The Σ − p and Σ − d total cross sections have been measured to a statistical accuracy of ±1% and ±0.5%, respectively, at five momenta from 74.5 to 136.9 GeV/ c , using the hyperon beam at the CERN SPS. The Ξ − p and Ξ − d total cross sections have also been measured to the same statistical accuracy at 101.5 and 133.8 GeV/ c . The systematic uncertainty at each momentum is estimated to be of the order of ±0.5%. The hyperon-nucleon cross sections are shown to be rising with energy, and the data are compared with various phenomenological models.
Axis error includes +- 0.10/0.10 contribution (FOR DEUT TARGET. ADDED TO STAT. ERROR IN QUADRATURESAME AS ABOVE). Axis error includes +- 0.15/0.15 contribution (FOR PROTON TARGET. ADDED TO STAT. ERROR IN QUADRATURE.UNCERTAINTY OF EXTRAPOLATION OVER T).
No description provided.
The ratio of π − to π + electroproduction cross sections from deuterons has been measured in the resonance region at an average four-momentum transfer squared of 0.5 (GeV/ c ) 2 . Results are presented over a wide range of pion production angles and comparisons are made with theoretical predictions based on SU(6) w symmetry and the Melosh transformation.
No description provided.
No description provided.
No description provided.
None
Data from the Published Version (YF 33,1546).
SIG FOR OMEGA(783) AND F0(700) ARE GIVEN WITH TAKING INTO ACCOUNT ALL DECAY MODES. Data from the Published Version (YF 33,1546).
Data from the Published Version (YF 33,1546).
Additional systematic uncertainty 25% not included.
Measurements of the charged multiplicities for hadron production in e + e − annihilation in the center of mass energy range 9–32 GeV have been made. The average charged multiplicity has an energy dependence much stronger than ln s and similar to that reported for pp collisions. Quantitative differences are observed in the magnitude of both the average multiplicity 〈 n ch 〉 and the dispersion D ch for e + e − and pp interactions at the same center of mass energy. 〈 n ch 〉 and the ratio 〈 n ch / D ch in e + e − annihilations are significantly larger than in pp collisions and are found to be in overall agreement with QCD predictions. KNO scaling is seen to be satisfied.
THE FINAL TABLE ENTRY COMBINES THE DATA FROM THE THREE HIGHEST ENERGY BINS.
The transverse momenta of charged hadrons produced in high energy muon-proton scattering have been studied. The average squared transverse momentum 〈 p 2 ⊥ 〉 shows a strong dependence on z = E h / v characteristic of intrinsic momentum effects and a significant rise as a function of s = W 2 . The W 2 , q 2 , x and z dependences of the data are compared with the predictions of a perturbative QCD model.
No description provided.
No description provided.
No description provided.
The reaction π − p↑→ π − π + π − p has been measured at 17 GeV/ c using a polarized target. The data sample contains about 60 000 interactions on polarized protons. The nucleon polarization as a function of momentum transfer is very similar to elastic π − p scattering and is nearly independent of the π mass, except for a possible structure around 1.2 GeV.
No description provided.
By combining results from the MARK-J at PETRA on Bhabha scattering, μ + μ - and τ + τ - production with recent world data from neutrino-electron scattering experiments, we determine unique values for the leptonic weak neutral current coupling constants g V and g A in the framework of electroweak models containing a single Z 0 . In contrast to previous analyses, we only use data from purely leptonic interactions, and therefore avoid the inherent uncertainties resulting from the use of hadronic targets. From the MARK-J data alone in the context of the standard SU(2) ⊗ U (1) model of Glashow, Weinberg and Salam, we find sin 2 θ W =0.24±0.11.
No description provided.
No description provided.
No description provided.
The first measurements are reported of the asymmetry in resonance-region scattering of longitudinally polarized electrons by longitudinally polarized protons. Data have been obtained at Q2=0.5 and 1.5 (GeV/c)2 in the missing-mass range W=1.1−1.9 GeV. Results are compatible with a multipole analysis of single-pion electroproduction. The spin-dependent behavior is consistent with a duality mechanism as in the unpolarized case.
ELECTRON ASYMMETRY AT Q**2 ABOUT 0.5 GEV**2.
ELECTRON ASYMMETRY AT Q**2 ABOUT 1.5 GEV**2.
PHOTON ASYMMETRY AT Q**2 ABOUT 0.5 GEV**2.
Production of pions, kaons, protons and antiprotons has been studied in e + e − annihilations at 12 and 30 GeV centre of mass energy using time of flight techniques. The fractional yield of charged kaons and baryons appears to rise with outgoing particle momentum. At our highest energy at least 40% of e + e − annihilations into hadrons are estimated to contain baryons.
No description provided.
No description provided.
No description provided.