density matrix elements for the W range 2.11 to 2.12 GeV.
Spin density matrix elements for the W range 2.12 to 2.13 GeV.
Spin density matrix elements for the W range 2.13 to 2.14 GeV.
Spin density matrix elements for the W range 2.14 to 2.15 GeV.
Spin density matrix elements for the W range 2.15 to 2.16 GeV.
Spin density matrix elements for the W range 2.16 to 2.17 GeV.
Spin density matrix elements for the W range 2.17 to 2.18 GeV.
Spin density matrix elements for the W range 2.18 to 2.19 GeV.
Spin density matrix elements for the W range 2.19 to 2.20 GeV.
Spin density matrix elements for the W range 2.20 to 2.21 GeV.
Spin density matrix elements for the W range 2.21 to 2.22 GeV.
Spin density matrix elements for the W range 2.22 to 2.23 GeV.
Spin density matrix elements for the W range 2.23 to 2.24 GeV.
Spin density matrix elements for the W range 2.24 to 2.25 GeV.
Spin density matrix elements for the W range 2.25 to 2.26 GeV.
Spin density matrix elements for the W range 2.26 to 2.27 GeV.
Spin density matrix elements for the W range 2.27 to 2.28 GeV.
Spin density matrix elements for the W range 2.28 to 2.29 GeV.
Spin density matrix elements for the W range 2.29 to 2.30 GeV.
Spin density matrix elements for the W range 2.30 to 2.31 GeV.
Spin density matrix elements for the W range 2.31 to 2.32 GeV.
Spin density matrix elements for the W range 2.32 to 2.33 GeV.
Spin density matrix elements for the W range 2.33 to 2.34 GeV.
Spin density matrix elements for the W range 2.34 to 2.35 GeV.
Spin density matrix elements for the W range 2.35 to 2.36 GeV.
Spin density matrix elements for the W range 2.36 to 2.37 GeV.
Spin density matrix elements for the W range 2.37 to 2.38 GeV.
Spin density matrix elements for the W range 2.38 to 2.39 GeV.
Spin density matrix elements for the W range 2.39 to 2.40 GeV.
Spin density matrix elements for the W range 2.40 to 2.41 GeV.
Spin density matrix elements for the W range 2.41 to 2.42 GeV.
Spin density matrix elements for the W range 2.42 to 2.43 GeV.
Spin density matrix elements for the W range 2.43 to 2.44 GeV.
Spin density matrix elements for the W range 2.44 to 2.45 GeV.
Spin density matrix elements for the W range 2.45 to 2.46 GeV.
Spin density matrix elements for the W range 2.46 to 2.47 GeV.
Spin density matrix elements for the W range 2.47 to 2.48 GeV.
Spin density matrix elements for the W range 2.48 to 2.49 GeV.
Spin density matrix elements for the W range 2.49 to 2.50 GeV.
Spin density matrix elements for the W range 2.50 to 2.51 GeV.
Spin density matrix elements for the W range 2.51 to 2.52 GeV.
Spin density matrix elements for the W range 2.52 to 2.53 GeV.
Spin density matrix elements for the W range 2.53 to 2.54 GeV.
Spin density matrix elements for the W range 2.54 to 2.55 GeV.
Spin density matrix elements for the W range 2.55 to 2.56 GeV.
Spin density matrix elements for the W range 2.56 to 2.57 GeV.
Spin density matrix elements for the W range 2.57 to 2.58 GeV.
Spin density matrix elements for the W range 2.58 to 2.59 GeV.
Spin density matrix elements for the W range 2.59 to 2.60 GeV.
Spin density matrix elements for the W range 2.60 to 2.61 GeV.
Spin density matrix elements for the W range 2.61 to 2.62 GeV.
Spin density matrix elements for the W range 2.62 to 2.63 GeV.
Spin density matrix elements for the W range 2.63 to 2.64 GeV.
Spin density matrix elements for the W range 2.64 to 2.65 GeV.
Spin density matrix elements for the W range 2.65 to 2.66 GeV.
Spin density matrix elements for the W range 2.66 to 2.67 GeV.
Spin density matrix elements for the W range 2.67 to 2.68 GeV.
Spin density matrix elements for the W range 2.68 to 2.69 GeV.
Spin density matrix elements for the W range 2.69 to 2.70 GeV.
Spin density matrix elements for the W range 2.70 to 2.71 GeV.
Spin density matrix elements for the W range 2.71 to 2.72 GeV.
Spin density matrix elements for the W range 2.72 to 2.73 GeV.
Spin density matrix elements for the W range 2.73 to 2.74 GeV.
Spin density matrix elements for the W range 2.74 to 2.75 GeV.
Spin density matrix elements for the W range 2.75 to 2.76 GeV.
Spin density matrix elements for the W range 2.76 to 2.77 GeV.
Spin density matrix elements for the W range 2.77 to 2.78 GeV.
Spin density matrix elements for the W range 2.78 to 2.79 GeV.
Spin density matrix elements for the W range 2.79 to 2.80 GeV.
Spin density matrix elements for the W range 2.80 to 2.81 GeV.
Spin density matrix elements for the W range 2.81 to 2.82 GeV.
Spin density matrix elements for the W range 2.82 to 2.83 GeV.
Spin density matrix elements for the W range 2.83 to 2.84 GeV.
Measurements of the double-differential pi+/- production cross-section in the range of momentum 100 MeV/c <= p <= 800 MeV/c and angle 0.35 rad <= theta <= 2.15 rad using pi+/- beams incident on beryllium, aluminium, carbon, copper, tin, tantalum and lead targets are presented. The data were taken with the large acceptance HARP detector in the T9 beam line of the CERN PS. The secondary pions were produced by beams in a momentum range from 3 GeV/c to 12.9 GeV/c hitting a solid target with a thickness of 5% of a nuclear interaction length. The tracking and identification of the produced particles was performed using a small-radius cylindrical time projection chamber (TPC) placed inside a solenoidal magnet. Incident particles were identified by an elaborate system of beam detectors. Results are obtained for the double-differential cross-sections d2sigma/dpdtheta at six incident beam momenta. Data at 3 GeV/c, 5 GeV/c, 8 GeV/c, and 12 GeV/c are available for all targets while additional data at 8.9 GeV/c and 12.9 GeV/c were taken in positive particle beams on Be and Al targets, respectively. The measurements are compared with several generators of GEANT4 and the MARS Monte Carlo simulation.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
Differential cross sections and photon-beam asymmetries for the gamma p -> K+ Lambda(1520) reaction have been measured with linearly polarized photon beams at energies from the threshold to 2.4 GeV at 0.6
Differential cross sections as a function of the photon energy in four cos(theta) regions. The errors shown are statistcial only.
Photon beam asymmetries. The errors shown are statistical only.
When you search on a word, e.g. 'collisions', we will automatically search across everything we store about a record. But sometimes you may wish to be more specific. Here we show you how.
Guidance on the query string syntax can also be found in the OpenSearch documentation.
We support searching for a range of records using their HEPData record ID or Inspire ID.
About HEPData Submitting to HEPData HEPData File Formats HEPData Coordinators HEPData Terms of Use HEPData Cookie Policy
Status
Email
Forum
Twitter
GitHub
Copyright ~1975-Present, HEPData | Powered by Invenio, funded by STFC, hosted and originally developed at CERN, supported and further developed at IPPP Durham.