The differential cross sections for the γ + n → π O + n reaction have been measured at the photon energies of 500–900 MeV. The ratios, R oo = [ d δ d Ω(γ n → π o n ) ] [ d δ d Ω(γ p → π o p ) ] , have been obtained at the c.m. pion angles of 60 O , 90 O , 105 O , 120 O , and 140 O .
Axis error includes +- 0.0/0.0 contribution (8 TO 11////).
Axis error includes +- 0.0/0.0 contribution (8 TO 11////).
No description provided.
The differential cross section for the reaction γp → π 0 p at forward angles has been measured in the energy region between 350 MeV and 1175 MeV. A phenomenological multiple analysis was carried out on the present data together with other data.
No description provided.
No description provided.
No description provided.
None
No description provided.
No description provided.
No description provided.
Large-angle cross sections for γd→π0d are systematically measured in the photon energy range between 500 and 1000 MeV. A good fit is obtained by use of a Glauber-model calculation which includes the dibaryon resonances F33(2.26) and G41(2.51), but the fit has an unusual nature in the role of resonance and nonresonance contributions.
Liquid hydrogen target for final calibration.
The preliminary results of measurements of differential cross-sections for the photo-production of neutral pions from protons are given. The data fall in the range 60–125 degrees in pion c.m. angle and 350 to 850 MeV in photon energy.
Axis error includes +- 10/10 contribution (ESTIMATED ERROR DUE TO PRELIMINARY NATURE OF DATA).
Axis error includes +- 10/10 contribution (ESTIMATED ERROR DUE TO PRELIMINARY NATURE OF DATA).
Axis error includes +- 10/10 contribution (ESTIMATED ERROR DUE TO PRELIMINARY NATURE OF DATA).
Some cross-sections for the photo-production of ~z~ from hydrogen for pion c.m. angles in the range 60~ ~ are presented. The data have been obtained by measuring proton yields from a hydrogen target, thus permitting separation of single-pion production from the strong background caused by double-pion production. The values, which extend from 360 to 938 MeV, show reasonable agreement with the results of a recent phase-shift analysis
No description provided.
None
No description provided.