The pion absorption reaction (π+,3p) on Ar was studied at pion energies of 70, 118, 162 and 239 MeV, and on N and Xe at 239 MeV. The 3p cross secti
No description provided.
No description provided.
The reaction p ̄ p→K + K − π 0 was analysed for antiproton annihilations at rest at three hydrogen target densities. A strong dependence of the p ̄ p→φπ 0 yield on the quantum numbers of the initial state is observed. The branching ratio of the φπ 0 channel from the 3 S 1 initial state is more than 15 times larger than the one from the 1 P 1 state. A large apparent violation of the OZI rule for tensor meson production from p ̄ p -annihilations from the P -waves (1 ++ +2 ++ ) is observed: R exp ( f ′ 2 π 0 / f 2 π 0 )=(149±20)·10 −3 , significantly exceeding the OZI-rule prediction R =16·10 −3 .
Three densities (LH2, NTP, and LP) of the hydrogen target.
S- and P-wave in the initial PBAR P system.
S- and P-wave in the initial PBAR P system.
The electromagnetic form factors of the neutron in the time-like region have been measured for the first time, from the threshold up to q 2 ⋟ 6 GeV 2 . The neutron magnetic form factor turns out to be larger than the proton one; the angular distribution suggests that for the neutron, at variance with the proton case, electric and magnetic form factors could be different. Further measurements are also reported, concerning the proton form factors and the Σ Σ production, together with the multihadronic cross section and the J / Γ branching ratio into n n .
The uncertainty on the evaluated cross section is given by the quadratic combination of the following terms: the statistical uncertainty on the number of events, the statistical and systematic uncertainty on the luminosity (about 6PCT), the systematic uncertainty on the efficiency evaluation, dominated by the scanning efficiency contribution (about 15PCT). The SQRT(S) values with (C=NOMIN) and (C=SHIFT) correspond to the nominal energy and shifted energy analysis (see text of paper for details).
The uncertainty on the evaluated cross section is given by the quadratic combination of the following terms: the statistical uncertainty on the number of events, the statistical and systematic uncertainty on the luminosity (about 6PCT), the systematic uncertainty on the efficiency evaluation, dominated by the scanning efficiency contribution (about 15PCT). The NEUTRON formfactor value are calculated in two hypotheses: GE = GM and GE = 0.
The uncertainty on the evaluated cross section is given by the quadratic combination of the statistical and systematic uncertainties.
Analyzing powers were measured and used to quantify the observation that s -wave processes dominate near threshold. Values of A y ( θ π , φ π =0°) are presented for η values of 0.22, 0.42 and 0.50. Maximum analyzing powers A N 0 are equal to −0.13, −0.24, and −0.28, respectively. A partial wave analysis, made possible by the new analyzing powers and available cross sections, indicates that the s -wave contribution to the cross section constitutes about 91% of the total cross section at η =0.22, or 300 MeV. It decreases to about 75% for η =0.5.
Polarized beam.
The 1H(e,e′K+)Λ reaction was studied as a function of the squared four-momentum transfer, Q2, and the virtual photon polarization, ɛ. For each of four Q2 settings, 0.52, 0.75, 1.00, and 2.00 (GeV/c)2, the longitudinal and transverse virtual photon cross sections were extracted in measurements at three virtual photon polarizations. The Q2 dependence of the σL/σT ratio differs significantly from current theoretical predictions. This, combined with the precision of the measurement, implies a need for revision of existing calculations.
The systematic and statistical errors are added in quadrature. OMEGA is the solid angle of K+ in CMS.
We have observed a clear peak below the Σ+-production threshold in the 4He(K−,π−) reaction at 600MeV/c and θKπ=4∘. This is confirmation of the existence of the bound state of Σ4He, which was reported in the 4He(stoppedK−,π−) reaction. As in the case of stopped kaons, no such peak was found in the 4He(K−,π+) spectrum. Quantitatively reliable parameters for this level have been established. The binding energy and the width of the bound state are 4.4±0.3(stat)±1(syst) MeV and 7.0±0.7(stat)−0.0+1.2(syst) MeV, respectively.
$HE4/S represents the HE4/SIGMA+ bound state.
The double differential cross section of low momentum kaons ( ≤0.3GeV/c) from p+C collisions at subthreshold bombarding energies has been for the first time measured by the use of the CLAMSUD magnetic spectrometer installed at the CELSIUS storage ring. Invariant cross sections extracted from the data show a source rapidity shifted below the nucleon-nucleon rapidity, in agreement with the existence of multistep processes in the K+ production cross section. The total cross section of the inclusive reaction 12C(p,K+) at 1.2 GeV was extracted and compared with recent data systematics as a function of the proton bombarding energy.
No description provided.
J/ ψ and ψ ′ production cross-sections are measured in pp and pd collisions at 450 GeV/ c at the CERN-SPS. The Drell-Yan cross section for muon pairs in the mass range [4.3–8.0] GeV/ c 2 is also determined in the same experiment.
The measured cross section for J/PSI production for P P and P DEUTERIUM interactions times their branching ratio to MU+ MU- pairs.. The fraction of the systematic error (DSYS) which must be taken into account in comparison of the two targets is 0.06 (0.13) for the P (DEUT) target.
The measured cross section for PSI(3685) production in P P and P DEUTERIUM interactions times their branching ratio to MU+ MU- pairs.. The fraction of the systematic error (DSYS) which must be taken into account in comparison of the two targets is 0.003 (0.006) for the P (DEUT) target.
The measured cross section for Drell Yan production in P P and P DEUTERIUM interactions.. The fraction of the systematic error (DSYS) which must be taken into account in comparison of the two targets is 0.5 (1.2) for the P (DEUT) target.
Inclusive production of the f_0(980), f_2(1270) and \phi(1020) resonances has been studied in a sample of 4.3 million hadronic Z^0 decays from the OPAL experiment at LEP. A coupled channel analysis has been used for the f_0 in simultaneous fits to the resonances in inclusive \pi+\pi- and K+K- mass spectra. Fragmentation functions are reported for the three states. Total inclusive rates are measured to be 0.141 +/- 0.007 +/- 0.011 f_0, 0.155 +/- 0.011 +/- 0.018 f_2, and 0.091 +/- 0.002 +/- 0.003 \phi mesons per hadronic Z^0 decay. The production properties of the f_0, including those in three-jet events, are compared with those of the f_2 and \phi, and with the Lund string model of hadron production. All measurements are consistent with the hypothesis that the f_0 is a conventional qq(bar) scalar meson.
Total inclusive production rates.
Fragmentation functions. Additional systematic errors of 7.6 PCT for F0, 11.6 PCT for F2 and 3.5 PCT for PHI. The uncorrelated systematic errors for F0 and F2 are negligible in comparison to the other errors.
This paper reports on the charged K / π production ratios and on the shape of the p T distributions of π fluxes measured by the SPY/NA56 experiment for 450 GeV/c proton interactions on beryllium targets. The present data cover a secondary momentum range from 7 GeV/c to 135 GeV/c in the forward direction and with p T values up to 600 MeV/c. An experimental accuracy of about 3% has been achieved. These results will reduce the uncertainty on the estimation of the ν e component of neutrino beams.
No description provided.
No description provided.
Additional systematic error of 1.3 PCT.